人教版初二上册期末数学质量检测试卷(一)[001]-(2).doc
《人教版初二上册期末数学质量检测试卷(一)[001]-(2).doc》由会员分享,可在线阅读,更多相关《人教版初二上册期末数学质量检测试卷(一)[001]-(2).doc(20页珍藏版)》请在咨信网上搜索。
人教版初二上册期末数学质量检测试卷(一) 一、选择题 1.下列图形中,是轴对称图形的是( ) A. B. C. D. 2.为了让学生拓展视野,亲近自然,三亚某学校组织八年级学生进行研学旅行活动.活动中一个同学了解到某种花粉颗粒直径约为0.0000065米.将数据0.0000065用科学记数法表示为( ) A. B. C. D. 3.下列运算正确的是( ) A. B. C. D. 4.若式子有意义,则的取值范围为( ) A. B. C. D. 5.下列式子从左到右的变形是因式分解的是( ) A. B. C. D. 6.分式﹣可变形为( ) A.﹣ B.﹣ C. D. 7.如图,已知点A、D、C、F在同一条直线上,∠B=∠E =90°,AB=DE,若添加一个条件后,能用“HL”的方法判定Rt△ABC≌Rt△DEF,添加的条件可以是( ) A.BC=EF B.∠BCA=∠F C.AB∥DE D.AD=CF 8.关于x的方程的解是正数,则a的取值范围是( ) A.a>5 B.a<5且a≠3 C.a<5 D.a<5且a≠-3 9.如图,已知∠ACB=50°,∠CAD=65°,则∠ADB的度数是( ) A.105° B.65° C.115° D.125° 10.如图,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于点F交BC于点E,点G为AB的中点,连接DG,交AE于点H,下列结论错误的是( ) A.AH=2DF B.HE=BE C.AF=2CE D.DH=DF 二、填空题 11.分式的值为0,则x=_____. 12.若点和点关于y轴对称,则______. 13.已知两个非零实数a,b满足,,则代数式的值为______. 14.已知,,则的值为______. 15.如图,在边长为6,面积为的等边△ABC中,N为线段AB上的任意一点,∠BAC的平分线交BC于点D,M是AD上的动点, 连结BM、MN,则BM+MN的最小值是_______ 16.若关于x的二次三项式4x2+3mx+9是完全平方式,则m的值是 _____. 17.(1)已知x+y=4,xy=3,则x2+y2的值为 _____. (2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为 _____. (3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为 _____. 18.如图,在中,,,,点C在直线l上.点P从点A出发,在三角形边上沿的路径向终点B运动;点Q从B点出发,在三角形边上沿的路径向终点A运动.点P和Q分别以1单位/秒和2单位/秒的速度同时开始运动,在运动过程中,若有一点先到达终点时,该点停止运动,另一个点要继续运动,直到两点都到达相应的终点时整个运动才能停止.在某时刻,分别过P和Q作于点E,于点F,则点P的运动时间等于_____秒时,与全等. 三、解答题 19.因式分解: (1)6m(m+n)﹣4n(m+n); (2)x4﹣x2. 20.先化简,再求值.,其中a=﹣5 21.如图,已知DO=BO,∠A=∠C,求证:AO=CO. 22.在四边形ABCD中,∠A=∠C=90°. (1)求:∠ABC+∠ADC= °; (2)如图①,若DE平分∠ADC,BF平分∠CBM,写出DE与BF的位置关系. (3)如图②,若BF,DE分别平分∠ABC,∠ADC的外角,写出BF与DE的位置关系,对(2)和(3)任选一个加以证明. 23.国泰公司和振华公司的全体员工踊跃参与“携手防疫,共渡难关”捐款活动,国泰公司共捐款100000元,振华公司共捐款140000元.下面是国泰、振华两公司员工的一段对话: (1)国泰、振华两公司各有多少人? (2)现国泰、振华两公司共同使用这笔捐款购买A,B两种防疫物资,A种防疫物资每箱12000元,B种防疫物资每箱10000元.若购买B种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来.(注:A,B两种防疫物资均需购买,并按整箱配送) 24.一个四位数,记千位上和百位上的数字之和为,十位上和个位上的数字之和为,如果,那么称这个四位数为“和平数”. 例如:1423,,,因为,所以1423是“和平数”. (1)直接写出:最小的“和平数”是 ,最大的“和平数”是 ; (2)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”. 例如:1423与4132为一组“相关和平数” 求证:任意的一组“相关和平数”之和是1111的倍数. (3)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”; 25.如图1,在平面直角坐标系中,点,,且,满足,连接,,交轴于点. (1)求点的坐标; (2)求证:; (3)如图2,点在线段上,作轴于点,交于点,若,求证:. 26.完全平方公式:适当的变形,可以解决很多的数学问题. 例如:若,求的值. 解:因为 所以 所以 得. 根据上面的解题思路与方法,解决下列问题: (1)若,求的值; (2)①若,则 ; ②若则 ; (3)如图,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积. 【参考答案】 一、选择题 2.D 解析:D 【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可. 【详解】解:A.不是轴对称图形,故此选项不合题意; B.不是轴对称图形,故此选项不合题意; C.不是轴对称图形,故此选项不合题意; D.是轴对称图形,故此选项符合题意; 故选:D. 【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 3.C 解析:C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.0000065=6.5×10−6, 故选:C. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 4.C 解析:C 【分析】利用合并同类项的法则,积的乘方的法则,同底数幂的除法的法则对各项进行运算即可. 【详解】解:A、a3+a3=2a3,故A不符合题意; B、(a2b)2=a4b2,故B不符合题意; C、(-a)6÷(-a)2=a4,故C符合题意; D、(-2a)3=-8a3,故D不符合题意; 故选:C. 【点睛】本题主要考查合并同类项,积的乘方,同底数幂的除法,解答的关键是对相应的运算法则的掌握. 5.A 解析:A 【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案. 【详解】解:由题意得x﹣4>0, 解得x>4, 故选:A. 【点睛】本题考查的是代数式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0解题的关键. 6.B 解析:B 【分析】根据因式分解的定义判断即可. 【详解】解:A.是整式的乘法,故A错误; B.把一个多项式转化成几个整式积乘积的形式,故B正确; C.因式分解出现错误,,故C错误; D.没把一个多项式转化成几个整式积乘积的形式,故D错误; 故选B. 【点睛】本题考查了因式分解的定义,熟记因式分解的定义是解题的关键,把一个多项式化成几个整式的积的形式,叫因式分解. 7.D 解析:D 【分析】直接利用分式的基本性质将分式变形得出答案. 【详解】解:分式﹣. 故选:D. 【点睛】此题主要考查了分式的基本性质,正确掌握分式的性质是解题关键. 8.D 解析:D 【分析】根据题目给的条件可知道直角边和直角,因为需用“HL”的方法判定≌,故只能添上斜边这一条件,即可解答. 【详解】解:∵,, ∴添加条件,根据“HL”即可判定≌;或添加条件,也可得出,根据“HL”即可判定≌,故D正确. 故选:D. 【点睛】本题主要考查了利用“HL”判定三角形全等,掌握三角形全等的判定是解题的关键. 9.B 解析:B 【分析】根据题意可把分式方程进行化简,然后用含a的代数式表示该方程的解,进而问题可求解. 【详解】解: , ∴, ∵该方程的解是正数, ∴且, 解得:且, 故选B. 【点睛】本题主要考查分式方程,熟练掌握分式方程的解法是解题的关键. 10.C 解析:C 【分析】根据三角形外角等于和它不相邻的两个内角的和求解即可. 【详解】解:∵∠ACB=50°,∠CAD=65°. ∴. 故选:C 【点睛】本题考查三角形外角性质,解题的关键是理解:三角形的外角等于和它不相邻的两个内角的和. 11.A 解析:A 【分析】通过证明△ADF≌△BDC,可得AF=BC=2CE,由等腰直角三角形的性质可得AG=BG,DG⊥AB,由余角的性质可得∠DFA=∠AHG=∠DHF,可得DH=DF,由线段垂直平分线的性质可得AH=BH,可求∠EHB=∠EBH=45°,可得HE=BE,即可求解. 【详解】解:∵∠BAC=45°,BD⊥AC, ∴∠CAB=∠ABD=45°, ∴AD=BD, ∵AB=AC,AE平分∠BAC, ∴CE=BE=BC,∠CAE=∠BAE=22.5°,AE⊥BC, ∴∠C+∠CAE=90°,且∠C+∠DBC=90°, ∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90°, ∴△ADF≌△BDC(AAS) ∴AF=BC=2CE,故选项C不符合题意, ∵点G为AB的中点,AD=BD,∠ADB=90°,∠CAE=∠BAE=22.5°, ∴AG=BG,DG⊥AB,∠AFD=67.5° ∴∠AHG=67.5°, ∴∠DFA=∠AHG=∠DHF, ∴DH=DF,故选项D不符合题意, 连接BH, ∵AG=BG,DG⊥AB, ∴AH=BH, ∴∠HAB=∠HBA=22.5°, ∴∠EHB=45°,且AE⊥BC, ∴∠EHB=∠EBH=45°, ∴HE=BE, 故选项B不符合题意, 故选:A. 【点睛】本题考查三角形全等的性质与判定,等腰直角三角形的性质,关键在于熟练掌握基本知识点,灵活运用知识点. 二、填空题 12.2 【分析】根据分式值为0的条件进行解答即可;分式值为0,则分子=0,分母≠0. 【详解】解:∵分式的值为0, ∴则2x﹣4=0且x+5≠0, ∴x=2. 故答案为:2. 【点睛】本题主要考查了分式值为0的条件,熟练地掌握分式值为0,则分子=0,分母≠0是解题的关键. 13. 【分析】由点和点关于y轴对称,列方程组先求解 再利用进行计算即可. 【详解】解: 点和点关于y轴对称, 解得: 故答案为: 【点睛】本题考查的是关于轴对称的两个点的坐标关系,同底数幂的乘法的逆用,积的乘方的逆用,二元一次方程组的解法,掌握以上基础知识是解本题的关键. 14.2或 【分析】利用,得出,且或,分情况讨论即可求解. 【详解】解:由题意, ①+②得:, 整理得:, ①-②得:, 整理得:, ∴ 或. 当时,, ∴; 当时,, ∴; 综上,代数式的值为2或. 故答案为:2或. 【点睛】本题考查求代数式的值、分式的运算,利用到了平方式差公式及完全平方公式,解题的关键是掌握完全平方公式及其变形、分式的运算法则,注意分类讨论,避免漏解. 15. 【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则计算得出答案. 【详解】解:∵am=6,an=2, ∴a2m-3n=(am)2÷(an)3 =62÷23 =, 故答案为:. 【点睛】本题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键. 16.【分析】由等边三角形的对称性得到MC=BM,再利用垂线段最段解题. 【详解】解:过点C作于点N, 平分∠BAC,△ABC为等边三角形, BM+MN, 当时,最小 等边△ABC面 解析: 【分析】由等边三角形的对称性得到MC=BM,再利用垂线段最段解题. 【详解】解:过点C作于点N, 平分∠BAC,△ABC为等边三角形, BM+MN, 当时,最小 等边△ABC面积为,边长为6, 故答案为:. 【点睛】本题考查轴对称—最短路径问题、等边三角形的性质等知识,是重要考点,掌握相关知识是解题关键. 17.±4##4或-4 【分析】根据完全平方公式的结构特征列式解答. 【详解】解:由题意得, 4x2+3mx+9= 或 故答案为:±4. 【点睛】本题考查完全平方公式,是基础考点,掌握相关 解析:±4##4或-4 【分析】根据完全平方公式的结构特征列式解答. 【详解】解:由题意得, 4x2+3mx+9= 或 故答案为:±4. 【点睛】本题考查完全平方公式,是基础考点,掌握相关知识是解题关键. 18.10 9 5 【分析】(1)根据完全平方公式(x+y)2=x2+2xy+y2,把原式变形后求值; (2)先求出xy,再根据完全平方公式变形后求值; (3)先变形为[( 解析: 10 9 5 【分析】(1)根据完全平方公式(x+y)2=x2+2xy+y2,把原式变形后求值; (2)先求出xy,再根据完全平方公式变形后求值; (3)先变形为[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12,然后利用完全平方公式展开即可得到(x﹣2021)2的值. 【详解】解:(1)∵x+y=4,xy=3, ∴x2+y2=(x+y)2﹣2xy=16﹣6=10. 故答案为:10; (2)∵(x+y)2=25,x2+y2=17, ∴x2+y2+2xy﹣(x2+y2)=8, ∴xy=4, ∴(x﹣y)2=x2+y2﹣2xy=17﹣8=9. 故答案为:9; (3)∵(x﹣2020)2+(x﹣2022)2=12, ∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12, ∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12, ∴(x﹣2021)2=5. 故答案为:5. 【点睛】本题考查了完全平方公式,解题关键是通过对公式的变形,求出代数式的值. 19.2或或12 【分析】根据全等三角形的性质可得CP=CO,然后分不同情况求解关于t的方程即可. 【详解】解:∵△PEC≌△CFQ ∴PC=CQ 分以下五种情况: ①如图1,P在AC上,Q在B 解析:2或或12 【分析】根据全等三角形的性质可得CP=CO,然后分不同情况求解关于t的方程即可. 【详解】解:∵△PEC≌△CFQ ∴PC=CQ 分以下五种情况: ①如图1,P在AC上,Q在BC上, ∵PE⊥l,QF⊥1, ∴∠PEC=∠QFC=90°, ∵∠ACB=90°, ∴∠EPC+∠PCE=90°,∠PCE+∠QCF=90°, ∴∠EPC=∠OCF, 要使△PEC≌△CFQ,则需PC=CQ, ∵PC=6-t,CQ=8-2t, ∴6-t =8-2t,解得:t=2; ②如图2,P在BC上,Q在AC上, ∵PC=t-6,CQ=2t-8, ∴t-6 =2t-8,解得:t=2; ③如图3:当P、Q都在AC上时, ∵CP=6-t,CQ=2t-8, ∴6-t=2t-8,解得:t=; ④当Q到A点停止,P在BC上时,PC=AC=6,QC=t-6 ∴6=t-6,解得:t=12; ⑤P和2都在BC上的情况不存在 ∵P的速度是每秒1个单位每秒,Q的速度是2个单位每秒, ∴P和Q都在BC上的情况不存在. 故答案为: 2或或12. 【点睛】本题主要考查了全等三角形的判定与性质,灵活运用全等三角形的判定定理以及分类讨论思想成为解答本题的关键. 三、解答题 20.(1)2(m+n)(3m﹣2n);(2)x2(x+1)(x﹣1) 【分析】(1)原式提取公因式即可; (2)原式提取公因式,再利用平方差公式分解即可. 【详解】解:(1)6m(m+n)﹣4n( 解析:(1)2(m+n)(3m﹣2n);(2)x2(x+1)(x﹣1) 【分析】(1)原式提取公因式即可; (2)原式提取公因式,再利用平方差公式分解即可. 【详解】解:(1)6m(m+n)﹣4n(m+n) =2(m+n)(3m﹣2n); (2)x4﹣x2 =x2(x2﹣1) =x2(x+1)(x﹣1). 【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 21., 【分析】先根据分式的加减运算以及乘除运算法则进行化简,然后将a的值代入原式即可求出答案. 【详解】解:(1+)÷ =(1+)• =+ =+ = =, 当a=-5时,原式==. 解析:, 【分析】先根据分式的加减运算以及乘除运算法则进行化简,然后将a的值代入原式即可求出答案. 【详解】解:(1+)÷ =(1+)• =+ =+ = =, 当a=-5时,原式==. 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则. 22.见解析 【分析】根据题目中的已知条件利用“AAS”证明△ADO≌△CBO,然后全等三角形对应边相等得出AO=CO. 【详解】证明:在△ADO和△CBO中, , ∴△ADO≌△CBO(AAS) 解析:见解析 【分析】根据题目中的已知条件利用“AAS”证明△ADO≌△CBO,然后全等三角形对应边相等得出AO=CO. 【详解】证明:在△ADO和△CBO中, , ∴△ADO≌△CBO(AAS), ∴AO=CO. 【点睛】本题主要考查了全等三角形的判定和性质,熟练掌握三角形全等的条件是解决本题的关键. 23.(1);(2),理由见解析;(3),理由见解析 【分析】(1)根据四边形内角和等于360°列式计算即可得解; (2)如图1,延长DE交BF于G,易证∠ADC=∠CBM,可得∠CDE=∠EBF,即 解析:(1);(2),理由见解析;(3),理由见解析 【分析】(1)根据四边形内角和等于360°列式计算即可得解; (2)如图1,延长DE交BF于G,易证∠ADC=∠CBM,可得∠CDE=∠EBF,即可得∠EGB=∠C=90゜,则可证得DE⊥BF; (3)如图2,连接BD,易证∠NDC+∠MBC=180゜,则可得∠EDC+∠CBF=90゜,继而可证得∠EDC+∠CDB+∠CBD+∠FBC=180゜,则可得DE∥BF. 【详解】(1)∵∠A=∠C=90°, ∴∠ABC+∠ADC=360°-90°×2=180°; (2)DE⊥BF,理由如下: 如图:延长DE交BF于点G ∵∠A+∠ABC+∠C+∠ADC=360°,∠A=∠C=90° ∴∠ABC+∠ADC=180° ∵∠ABC+∠MBC=180° ∴∠ADC=∠MBC ∵DE、BF分别平分∠ADC、∠MBC ∴∠EDC=∠ADC,∠EBG= ∠MBC ∴∠EDC=∠EBG ∵∠EDC+∠DEC+∠C=180°,∠EBG+∠BEG+∠EGB=180°,∠DEC=∠BEG ∴∠EGB=∠C=90° ∴DE⊥BF (3)DE∥BF,理由如下: 如图:连接BD ∵DE、BF分别平分∠NDC、∠MBC ∴∠EDC= ∠NDC,∠FBC=∠MBC ∵∠ADC+∠NDC=180°,∠ADC=∠MBC ∴∠MBC+∠NDC=180° ∴∠EDC+∠FBC=90° ∵∠C=90° ∴∠CDB+∠CBD=90° ∴∠EDC+∠CDB+∠FBC+∠CBD=180°,即∠EDB+∠FBD=180° ∴DE∥BF. 【点睛】本题考查了三角形内角和定理,平行线的性质以及三角形外角的性质,掌握辅助线的作法是解题的关键. 24.(1)国泰公司有200人,振华公司有240人. (2)有2种购买方案,方案1:购10箱A种防疫物资,12箱B种防疫物资;方案2:购买5箱A种防疫物资,18箱B种防疫物资. 【分析】(1)设国泰公 解析:(1)国泰公司有200人,振华公司有240人. (2)有2种购买方案,方案1:购10箱A种防疫物资,12箱B种防疫物资;方案2:购买5箱A种防疫物资,18箱B种防疫物资. 【分析】(1)设国泰公司有x人,则振华公司有(x+40)人,根据振华公司的人均捐款数是国泰公司的倍,列出分式方程,解之经检验后即可得出结论; (2)设购买A种防疫物资m箱,购买B种防疫物资n箱,根据总价=单价×数量,列出二元一次方程组,再结合n≥10且m,n均为正整数,即可得出各购买方案. (1) 解:设国泰公司有x人,则振华公司有(x+40)人, 依题意,得:, 解得:x=200, 经检验,x=200是原方程的解,且符合题意, ∴x+40=240. 答:国泰公司有200人,振华公司有240人. (2) 设购买A种防疫物资m箱,购买B种防疫物资n箱, 依题意,得:12000m+10000n=100000+140000, ∴m=20n. 又∵n≥10,且m,n均为正整数, 当n=12时,m=20n=10, 当n=18时,m=20n=5, 当n=24时,m=20n=0,不符合题意,故舍去, ∴或, ∴有2种购买方案,方案1:购10箱A种防疫物资,12箱B种防疫物资;方案2:购买5箱A种防疫物资,18箱B种防疫物资. 【点睛】本题考查了分式方程的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出二元一次方程. 25.(1)1001,9999;(2)见详解;(3)2754和4848 【分析】(1)根据和平数的定义,即可得到结论; (2)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a 解析:(1)1001,9999;(2)见详解;(3)2754和4848 【分析】(1)根据和平数的定义,即可得到结论; (2)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),于是得到=1100(a+b)+11(c+d)=1111(a+b),即可得到结论. (3)设这个“和平数”为 ,于是得到d=2a,a+b=c+d,b+c=12k,求得2c+a=12k, 即a=2.4,6,8,d=4.8.12(舍去)、16(舍去);①、当a=2,d=4时,2(c+1)=12k,得到c=5则b=7;②、当a=4,d=8时,得到c=4则b=8,于是得到结论; 【详解】解:(1)由题意得,最小的“和平数”1001,最大的“和平数”9999, 故答案为1001,9999; (2)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),则 =1100(a+b)+11(c+d)=1111(a+b); 即两个“相关和平数”之和是1111的倍数. (3)设这个“和平数”为,则d=2a,a+b=c+d,b+c=12k, ∴2c+a=12k, 即a=2.4,6,8,d=4.8.12(舍去)、16(舍去), ①当a=2,d=4时,2(c+1)=12k, 可知c+1=6k且a+b=c+d, ∴c=5则b=7, ②当a=4,d=8时, 2(c+2)=12k, 可知c+2=6k且a+b=c+d, ∴c=4则b=8, 综上所述,这个数为:2754和4848. 【点睛】本题考查了因式分解的应用,正确的理解新概念和平数”是解题的关键. 26.(1);(2)证明见解析;(3)证明见解析. 【分析】(1)由非负性可求a,b的值,即可求解; (2)由“SAS”可证△ABP≌△BCQ,可得AB=BC,∠BAP=∠CBQ,可证△ABC是等腰直 解析:(1);(2)证明见解析;(3)证明见解析. 【分析】(1)由非负性可求a,b的值,即可求解; (2)由“SAS”可证△ABP≌△BCQ,可得AB=BC,∠BAP=∠CBQ,可证△ABC是等腰直角三角形,可得∠BAC=45°,可得结论; (3)由“AAS”可证△ATO≌△EAG,可得AT=AE,OT=AG,由“SAS”可证△TAD≌△EAD,可得TD=ED,∠TDA=∠EDA,由平行线的性质可得∠EFD=∠EDF,可得EF=ED,即可得结论. 【详解】解:(1)∵a2-2ab+2b2-16b+64=0, ∴(a-b)2+(b-8)2=0, ∴a=b=8, ∴b-6=2, ∴点C(2,-8); (2)∵a=b=8, ∴点A(0,6),点B(8,0),点C(2,-8), ∴AO=6,OB=8, 如图1,过点B作PQ⊥x轴,过点A作AP⊥PQ,交PQ于点P,过点C作CQ⊥PQ,交PQ于点Q, ∴四边形AOBP是矩形, ∴AO=BP=6,AP=OB=8, ∵点B(8,0),点C(2-8), ∴CQ=6,BQ=8, ∴AP=BQ,CQ=BP, 又∠APB=∠BCQ ∴△ABP≌△BCQ(SAS), ∴AB=BC,∠BAP=∠CBQ, ∵∠BAP+∠ABP=90°, ∴∠ABP+∠CBQ=90°, ∴∠ABC=90°, ∴△ABC是等腰直角三角形, ∴∠BAC=45°, ∵∠OAD+∠ADO=∠OAD+∠BAC+∠ABO=90°, ∴∠OAC+∠ABO=45°; (3)如图2,过点A作AT⊥AB,交x轴于T,连接ED, ∴∠TAE=90°=∠AGE, ∴∠ATO+∠TAO=90°=∠TAO+∠GAE=∠GAE+∠AEG, ∴∠ATO=∠GAE,∠TAO=∠AEG, 又∵EG=AO, ∴△ATO≌△EAG(AAS), ∴AT=AE,OT=AG, ∵∠BAC=45°, ∴∠TAD=∠EAD=45°, 又∵AD=AD, ∴△TAD≌△EAD(SAS), ∴TD=ED,∠TDA=∠EDA, ∵EG⊥AG, ∴EG∥OB, ∴∠EFD=∠TDA, ∴∠EFD=∠EDF, ∴EF=ED, ∴EF=ED=TD=OT+OD=AG+OD, ∴EF=AG+OD. 【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键. 27.(1)12;(2)①6;②17;(3) 【分析】(1)根据完全平方公式的变形应用,解决问题; (2)①两边平方,再将代入计算; ②两边平方,再将代入计算; (3)由题意可得:,,两边平方从而 解析:(1)12;(2)①6;②17;(3) 【分析】(1)根据完全平方公式的变形应用,解决问题; (2)①两边平方,再将代入计算; ②两边平方,再将代入计算; (3)由题意可得:,,两边平方从而得到,即可算出结果. 【详解】解:(1); ; ; 又; , , ∴. (2)①, ; 又, . ②由, ; 又, . (3)由题意可得,,; ,; , ; 图中阴影部分面积为直角三角形面积, , . 【点睛】本题主要考查了完全平方公式的适当变形灵活应用,(1)可直接应用公式变形解决问题.(2)①②小题都需要根据题意得出两个因式和或者差的结果,合并同类项得①,②是解决本题的关键,再根据完全平方公式变形应用得出答案.(3)根据几何图形可知选段,再根据两个正方形面积和为18,利用完全平方公式变形应用得到,再根据直角三角形面积公式得出答案.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 001 人教版 初二 上册 期末 数学 质量 检测 试卷
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文