八年级数学上册期末强化综合试卷解析(一).doc
《八年级数学上册期末强化综合试卷解析(一).doc》由会员分享,可在线阅读,更多相关《八年级数学上册期末强化综合试卷解析(一).doc(23页珍藏版)》请在咨信网上搜索。
八年级数学上册期末强化综合试卷解析(一) 一、选择题 1.下列四个图形中,是中心对称图形且不是轴对称图形的为( ) A. B. C. D. 2.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是( ) A.3.4×10-9 B.0.34×1010 C.3.4×10-10 D.3.4×10-11 3.下列运算中,正确的是( ) A. B. C. D. 4.要使分式有意义,的取值范围是( ) A. B. C. D. 5.下列各式从左到右的变形不属于因式分解的是( ) A.a2﹣9=(a+3)(a﹣3) B.a2﹣b2+1=(a+b)(a﹣b)+1 C.m2﹣4=(m+2)(m﹣2) D.2mR+2mr=2m(R+r) 6.下列运算结果正确的是( ) A. B. C. D. 7.如图,ABDE,,若添加下列条件,仍不能判断≌的是( ) A. B. C. D. 8.若分式方程有增根,则的值为( ) A. B.3 C.1 D. 9.如图有两张正方形纸片A和B,图1将B放置在A内部,测得阴影部分面积为2,图2将正方形A和正方形B并列放置后构造新正方形,测得阴影部分面积为6,若将3个正方形A和2个正方形B并列放置后构造新正方形如图3,(图2,图3中正方形纸片均无重叠部分)则图3阴影部分面积为( ) A.14 B.12 C.24 D.22 10.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,∠EAF=∠BAD,若DF=1,BE=5,则线段EF的长为( ) A.3 B.4 C.5 D.6 二、填空题 11.当______ 时,分式的值为零 12.如图,点A在y轴上,是等腰三角形,,点B关于y轴的对称点的坐标为,则点A的坐标为__________. 13.已知a+b=5,ab=3,=_____. 14.已知,,则的值为______. 15.如图,在中,,,以BC为边在BC的右侧作等边,点E为BD的中点,点P为CE上一动点,连结AP,BP.当的值最小时,的度数为__________. 16.若关于x的多项式是完全平方式,则的值为______. 17.如图,求___________. 18.如图,在中,,,,线段,,两点分别在线段和过点且垂直于的射线上运动,当______时,和全等. 三、解答题 19.因式分解: (1) (2) 20.解分式方程: 21.如图,已知点B、E在线段CF上,,,,求证:. 22.,点,分别在射线、上运动(不与点重合). (1)如图①,、分别是和的平分线,随着点、点的运动, ; (2)如图②,若是的平分线,的反向延长线与的平分线交于点. ①若,则 ; ②随着点,的运动,的大小是否会变化?如果不变,求的度数;如果变化,请说明理由. 23.第二实验中学八年级学生去距学校10千米的文化广场参加活动,一部分同学骑自行车先走,过了25分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的平均速度是骑车同学平均速度的2倍,求汽车的平均速度. 24.已知,如图1,我们在2018年某月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”)该十字星的十字差为,再选择其它位置的十字星,可以发现“十字差”仍为48. (1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为 . (2)若将正整数依次填入6列的长方形数表中,不同位置十字星的“十字差”是一个定值吗?如果是,请求出这个定值;如果不是,请说明理由. (3)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数有关的定值,请用表示出这个定值,并证明你的结论. 25.如图,是等边三角形,点在上,点在的延长线上,且. (1)如图甲,若点是的中点,求证: (2)如图乙,若点不的中点,是否成立?证明你的结论. (3)如图丙,若点在线段的延长线上,试判断与的大小关系,并说明理由. 26.如图1,在平面直角坐标系中,点在x轴负半轴上,点B在y轴正半轴上,设,且. (1)直接写出的度数. (2)如图2,点D为AB的中点,点P为y轴负半轴上一点,以AP为边作等边三角形APQ,连接DQ并延长交x轴于点M,若,求点M的坐标. (3)如图3,点C与点A关于y轴对称,点E为OC的中点,连接BE,过点B作,且,连接AF交BC于点P,求的值. 【参考答案】 一、选择题 2.D 解析:D 【分析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,据此逐项判断即可. 【详解】解:A、是中心对称图形,也是轴对称图形,故此选项不符合题意; B、是中心对称图形,也是轴对称图形,故此选项不符合题意; C、是中心对称图形,也是轴对称图形,故此选项不符合题意; D、是中心对称图形,不是轴对称图形,故此选项符合题意, 故选:D. 【点睛】本题考查中心对称图形和轴对称图形,理解定义,找准对称中心或对称轴是解答的关键. 3.C 解析:C 【分析】科学记数法的表现形式为的形式,其中,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于1时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案. 【详解】解: 故选C. 【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义. 4.C 解析:C 【分析】根据整式的同底数幂乘法法则,乘方法则,单项式乘以单项式法则及合并同类项法则计算并判断. 【详解】解:,故选项A错误; ,故选项B错误; ,故选项C正确; 2a与3b不是同类项,不能合并,故选项D错误; 故选:C. 【点睛】此题考查了整式的计算,正确掌握整式的同底数幂乘法法则,乘方法则,单项式乘以单项式法则及合并同类项法则是解题的关键. 5.D 解析:D 【分析】根据分式有意义的条件,即分母不为0,即可求得. 【详解】解:分式有意义, ,即, 故选:D. 【点睛】本题考查了分式有意义的条件,熟练掌握和运用分式有意义的条件是解决本题的关键. 6.B 解析:B 【分析】利用因式分解的定义判断即可. 【详解】解:A、符合因式分解的定义,属于因式分解,故此选项不符合题意; B、右边不是整式的积的形式,不属于因式分解,故此选项符合题意; C、符合因式分解的定义,属于因式分解,故此选项不符合题意; D、符合因式分解的定义,属于因式分解,故此选项不符合题意. 故选:B. 【点睛】本题主要考查了因式分解,熟练掌握因式分解的定义是解本题的关键.分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式. 7.D 解析:D 【分析】根据分式的性质、分式的四则运算逐项分析判断即可求解. 【详解】解: A. ,故该选项不正确,不符合题意; B. ,故该选项不正确,不符合题意; C. ,故该选项不正确,不符合题意; D. ,故该选项正确,符合题意; 故选:D. 【点睛】本题考查了分式的性质、分式的四则运算,正确的计算是解题的关键. 8.A 解析:A 【分析】根据全等三角形的判断方法一一判断即可. 【详解】解:A.缺少全等的条件,本选项符合题意; B.∵ABDE, ∴∠B=∠E ∵ ∴ ∴ ∵ ∴≌(SAS) 故本选项不符合题意; C.∵ABDE, ∴∠B=∠E ∵, ∴≌(ASA) 故本选项不符合题意; D.∵ABDE, ∴∠B=∠E,∠ACB=∠DFE ∵ ∴≌(AAS) 故本选项不符合题意. 故选:A. 【点睛】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型. 9.D 解析:D 【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,把增根代入化为整式方程的方程即可求出m的值. 【详解】解:, , 解得, 关于的分式方程有增根, , , 解得. 故选D. 【点睛】本题考查了解分式方程,分式方程的增根,掌握解分式方程以及增根的定义是解题的关键. 10.A 解析:A 【分析】由图1可知,阴影部分面积a2-b2=2,图2可知,阴影部分面积(a+b)2-a2-b2=6,进而得到ab=3,由图3可知,阴影部分面积(2a+b)2-3a2-2b2=a2-b2+4ab,即可得出答案. 【详解】解:设正方形A的边长为a,正方形B的边长为b, 由图1可知,阴影部分面积a2-b2=2, 图2可知,阴影部分面积(a+b)2-a2-b2=6, 所以ab=3, 由图3可知,阴影部分面积(2a+b)2-3a2-2b2=a2-b2+4ab=2+12=14. 故选:A. 【点睛】本题考查了平方差公式和完全平方公式的几何背景以及整式的加减,利用公式是解决问题的关键. 11.B 解析:B 【分析】在BE上截取BG=DF,先证△ADF≌△ABG,再证△AEG≌△AEF即可解答. 【详解】在BE上截取BG=DF, ∵∠B+∠ADC=180°,∠ADC+∠ADF=180°, ∴∠B=∠ADF, 在△ADF与△ABG中 , ∴△ADF≌△ABG(SAS), ∴AG=AF,∠FAD=∠GAB, ∵∠EAF=∠BAD, ∴∠FAE=∠GAE, 在△AEG与△AEF中 , ∴△AEG≌△AEF(SAS) ∴EF=EG=BE﹣BG=BE﹣DF=4. 故选:B. 【点睛】考查了全等三角形的判定与性质,证明三角形全等是解决问题的关键. 二、填空题 12. 【分析】由分式的值为0的条件可得:,再解方程与不等式即可得到答案. 【详解】解: 分式的值为零, 由①得: 由②得:且 综上: 故答案为: 【点睛】本题考查的是分式的值为0的条件,利用平方根解方程,掌握“分式的值为0的条件:分子为0,分母不为0”是解本题的关键. 13.B 解析:(0,6) 【分析】过B作BC⊥AO于C,由点B关于y轴的对称点的坐标为得出点B的坐标,依据等腰三角形的性质即可得到AC=OC=3,最后求得点A的坐标. 【详解】解:如图所示,过B作BC⊥AO于C, ∵点B关于y轴的对称点的坐标为, ∴B, ∵AB=OB,BC⊥AO, ∴AC=OC=3, ∴点A的坐标为(0,6), 故答案为:(0,6). 【点睛】本题主要考查了等腰三角形的性质,解决问题的关键是掌握关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变. 14.. 【分析】将a+b=5.ab=3代入原式=,计算可得. 【详解】当a+b=5.ab=3时, 原式= = = =. 故答案为. 【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算法则和完全平方公式. 15. 【分析】根据逆用幂的乘方运算、同底数幂的除法,即可求解. 【详解】,, 故答案为: 【点睛】本题考查了幂的乘方运算、同底数幂的除法,掌握幂的乘方运算、同底数幂的除法法则是解题的关键. 16.15° 【分析】连接PD、AD,设AD与CE交于点P1,利用等边三角形的性质证得∠CBD=∠BCD=∠BDC=60°,PD=BP,根据两点之间线段最短得出当点A、P、D共线时即点P运动到P1时,A 解析:15° 【分析】连接PD、AD,设AD与CE交于点P1,利用等边三角形的性质证得∠CBD=∠BCD=∠BDC=60°,PD=BP,根据两点之间线段最短得出当点A、P、D共线时即点P运动到P1时,AP+BP有最小值,连接BP1,根据等边对等角证得∠CBP1=∠CDP1=∠CAD,再根据三角形的外角性质即可求解. 【详解】解:连接PD、AD,设AD与CE交于点P1, ∵△BCD是等边三角形,点E为BC的中点, ∴∠CBD=∠BCD=∠BDC=60°,BC=CD,CE⊥BD,BE=DE, ∴CE为线段BD的垂直平分线, ∴PD=BP, ∴当点P运动时,AP+BP=AP+PD,而AP+PD≥AD, ∴当点A、P、D共线时即点P运动到P1时,AP+BP有最小值, 连接BP1,则BP1=DP1, ∴∠P1BD=∠P1DB,又∠CBD=∠BDC, ∴∠CBP1=∠CDP1, ∵AC=BC=CD, ∴∠CDP1=∠CAD,即 延长AC至Q, ∵∠ACB=90°,∠BCD=60°, ∴∠DCQ=90°﹣60°=30°,又∠DCQ=∠CDP1+∠CAD=2∠CDP1, ∴∠CDP1=15°,即∠CBP1=15°, ∴当的值最小时,=15°, 故答案为:15°. 【点睛】本题考查等边三角形的性质、线段垂直平分线的性质、最短路径问题、等腰三角形的性质、三角形的外角性质,熟练掌握相关性质的联系与运用,会利用两点之间线段最短解决最值问题是解答的关键. 17.或 【分析】根据完全平方公式:,观察其构造,即可得出的值,再求的值; 【详解】解:, 当时,,则; 当时,,则; 故答案为:或. 【点睛】本题主要考查的是完全平方公式,观察公式的构成是解 解析:或 【分析】根据完全平方公式:,观察其构造,即可得出的值,再求的值; 【详解】解:, 当时,,则; 当时,,则; 故答案为:或. 【点睛】本题主要考查的是完全平方公式,观察公式的构成是解题的关键. 18.225°##225度 【分析】连接AD,BC,根据三角形内角和、四边形内角和求解即可. 【详解】解:连接AD,BC, 四边形ABCD中,∠DAB+∠ABC+∠BCD+∠CDA=360° 解析:225°##225度 【分析】连接AD,BC,根据三角形内角和、四边形内角和求解即可. 【详解】解:连接AD,BC, 四边形ABCD中,∠DAB+∠ABC+∠BCD+∠CDA=360°, ∵∠DEA+∠EAD+∠ADE=180°,∠DEA=105°, ∴∠EAD+∠ADE=180°−105°=75°, ∵∠CFB+∠FCB+∠FBC=180°,∠CFB=120°, ∴∠FCB十∠FBC=180°−120°=60°, ∴∠DCF+∠ABF+∠EAB+∠EDC=360°−(∠EAD+∠ADE)−(∠FCB+∠FBC)=360°−75°−60°=225°, 故答案为:225°. 【点睛】此题考查了多边形的内角和,熟记多边形的内角和公式是解题的关键. 19.5或10 【分析】分两种情况:当AQ=5时,当AQ=10时,利用全等三角形的判定及性质定理得到结论. 【详解】分两种情况: 当AQ=5时, ∵, ∴AQ=BC, ∵AD⊥AC, ∴∠Q 解析:5或10 【分析】分两种情况:当AQ=5时,当AQ=10时,利用全等三角形的判定及性质定理得到结论. 【详解】分两种情况: 当AQ=5时, ∵, ∴AQ=BC, ∵AD⊥AC, ∴∠QAP=∠ACB=, ∵AB=PQ, ∴≌△PQA(HL); 当AQ=10时, ∵, ∴AQ=AC, ∵AD⊥AC, ∴∠QAP=∠ACB=, ∵AB=PQ, ∴△ABC≌△QPA, 故答案为:5或10. 【点睛】此题考查全等三角形的判定及性质定理,运用分类思想,动点问题,熟记三角形的判定定理及性质定理是解题的关键. 三、解答题 20.(1) (2) 【分析】(1)先提公因式xy,再利用平方差公式分解因式求解即可; (2)先提公因式-4x,再利用完全平方公式分解因式求解即可. (1) 解: ; (2) 解: 解析:(1) (2) 【分析】(1)先提公因式xy,再利用平方差公式分解因式求解即可; (2)先提公因式-4x,再利用完全平方公式分解因式求解即可. (1) 解: ; (2) 解: . 【点睛】本题考查提公因式法和公式法分解因式,熟记公式,正确求解是解答关键. 21.x=2. 【分析】先去分母,再解一元一次方程得到方程的解,再将解代入最简公分母检验即可. 【详解】, (x-2)+(x+2)=4, 2x=4, x=2, 经检验,x=2是原分式方程的解. 解析:x=2. 【分析】先去分母,再解一元一次方程得到方程的解,再将解代入最简公分母检验即可. 【详解】, (x-2)+(x+2)=4, 2x=4, x=2, 经检验,x=2是原分式方程的解. 【点睛】此题考查解分式方程,需将分式方程先去分母化为整式方程,解整式方程得解后代入最简公分母中,值为0时原分式方程无解,值不为0时,此解是原分式方程的解. 22.见解析 【分析】根据平行线的性质得出∠C=∠F,∠ABE=∠DEB,求出∠ABC=∠DEF,根据CE=FB求出CB=FE,根据全等三角形的判定定理得出△ABC≌△DEF即可. 【详解】证明:∵C 解析:见解析 【分析】根据平行线的性质得出∠C=∠F,∠ABE=∠DEB,求出∠ABC=∠DEF,根据CE=FB求出CB=FE,根据全等三角形的判定定理得出△ABC≌△DEF即可. 【详解】证明:∵CE=FB, ∴CE−BE=FB−BE, ∴CB=FE, ∵, ∴∠C=∠F, ∵, ∴∠ABE=∠DEB, ∵∠ABC+∠ABE=180°,∠DEF+∠DEB=180°, ∴∠ABC=∠DEF, ∵在△ABC和△DEF中, ∴△ABC≌△DEF(ASA), ∴AB=DE. 【点睛】本题考查了平行线的性质,全等三角形的性质定理和判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:①全等三角形的对应边相等,全等三角形的对应角相等;②全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL等. 23.(1)135 (2)①45;②不变,45° 【分析】( 1)根据三角形的内角和定理和角平分线的定义即可得到结论; (2 )①根据三角形的内角和定理和角平分线的定义即可得到结论; ②由①的思路 解析:(1)135 (2)①45;②不变,45° 【分析】( 1)根据三角形的内角和定理和角平分线的定义即可得到结论; (2 )①根据三角形的内角和定理和角平分线的定义即可得到结论; ②由①的思路可得结论. (1) 解:( 1)直线与直线垂直相交于, , , 、分别是和角的平分线, ,, , ; 故答案为:135; (2) ①,, , , 是的平分线, , 平分, , , 故答案为:45; ②的度数不随、的移动而发生变化, 设, 平分, , , , 平分, , , . 【点睛】本题考查了三角形的内角和定理,角平分线的定义,熟练掌握三角形的内角和定理是解题的关键. 24.24千米/时 【分析】关键描述语:“过了25分后,其余同学乘汽车出发,结果他们同时到达”;等量关系为:骑自行车同学所用时间−乘车同学所用时间=. 【详解】设骑车同学平均速度是x千米/时,则汽车的 解析:24千米/时 【分析】关键描述语:“过了25分后,其余同学乘汽车出发,结果他们同时到达”;等量关系为:骑自行车同学所用时间−乘车同学所用时间=. 【详解】设骑车同学平均速度是x千米/时,则汽车的平均速度是2x千米/时. 依题意,, 解得x=12. 经检验,x=12是原方程的解. ∴2x=24. 答:汽车的平均速度是24千米/时. 【点睛】此题主要考查了分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键. 25.(1)24;(2)是,这个定值是35,理由见解析;(3)定值为,证明见解析. 【分析】(1)根据题意求出相应的“十字差”,即可确定出所求定值; (2)设十字星中心的数为x,则十字星左右两数分别为 解析:(1)24;(2)是,这个定值是35,理由见解析;(3)定值为,证明见解析. 【分析】(1)根据题意求出相应的“十字差”,即可确定出所求定值; (2)设十字星中心的数为x,则十字星左右两数分别为x-1,x+1,上下两数分别为x-6,x+6,进而表示出十字差,化简即可得证; (3)设十字星中心的数为y,表示出十字星左右两数,上下两数,进而表示出十字差,化简即可得证. 【详解】解:(1)根据题意得:, 故答案为:24; (2)是,这个定值是35.理由如下: 设十字星中心的数为,则十字星左右两数分别为,,上下两数分别为,, 十字差为:. 故不同位置十字星的“十字差”是一个定值,这个定值为35; (3)定值为,证明如下: 设设十字星中心的数为y,则十字星左右两数分别为,,上下两数分别为,, 十字差为:, 故这个定值为. 【点睛】此题考查了整式运算的实际应用,正确理解题意以及熟练掌握运算法则是解本题的关键. 26.(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析. 【分析】(1)根据等边三角形三线合一的性质即可求得∠DBC的度数,根据BD=DE即可解题; (2)过D作DF∥BC,交AB于F, 解析:(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析. 【分析】(1)根据等边三角形三线合一的性质即可求得∠DBC的度数,根据BD=DE即可解题; (2)过D作DF∥BC,交AB于F,证△BFD≌△DCE,推出DF=CE,证△ADF是等边三角形,推出AD=DF,即可得出答案. (3)如图3,过点D作DP∥BC,交AB的延长线于点P,证明△BPD≌△DCE,得到PD=CE,即可得到AD=CE. 【详解】证明:是等边三角形, 为中点, ,, ; (2)成立, 如图乙,过作,交于, 则是等边三角形, , , ,, 在和中 , 即 如图3,过点作,交的延长线于点, 是等边三角形,也是等边三角形, , , 在和中, 【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,解决本题的关键是作出辅助线,构建全等三角形. 27.(1);(2);(3). 【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得; (2)连接BM,,进而证明 解析:(1);(2);(3). 【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得; (2)连接BM,,进而证明为等边三角形,根据含30度角的直角三角形的性质即可求得 (3)过点F作轴交CB的延长线于点N,证明,,设,则等边三角形ABC的边长是4a,,进而计算可得,,即可求得的值. 【详解】(1)∵点在x轴负半轴上, ∴,, ∵,, ∴, ∵, ∴, ∴, 如答图1,在x轴的正半轴上取点C,使,连接BC, ∵, ∴, 又∵, ∴, ∴, ∴是等边三角形, ∴; (2)如答图2,连接BM, ∴是等边三角形, ∵,, ∵∠, ∴, ∴, ∵D为AB的中点, ∴, ∵, ∴, ∴,在和中, ∴, ∴,即, ∴, ∴为等边三角形, ∴,∴; (3)如答图3,过点F作轴交CB的延长线于点N, 则, ∵, ∴, 在和中, ∴, ∴,, ∵, ∴, 又∵E是OC的中点,设, ∴等边三角形ABC的边长是4a,, ∵, ∴, 在和中, ∴, ∴, 又∵, ∴, , ∴. 【点睛】本题考查了坐标与图形,三角形全等的性质与判定,等边三角形的性质与判定,因式分解的应用,掌握三角形全等的性质与判定并正确的添加辅助线是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年 级数 上册 期末 强化 综合 试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文