人教版八年级上册期末数学检测试卷含答案[003].doc
《人教版八年级上册期末数学检测试卷含答案[003].doc》由会员分享,可在线阅读,更多相关《人教版八年级上册期末数学检测试卷含答案[003].doc(20页珍藏版)》请在咨信网上搜索。
人教版八年级上册期末数学检测试卷含答案 一、选择题 1、下列4个图形中,既是中心对称图形又是轴对称图形的是( ) A. B. C. D. 2、蚕丝是大自然中的天然纤维,是中国古代文明产物之一,也成为散发着现代科学技术魅力的新材料.某蚕丝的直径大约是0.000016米,0.000016用科学记数法表示为( ) A. B. C. D. 3、下列运算中正确的是( ) A.(﹣a)4=a4 B.a2•a3=a4 C.a2+a3=a5 D.(a2)3=a5 4、要使分式有意义,的取值范围是( ) A. B. C. D. 5、下列由左边到右边的变形,属于因式分解的是( ) A. B. C. D. 6、若a≠b,则下列分式变形正确的是( ) A. B. C. D. 7、如图,,再添加一个条件,不能判定的是( ) A. B. C. D. 8、若关于的分式方程的解是正数,则的取值范围是( ) A.或 B. C.且 D.且 9、如图,已知点D为ABC的边BC上一点,连接AD,若∠B=60°,则∠2-∠1的度数为( ) A.30° B.45° C.60° D.90° 二、填空题 10、如图,4张边长分别为、的长方形纸片围成一个正方形,从中可以得到的等式是( ) A. B. C. D. 11、当x=___时,分式的值为0. 12、点P(-2,4)关于x轴对称的点的坐标为________. 13、若,则______. 14、已知=320,a2-b2=322, 则a-b=_______. 15、如图,在Rt△ABC中,,,,BD是△ABC的角平分线,点P,点N分别是BD,AC边上的动点,点M在BC上,且,则的最小值为______. 16、如果x2-mx+16是一个完全平方式,那么m的值为________. 17、如图,两个正方形的边长分别为a、b,如果a+b=10,ab=18,则阴影部分的面积为 _____. 18、如图,AB=4cm,AC=BD=3cm,∠CAB=∠DBA,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.设运动时间为t(s),则当△ACP与△BPQ全等时,点Q的运动速度为__cm/s. 三、解答题 19、分解因式 (1); (2). 20、解方程: (1) (2) 21、如图,点、、、在同一条直线上,,,.求证: (1); (2). 22、(1)如图1,求证:. (2)如图2,、的二等分线(即角平分线)BF、CF交于点F.已知,,求∠BFC的度数; (3)如图3,、分别为、的2021等分线(i=1,2,3……,2019,2020)它们的交点从上到下依次为、、…….已知,,则______度. 23、观察下列方程及解的特征: ①的解为:;②的解为:,;③的解为:,;…… 解答下列问题: (1)请猜想,方程的解为_____; (2)请猜想,方程_______的解为,; (3)解关于的分式方程. 24、若一个正整数能表示成(是正整数,且)的形式,则称这个数为“明礼崇德数”,与是的一个平方差分解. 例如:因为,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:(是正整数),所以也是“明礼崇德数”,与是的一个平方差分解. (1)判断:9_______“明礼崇德数”(填“是”或“不是”); (2)已知(是正整数,是常数,且),要使是“明礼崇德数”,试求出符合条件的一个值,并说明理由; (3)对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若既是“七喜数”,又是“明礼崇德数”,请求出的所有平方差分解. 25、在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足. (1)求点A和点B的坐标; (2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;: (3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标. 一、选择题 1、B 【解析】B 【分析】根据轴对称图形与中心对称图形的概念依次分析求解. 【详解】解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意; B、既是轴对称图形,又是中心对称图形,故本选项符合题意; C、不是轴对称图形,是中心对称图形,故本选项不合题意; D、是轴对称图形,不是中心对称图形,故本选项不合题意. 故选B. 【点睛】本题考查中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 2、B 【解析】B 【分析】科学记数法的表示形式为 的形式,中1≤|a|<10,n为整数.确定n的值时,看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数. 【详解】解:0.000016=1.6×. 故选:B. 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数,表示时关键要正确定a的值以及n的值. 3、A 【解析】A 【分析】根据幂的乘方运算法则,根据同底数幂的乘法运算法则,根据合并同类项运算法则对选项进行判断. 【详解】解:A、,正确,故此选项符合题意; B、,故此选项不符合题意; C、与不是同类项,不能合并计算,故此选项不符合题意; D、,故此选项不符合题意; 故选:A. 【点睛】本题考查整式的运算,解题的关键是掌握幂的乘方,同底数幂的乘法(底数不变,指数相加),以及合并同类项的运算法则. 4、D 【解析】D 【分析】根据分式有意义的条件,即分母不为0,即可求得. 【详解】解:分式有意义, ,即, 故选:D. 【点睛】本题考查了分式有意义的条件,熟练掌握和运用分式有意义的条件是解决本题的关键. 5、B 【解析】B 【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式)逐项判断即可得. 【详解】解:A、等式右边不是乘积的形式,不属于因式分解,则此项不符合题意; B、等式右边是乘积的形式,且右边等于左边,属于因式分解,则此项符合题意; C、等式右边不是乘积的形式,不属于因式分解,则此项不符合题意; D、等式右边的不是整式,不属于因式分解,则此项不符合题意; 故选:B. 【点睛】本题考查了因式分解,熟记因式分解的定义是解题关键. 6、D 【解析】D 【分析】根据分式的基本性质进行判断解答即可. 【详解】解:∵a≠b, ∴A.,此选项错误,不符合题意; B.,此选项错误,不符合题意; C.,此选项错误,不符合题意; D.,此选项正确,符合题意. 故选:D. 【点睛】本题考查分式的基本性质,熟知分式的基本性质:分式的分子和分母同时乘或除以同一个不为零的数或式子,分式的值不变,注意不是同时加或减去一个不为零的数. 7、B 【解析】B 【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据以上内容判断即可. 【详解】解:A、∵AC=BD,∠CAB=∠DBA,AB=BA,利用SAS能判定△ABC≌△BAD,不符合题意; B、∵AD=BC,∠CAB=∠DBA,AB=BA,利用SSA不能判定△ABC≌△BAD,符合题意; C、∵∠DAB=∠CBA,AB=BA,∠CAB=∠DBA,利用ASA能判定△ABC≌△BAD,不符合题意; D、∵∠C=∠D,∠CAB=∠DBA,AB=BA,利用AAS能判定△ABC≌△BAD,不符合题意; 故选:B. 【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键. 8、A 【解析】A 【分析】首先求得分式方程的解为x=4-m,再根据解为正数得4-m>0且4-m 1,从而求得m的取值范围即可. 【详解】解:, 去分母,得1-m-(x-1)=-2, 去括号,得1-m-x+1=-2, 移项,合并得x=4-m, ∵方程的解为正数, ∴4-m>0且4-m 1, 解得m<4且, 故选:A. 【点睛】本题考查分式方程的特殊解,难度适中,解题的关键是注意要排除分式方程无解情况. 9、C 【解析】C 【分析】根据三角形的外角性质即可求解. 【详解】解:∵是的一个外角, ∴, ∠B=60°, , 故选C 【点睛】本题考查了三角形的外角的定义与性质,掌握三角形的外角的性质是解题的关键. 二、填空题 10、A 【解析】A 【分析】根据外面大正方形的面积减去中间小正方形的面积等于4个长方形的面积即可得. 【详解】解:由图可知,外面大正方形的面积减去中间小正方形的面积等于4个长方形的面积, 则, 故选:A. 【点睛】本题考查了平方差公式与图形面积,找出图中的面积关系是解题关键. 11、 【分析】根据分式的意义可得到x﹣2≠0,即x≠2,根据题意分式值为0可知4x+3=0,由此求解即可. 【详解】解:∵分式的值为0, ∴, 解得, 故答案为:. 【点睛】本题考查了分式,本题的解题关键是牢记分式有意义的条件,检验分式的解是否为增根问题. 12、 【分析】根据关于轴对称的点的横坐标不变,纵坐标互为相反数即可求解. 【详解】解:点P(-2,4)关于x轴对称的点的坐标为, 故答案为:. 【点睛】本题考查了求关于轴对称的点的坐标,掌握关于坐标轴对称的点的坐标特征是解题的关键. 13、 【分析】根据条件,可得出,所以.将式子展开化简可得:.将代入,则原式,故答案为. 【详解】解:, , , , 把代入得:原式, 故答案为. 【点睛】. 本题主要考查知识点为:分式的加减,完全平方公式.熟练掌握分式的加减方法和完全平方公式是解决此题的关键. 14、±3 【分析】首先将=320转化为a+b=320(a-b),再将a2-b2分解为(a+b)(a-b),再用整体代入思想即可得(a-b)2=32,从而得解. 【详解】解:∵, ∴a+b=320(a-b), 又∵a2-b2=322, ∴(a+b)(a-b) =322 ∴320×(a-b)2=322 ∴(a-b)2=32 ∴a-b=±3 故答案为:±2、 【点睛】本题考查根据条件等式求代数式值,因式分解—平方差公式,解题关键是将条件等式进行转化,然后整体代入求解. 15、【分析】作点M关于BD的对称点,连接P=PM,BM=B=1,当N,P,在同一直线上,且时,的值最小,等于垂线段的长,据此解答 【详解】解:作点M关于BD的对称点,连接P=PM,BM=B=1, 【解析】 【分析】作点M关于BD的对称点,连接P=PM,BM=B=1,当N,P,在同一直线上,且时,的值最小,等于垂线段的长,据此解答 【详解】解:作点M关于BD的对称点,连接P=PM,BM=B=1, , 当N,P,在同一直线上,且时,的值最小,等于垂线段的长, , 的最小值为, 故答案为:. 【点睛】本题考查最短路线问题,涉及垂线段最短、含30°角直角三角形的性质等知识,是重要考点,掌握相关知识是解题关键. 16、±8 【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值. 【详解】解:∵x2-mx+16=x2-mx+42, ∴m=±2×4, 解得m=±7、 故答案为:±7、 【 【解析】±8 【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值. 【详解】解:∵x2-mx+16=x2-mx+42, ∴m=±2×4, 解得m=±7、 故答案为:±7、 【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 17、23 【分析】利用完全平方公式变形求出a2+b2,利用面积公式计算可得阴影部分面积. 【详解】解:∵a+b=10,ab=18, ∴a2+b2=(a+b)2-2ab=100-36=64, ∴阴影部分的 【解析】23 【分析】利用完全平方公式变形求出a2+b2,利用面积公式计算可得阴影部分面积. 【详解】解:∵a+b=10,ab=18, ∴a2+b2=(a+b)2-2ab=100-36=64, ∴阴影部分的面积 = = = =23, 故答案为:22、 【点睛】此题考查了完全平方公式的变形计算,正确掌握完全平方公式法则是解题的关键. 18、1或1.5 【分析】分两种情况讨论:当△ACP≌△BPQ时, 从而可得点的运动速度;当△ACP≌△BQP时,可得: 从而可得点的运动速度,从而可得答案. 【详解】解:当△ACP≌△BPQ时, 则AC 【解析】1或1.5 【分析】分两种情况讨论:当△ACP≌△BPQ时, 从而可得点的运动速度;当△ACP≌△BQP时,可得: 从而可得点的运动速度,从而可得答案. 【详解】解:当△ACP≌△BPQ时, 则AC=BP,AP=BQ, ∵AC=3cm, ∴BP=3cm, ∵AB=4cm, ∴AP=1cm, ∴BQ=1cm, ∴点Q的速度为:1÷(1÷1)=1(cm/s); 当△ACP≌△BQP时, 则AC=BQ,AP=BP, ∵AB=4cm,AC=BD=3cm, ∴AP=BP=2cm,BQ=3cm, ∴点Q的速度为:3÷(2÷1)=1.5(cm/s); 故答案为:1或1.4、 【点睛】本题考查的是全等三角形的判定与性质,分类讨论的数学思想,掌握利用分类讨论解决全等三角形问题是解题的关键. 三、解答题 19、(1)5; (2)(a-1)(a+4). 【分析】(1)原式提取5,再利用完全平方公式分解即可; (2)原式整理后,利用十字相乘法分解即可. (1) 解: =5() =5; (2) 解: =-16+ 【解析】(1)5; (2)(a-1)(a+4). 【分析】(1)原式提取5,再利用完全平方公式分解即可; (2)原式整理后,利用十字相乘法分解即可. (1) 解: =5() =5; (2) 解: =-16+3a+12 =+3a-4 =(a-1)(a+4). 【点睛】此题考查了提公因式法与公式法的综合运用,以及因式分解-十字相乘法,熟练掌握因式分解的方法是解本题的关键. 20、(1) (2)分式方程无解 【解析】(1) 解:方程两边都乘以2x-1得,2-5=2x-1, 解得x=-1, 经检验:x=-1是原方程的解; (2) 方程两边都乘以(x+2)(x-2)得,x(x+2 【解析】(1) (2)分式方程无解 【解析】(1) 解:方程两边都乘以2x-1得,2-5=2x-1, 解得x=-1, 经检验:x=-1是原方程的解; (2) 方程两边都乘以(x+2)(x-2)得,x(x+2)-(x-2)(x+2)=8, 解得x=2, 经检验:x=2不是原方程的解,原方程无解. 【点睛】本题考查解分式方程,基本步骤是一化二解三检验. 21、(1)见解析;(2)见解析 【分析】(1)由平行得出,根据SAS即可证明; (2)利用全等三角形的性质即可证明; 【详解】证明:(1)∵, ∴, ∵, ∴, 即, 在和中, , ∴. (2)∵, ∴ 【解析】(1)见解析;(2)见解析 【分析】(1)由平行得出,根据SAS即可证明; (2)利用全等三角形的性质即可证明; 【详解】证明:(1)∵, ∴, ∵, ∴, 即, 在和中, , ∴. (2)∵, ∴, ∴. 【点睛】本题考查全等三角形的判定和性质,平行线的判定等知识,解题的关键是灵活运用全等三角形的判定和性质定理进行证明推理. 22、(1)见解析;(2);(3) 【分析】(1)延长BO交AC于D,由外角的性质可得∠BOC=∠B+∠A+∠C; (2)由(1)知,,由角平分线的性质和外角的性质即可求解; (3)由题意知:∠ABO10 【解析】(1)见解析;(2);(3) 【分析】(1)延长BO交AC于D,由外角的性质可得∠BOC=∠B+∠A+∠C; (2)由(1)知,,由角平分线的性质和外角的性质即可求解; (3)由题意知:∠ABO1000=∠ABO,∠OBO1000=∠ABO,∠ACO1000=∠ACO,∠OCO1000=∠ACO,由三角形的外角性质可求解. 【详解】解:(1)如图1,延长BO交AC于D, ∴, , ∴, 即. (2)由(1)知, ∵∠ABE、∠ACE的二等分线(即角平分线)BF、CF交于点F. ∴, ∵,, ∴, ∴, ∴, ∴. (3)由题意知:∠ABO1000=∠ABO,∠OBO1000=∠ABO,∠ACO1000=∠ACO,∠OCO1000=∠ACO, ∴∠BOC=∠OBO1000+∠OCO1000+∠BO1000C=(∠ABO+∠ACO)+∠BO1000C, ∠BO1000C=∠ABO1000+∠ACO1000+∠BAC=(∠ABO+∠ACO)+∠BAC, 则∠ABO+∠ACO=(∠BO1000C﹣∠BAC), 代入∠BOC=(∠ABO+∠ACO)+∠BO1000C, ∴∠BOC=×(∠BO1000C﹣∠BAC)+∠BO1000C, 解得:∠BO1000C=(∠BOC+∠BAC)=∠BOC+∠BAC, ∵∠BOC=m°,∠BAC=n°, ∴∠BO1000C=m°+n°=()°; 故答案为:. 【点睛】此题考查了三角形的外角性质、角平分线的定义等知识,灵活运用这些性质解决问题是解题的关键. 23、(1), (2) (3), 【分析】(1)观察阅读材料中的方程解的规律,归纳总结得到结果; (2)仿照阅读材料中的方程解的规律,归纳总结得到结果; (3)先把原方程变形后,利用得出的规律即可解答. 【解析】(1), (2) (3), 【分析】(1)观察阅读材料中的方程解的规律,归纳总结得到结果; (2)仿照阅读材料中的方程解的规律,归纳总结得到结果; (3)先把原方程变形后,利用得出的规律即可解答. (1) 解:猜想方程, 即方程的解是,. 故答案为:,; (2) 解:猜想方程关于的方程的解为,. 故答案为:; (3) 解:, 即, 即, 即, 即, 可得或, 解得:,. 经检验,,是原分式方程的根. 【点睛】本题考查了解分式方程,分式方程的解,理解阅读材料中的方程解的规律是解题的关键. 24、(1)是;(2)k=-5;(3)m=279,,. 【分析】(1)根据9=52-42,确定9是“明礼崇德数”; (2)根据题意分析N应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N平方 【解析】(1)是;(2)k=-5;(3)m=279,,. 【分析】(1)根据9=52-42,确定9是“明礼崇德数”; (2)根据题意分析N应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N平方差分解,得到答案; (3)确定“七喜数”m的值,分别将其平方差分解即可. 【详解】(1)∵9=52-42, ∴9是“明礼崇德数”, 故答案为:是; (2)当k=-5时,是“明礼崇德数”, ∵当k=-5时, , =, =, =, = =. ∵是正整数,且, ∴N是正整数,符合题意, ∴当k=-5时,是“明礼崇德数”; (3)由题意得:“七喜数”m=178或279, 设m==(a+b)(a-b), 当m=178时, ∵178=289, ∴,得(不合题意,舍去); 当m=279时, ∵279=393=931, ∴①,得,∴, ②,得,∴, ∴既是“七喜数”又是“明礼崇德数”的m是279,,. 【点睛】此题考查因式分解,熟练掌握平方差公式和完全平方公式是解此题的前提,(3)是此题的难点,解题时需根据百位与个位数字的关系确定具体的数据,再根据“明礼崇德数”的要求进行平方差分解. 25、(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2) 【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案; (2)如图 【解析】(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2) 【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案; (2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案; (3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解. 【详解】(1)∵, ∴. ∵, ∴, ∴, ∴, ∴,. (2)如图,过点F作FH⊥AO于点H ∵AF⊥AE ∴∠FHA=∠AOE=90°, ∵ ∴∠AFH=∠EAO 又∵AF=AE, 在和中 ∴ ∴AH=EO=2,FH=AO=4 ∴OH=AO-AH=2 ∴F(-2,4) ∵OA=BO, ∴FH=BO 在和中 ∴ ∴HD=OD ∵ ∴HD=OD=1 ∴D(-1,0) ∴D(-1,0),F(-2,4); (3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S ∴ ∴, ∴ ∴ ∴ ∴等腰 ∴NQ=NO, ∵NG⊥PN, NS⊥EG ∴ ∴, ∴ ∵, ∴ ∵点E为线段OB的中点 ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴等腰 ∴NG=NP, ∵ ∴ ∴∠QNG=∠ONP 在和中 ∴ ∴∠NGQ=∠NPO,GQ=PO ∵, ∴PO=PB ∴∠POE=∠PBE=45° ∴∠NPO=90° ∴∠NGQ=90° ∴∠QGR=45°. 在和中 ∴. ∴QR=OE 在和中 ∴ ∴QM=OM. ∵NQ=NO, ∴NM⊥OQ ∵ ∴等腰 ∴ ∵ ∴ 在和中 ∴ ∴NS=EM=4,MS=OE=2 ∴N(-6,2). 【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 003 人教版八 年级 上册 期末 数学 检测 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文