2023东营市八年级上册期末数学试卷[003].doc
《2023东营市八年级上册期末数学试卷[003].doc》由会员分享,可在线阅读,更多相关《2023东营市八年级上册期末数学试卷[003].doc(19页珍藏版)》请在咨信网上搜索。
2023东营市八年级上册期末数学试卷 一、选择题 1、以下标志中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D. 2、科学家发现世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,0.000000076用科学记数法表示是( ) A. B. C. D. 3、下列计算错误的是( ) A.a3·a -5=a -2 B.a5÷a -2=a7 C.(-2a2) 3= -8a5 D.=1 4、要使分式有意义,x的取值应满足( ) A. B. C. D.x为任意实数 5、下列各式从左到右的变形不属于因式分解的是( ) A.a2﹣9=(a+3)(a﹣3) B.a2﹣b2+1=(a+b)(a﹣b)+1 C.m2﹣4=(m+2)(m﹣2) D.2mR+2mr=2m(R+r) 6、下列式子从左到右变形不正确的是( ) A. B. C. D. 7、在△ABC和△A'B'C'中,AB=A'B',∠B=∠B',补充条件后仍不一定能保证△ABC≌△A'B'C',则补充的这个条件是( ) A.AC=A'C' B.∠A=∠A' C.BC=B'C' D.∠C=∠C' 8、关于x的一元一次不等式组的解集为,且关于y的分式方程有正整数解,则符合条件的所有整数m的和为( ) A.6 B.9 C.10 D.13 9、如图,和都是等腰直角三角形,的顶点A在的斜边上.下列结论:①;②;③;④是直角三角形.其中正确的有( ) A.①②③ B.①②③④ C.①③④ D.①②④ 二、填空题 10、如图(1)是一个长为2n,宽为2m(n>m),用剪刀沿图中虚线(对称轴)剪开,然后按图(2)拼成一个正方形则中间空余的部分的面积是( ) A.mn B.n2﹣m2 C.(n+m)2 D.(n﹣m)2 11、当x=___时,分式的值为0. 12、在平面直角坐标系中,点M(2,4)关于x轴的对称点的坐标为______,关于y轴的对称点的坐标为______. 13、已知,则的值是________. 14、若,,则的值为______. 15、如图,点E在等边△ABC的边BC上,BE=12,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=14,则AC的长为 _____. 16、如果一个多边形的内角和等于720º,那么这个多边形的边数是___________. 17、若,则的值是_________. 18、如图,AB=4cm,AC=BD=3cm,∠CAB=∠DBA,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.设运动时间为t(s),则当△ACP与△BPQ全等时,点Q的运动速度为__cm/s. 三、解答题 19、(1)计算: (2)因式分解: 20、解下列分式方程: (1)+=1; (2)﹣1=. 21、如图,,点E在线段上,点F在延长线上,,求证:. 22、如图,在中,,,AE平分∠BAC. (1)计算:若,,求∠DAE的度数; (2)猜想:若,则______; (3)探究:请直接写出∠DAE,∠C,∠B之间的数量关系. 23、阅读下列材料:我们知道,分子比分母小的数叫做“真分数”;分子比分母大,或者分子、分母同样大的分数,叫做“假分数”.类似地,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”. 如:,这样的分式就是假分式:再如:,这样的分式就是真分式,假分数可以化成1(即1)带分数的形式,类似的,假分式也可以化为带分式.如:. 解决下列问题: (1)分式是__(填“真分式”或“假分式”);假分式可化为带分式__形式; (2)如果分式的值为整数,求满足条件的整数x的值. (3)若分式的值为m,则m的取值范围是____(直接写出结果). 24、已知一个三位自然数,若满足百位数字等于十位数字与个位数字的和,则称这个数为“和数”,若满足百位数字等于十位数字与个位数字的平方差,则称这个数为“谐数”.如果一个数即是“和数”,又是“谐数”,则称这个数为“和谐数”.例如,,是“和数”,,是“谐数”,是“和谐数”. (1)最小的和谐数是 ,最大的和谐数是 ; (2)证明:任意“谐数”的各个数位上的数字之和一定是偶数; (3)已知(,且均为整数)是一个“和数”,请求出所有. 25、如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B(b,0),且a、b满足a2-4a+4+=0. (1)求a,b的值; (2)以AB为边作Rt△ABC,点C在直线AB的右侧,且∠ACB=45°,求点C的坐标; (3)若(2)的点C在第四象限(如图2),AC与 x轴交于点D,BC与y轴交于点E,连接 DE,过点C作CF⊥BC交x轴于点F. ①求证:CF=BC; ②直接写出点C到DE的距离. 一、选择题 1、A 【解析】A 【分析】根据轴对称图形和中心对称图形的定义,即可求解. 【详解】解:A、既是轴对称图形又是中心对称图形,故本选项符合题意; B、是中心对称图形,但不是轴对称图形,故本选项不符合题意; C、是中心对称图形,但不是轴对称图形,故本选项不符合题意; D、是轴对称图形,但不是中心对称图形,故本选项不符合题意; 故选:A 【点睛】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键. 2、B 【解析】B 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000000076=7.6×10-7、 故选:B. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 3、C 【解析】C 【分析】根据同底数幂的乘除法法则,幂的乘方运算法则以及0次幂的含义即可进行解答. 【详解】A:同底数幂相乘,底数不变,指数相加;故A正确,不符合题意; B:同底数幂相除,底数不变,指数相减;故B正确,不符合题意; C:(-2a2) 3= -8a6,故C错误,符合题意; D:任何非零数的零次幂都得1;故D正确,不符合题意; 故选:C 【点睛】本题主要考查了幂的运算,熟练地掌握同底数幂的乘除法运算法则,积的乘方和幂的乘方的运算法则以及0次幂的意义是解题的关键. 4、B 【解析】B 【分析】根据分式有意义的条件,分母不等于0即可求解. 【详解】解:由题意得,, 解得:,故B正确. 故选:B. 【点睛】本题考查了分式有意义的条件,熟记分式有意义的条件是分式的分母不等于0是解题的关键. 5、B 【解析】B 【分析】利用因式分解的定义判断即可. 【详解】解:A、符合因式分解的定义,属于因式分解,故此选项不符合题意; B、右边不是整式的积的形式,不属于因式分解,故此选项符合题意; C、符合因式分解的定义,属于因式分解,故此选项不符合题意; D、符合因式分解的定义,属于因式分解,故此选项不符合题意. 故选:B. 【点睛】本题主要考查了因式分解,熟练掌握因式分解的定义是解本题的关键.分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式. 6、A 【解析】A 【分析】根据分式的基本性质逐项判定即可. 【详解】解:A、错误,故此选项符合题意; B、正确,故此选项不符合题意; C、正确,故此选项不符合题意; D、正确,故此选项不符合题意; 故选:A. 【点睛】本题考查分式的基本性质,熟练掌握分式的基本性质“分式分子分母同乘以或除以同一个不为零的数,他式值不变”是银题的关键. 7、A 【解析】A 【分析】全等三角形的判定可用两边夹一角,两角夹一边,三边相等等进行判定,做题时要按判定全等的方法逐个验证. 【详解】解:A、若添加AC=A'C',不能判定△ABC≌△A'B'C',故本选项正确; B、若添加∠A=∠A',可利用ASA判定△ABC≌△A'B'C',故本选项错误; C、若添加BC=B'C',可利用SAS判定△ABC≌△A'B'C',故本选项错误; D、若添加∠C=∠C',可利用AAS判定△ABC≌△A'B'C',故本选项错误; 故选:A. 【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定,要认真确定各对应关系. 8、B 【解析】B 【分析】先解不等式组再结合不等式组的解集为,可得再解分式方程在且时可得分式方程的解为再讨论分式方程的解为正整数时,m的值,从而可得答案. 【详解】解: 由①得: 由②得: ∵关于x的一元一次不等式组的解集为, ∴ 解得 ∵, 去分母得: 整理得: 当时, 解得: 经检验: 则 ∴ ∵为正整数,为整数, ∴或,且符合 ∴ 故选B 【点睛】本题考查的是一元一次不等式组的解法,以及根据不等式组的解集求解参数的取值范围,分式方程的解法,以及根据分式方程的解的情况求解参数的值,熟练的解一元一次不等式组与分式方程是解本题的关键. 9、D 【解析】D 【分析】根据△ABC和△ECD都是等腰直角三角形,可得AC=BC,CE=CD,∠ECD=∠ACB=90°,∠CAB=∠CBA=∠E=∠CDE=45°,则有∠ECA+∠ACD=∠ACD+∠BCD=90°,所以∠ECA=∠BCD,即可用SAS证△ABC≌△ECD,可判定①正确;由全等三角形性质,可得∠BDC=∠E,再由三角形外角性质即可证得∠DAB=∠ACE,可判定②正确;根据三角形三边关系得BC+BD>CD,即可证得AE+AC>CD,可判定③错误;根据∠CBD+∠CDB+∠BCD=180°,即∠CBA+∠ABD+∠CDB+∠BCD=180°,又因为∠CBA=45°,∠CDB=∠E=45°,∠BCD=∠ACE=∠DAB,即可得出∠ABD+∠DAB =90°,从而得出∠ADB=90°,从而有是直角三角形,可判定④正确. 【详解】解:∵△ABC和△ECD都是等腰直角三角形, ∴AC=BC,CE=CD,∠ECD=∠ACB=90°,∠CAB=∠CBA=∠E=∠CDE=45°, ∴∠ECA+∠ACD=∠ACD+∠BCD=90°, ∴∠ECA=∠BCD, ∴△ABC≌△ECD(SAS), 故①正确; ∴∠BDC=∠E, ∵∠DAB+∠CAB=∠DAC=∠E+∠ACE, ∴∠DAB=∠ACE, 故②正确; ∵AC=BC,BC+BD>CD, ∴AC+BD>CD, ∵△ABC≌△ECD, ∴AE=BD, ∴AE+AC>CD, 故③错误; ∵∠CBD+∠CDB+∠BCD=180°,即∠CBA+∠ABD+∠CDB+∠BCD=180°, ∵∠CBA=45°,∠CDB=∠E=45°,∠BCD=∠ACE=∠DAB, ∴45°+∠ABD+45°+∠DAB =180°, ∴∠ABD+∠DAB =90°, ∵∠ABD+∠DAB+∠ADB=180°, ∴∠ADB=90°, ∴是直角三角形, 故④正确, 综上,正确的有①②④, 故选:D. 【点睛】本题考查等腰直角三角形的性质,全等三角形的判定,三角形外角性质,三角形内角和定理,熟练掌握全等三角形的判定定理和三角形外角性质,利用等角灵活代换是解题的关键. 二、填空题 10、D 【解析】D 【分析】从图2中分析出正方形的边长是n-m即可. 【详解】解:根据图2可得: 正方形的面积S=(n-m)2, 故选:D. 【点睛】本题考查完全平方的几何背景.根据几何图形,准确辨别图形的形状、边长、高、内角度数等是解决这一系列几何题型的关键. 11、3 【分析】根据分式值为零时,分子为0分母不为0可列式计算求解. 【详解】解:由题意得x﹣3=0,3x+1≠0, 解得:x=3, 故答案为:2、 【点睛】本题主要考查了分式的值为零的条件,熟练掌握分式值为零时,分子为0,分母不为0是解题的关键. 12、 (2,−4) (−2,4) 【分析】根据关于x轴对称的点的规律,关于y轴对称的点的规律,可得答案. 【详解】解:在平面直角坐标系中,点M(2,4),关于x轴的对称点坐标是(2,−4),关于y轴对称的点的坐标为(−2,4), 故答案为:(2,−4),(−2,4). 【点睛】本题考查了关于x轴、y轴对称的点的坐标,本题考查了关于x轴、y轴对称的点的坐标,(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数. 13、3 【分析】由已知条件可得,由此式与所求式子的关系,可求得结果的值. 【详解】由,得:,即 故答案为:2、 【点睛】本题是求分式的值,涉及分式的加法,关键是把已知条件左边通分. 14、 【分析】利用同底数幂的除法的法则对所求的式子进行整理,再代入运算即可. 【详解】解:∵2x=3,4y=2, ∴22y=2, ∴2x-2y =2x÷22y =3÷2 =, 故答案为:. 【点睛】本题主要考查同底数幂的除法,幂的乘方,解答的关键是对相应的运算法则的掌握. 15、20 【分析】如图,作点E关于CD的对称点G,过点G作GF⊥AB于点F,GF交CD于点P,此时EP+PF的值最小,CE=CG,根据等边三角形的性质可得AC=BC,∠B=60°,再由直角三角形的性质可 【解析】20 【分析】如图,作点E关于CD的对称点G,过点G作GF⊥AB于点F,GF交CD于点P,此时EP+PF的值最小,CE=CG,根据等边三角形的性质可得AC=BC,∠B=60°,再由直角三角形的性质可得BG=2BF=28,从而得到CE=CG=8,即可求解. 【详解】解:如图,作点E关于CD的对称点G,过点G作GF⊥AB于点F,GF交CD于点P,此时EP+PF的值最小,CE=CG, ∵△ABC是等边三角形, ∴AC=BC,∠B=60°, ∵GF⊥AB, ∴∠G=30°, ∴BG=2BF=28, ∵BE=12, ∴EG=16, ∴CE=CG=8, ∴AC=BC=BE+CE=19、 故答案为:20 【点睛】本题主要考查了轴对称图形的性质——最短路线问题,等边三角形的性质,直角三角形的性质,正确作出图形是解题的关键. 16、6 【分析】n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数即可. 【详解】解:设这个多边形的边数是n, 则(n-2)•180°=720°, 解得:n= 【解析】6 【分析】n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数即可. 【详解】解:设这个多边形的边数是n, 则(n-2)•180°=720°, 解得:n=6, 则这个多边形的边数是5、 故答案为:5、 【点睛】本题主要考查多边行的内角和定理,解题的关键是熟练掌握n边形的内角和公式(n-2)×180. 17、14 【分析】根据即可求得其值. 【详解】解:, 故答案为:13、 【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键. 【解析】14 【分析】根据即可求得其值. 【详解】解:, 故答案为:13、 【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键. 18、1或1.5 【分析】分两种情况讨论:当△ACP≌△BPQ时, 从而可得点的运动速度;当△ACP≌△BQP时,可得: 从而可得点的运动速度,从而可得答案. 【详解】解:当△ACP≌△BPQ时, 则AC 【解析】1或1.5 【分析】分两种情况讨论:当△ACP≌△BPQ时, 从而可得点的运动速度;当△ACP≌△BQP时,可得: 从而可得点的运动速度,从而可得答案. 【详解】解:当△ACP≌△BPQ时, 则AC=BP,AP=BQ, ∵AC=3cm, ∴BP=3cm, ∵AB=4cm, ∴AP=1cm, ∴BQ=1cm, ∴点Q的速度为:1÷(1÷1)=1(cm/s); 当△ACP≌△BQP时, 则AC=BQ,AP=BP, ∵AB=4cm,AC=BD=3cm, ∴AP=BP=2cm,BQ=3cm, ∴点Q的速度为:3÷(2÷1)=1.5(cm/s); 故答案为:1或1.4、 【点睛】本题考查的是全等三角形的判定与性质,分类讨论的数学思想,掌握利用分类讨论解决全等三角形问题是解题的关键. 三、解答题 19、(1) (2) 【分析】(1)原式利用平方差公式计算即可; (2)原式变形后,先提取公因式,再利用平方差公式分解因式即可. 【详解】解:(1)原式= (2)原式= = 【点睛】本题考查提公因式法 【解析】(1) (2) 【分析】(1)原式利用平方差公式计算即可; (2)原式变形后,先提取公因式,再利用平方差公式分解因式即可. 【详解】解:(1)原式= (2)原式= = 【点睛】本题考查提公因式法与公式法的综合运用,熟练掌握平方差公式是解决本题的关键. 20、(1)x=0;(2)无解 【分析】(1)(2)首先将分式方程转化为整式方程,然后解整式方程,注意求出的整式方程的解要进行检验. 【详解】解:(1)∵+=1, ∴﹣=1, 方程两边同时乘(x﹣1),可 【解析】(1)x=0;(2)无解 【分析】(1)(2)首先将分式方程转化为整式方程,然后解整式方程,注意求出的整式方程的解要进行检验. 【详解】解:(1)∵+=1, ∴﹣=1, 方程两边同时乘(x﹣1),可得:1﹣2=x﹣1, 解得:x=0, 经检验:x=0是原分式方程的解, ∴原分式方程的解为:x=0. (2)∵﹣1=, ∴﹣1=, 方程两边同时乘(x+2)(x﹣2),可得:x(x+2)﹣(x+2)(x﹣2)=8, 整理得:2x﹣4=0, 解得x=2, 检验:当x=2时,(x+2)(x﹣2)=0, ∴原分式方程无解. 【点睛】此题主要考查了解分式方程,解答此题的关键是要明确解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论. 21、证明见解析 【分析】由全等三角形的性质证明结合,证明从而可得结论. 【详解】解: , , 【点睛】本题考查的是全等三角形的性质,平行线的判定,证明是解本题的关键. 【解析】证明见解析 【分析】由全等三角形的性质证明结合,证明从而可得结论. 【详解】解: , , 【点睛】本题考查的是全等三角形的性质,平行线的判定,证明是解本题的关键. 22、(1) (2)25° (3) 【分析】(1)先根据三角形内角和定理可计算出∠BAC=180°-∠B-∠C=60°,再利用角平分线定义得∠CAE=∠BAC=30°,接着由AD⊥BC得∠ADC=90°, 【解析】(1) (2)25° (3) 【分析】(1)先根据三角形内角和定理可计算出∠BAC=180°-∠B-∠C=60°,再利用角平分线定义得∠CAE=∠BAC=30°,接着由AD⊥BC得∠ADC=90°,根据三角形内角和得到∠CAD,然后利用∠EAD=∠CAE-∠CAD进行计算; (2)由三角形内角和定理得∠BAC=180°-∠B-∠C,再根据角平分线定义得∠CAE=∠BAC=90°-∠B-∠C,接着利用互余得到∠CAD=90°-∠C,所以∠EAD=∠CAE-∠CAD=90°-∠B-∠C-(90°-∠C),然后整理得出,把代入计算即可. (3)同(2)得出∠EAD=(∠C-∠B),即可得到结论. (1)解:∵∠B=30°,∠C=60°,∴∠BAC=180°-∠B-∠C=90°,∵AE平分∠BAC,∴∠CAE=∠BAC=45°,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-∠C=30°,∴∠EAD=∠CAE-∠CAD=45°-30°=15°; (2)解:∵∠BAC=180°-∠B-∠C,∵AE平分∠BAC,∴∠CAE=∠BAC=(180°-∠B-∠C)=90°-∠B-∠C,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-∠C,∴∠EAD=∠CAE-∠CAD=90°-∠B-∠C-(90°-∠C)=(∠C-∠B),∵∠C-∠B=50°,∴∠DAE=25°,故答案为:25°; (3)解:∵∠BAC=180°-∠B-∠C,∵AE平分∠BAC,∴∠CAE=∠BAC=(180°-∠B-∠C)=90°-∠B-∠C,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-∠C,∴∠DAE=∠CAE-∠CAD=90°-∠B-∠C-(90°-∠C)=(∠C-∠B),即∠DAE=(∠C-∠B). 【点睛】本题考查了三角形内角和定理:三角形内角和是180°,角平分线定义.注意从特殊到一般,(3)中的结论为一般性结论. 23、(1)真分式, (2)或或或 (3) 【分析】(1)根据分子的次数小于分母的次数可得第一空的答案,再把分子化为 逆用分式的加减法运算可得第二空的答案; (2)先把原分式化为再结合为整数,为整数,可得 【解析】(1)真分式, (2)或或或 (3) 【分析】(1)根据分子的次数小于分母的次数可得第一空的答案,再把分子化为 逆用分式的加减法运算可得第二空的答案; (2)先把原分式化为再结合为整数,为整数,可得或或或从而可得答案; (3)先把原分式化为再结合从而可得答案. (1)解:根据新定义可得:是真分式,故答案为:真分式, (2)∵且为整数,为整数,∴或或或 解得:或或或 (3)∵而 ∴ ∴ ∴ 所以 【点睛】本题考查的是新定义的理解,分式的加减运算的逆应用,不等式的基本性质,理解新定义,掌握分式的加减运算的逆运算是解本题的关键. 24、(1)110;954;(2)见解析;(3)或853或826. 【分析】(1)根据“和数”与“谐数”的概念求解可得; (2)设“谐数”的百位数字为x、十位数字为y,个位数字为z,根据“谐数”的概念得x 【解析】(1)110;954;(2)见解析;(3)或853或826. 【分析】(1)根据“和数”与“谐数”的概念求解可得; (2)设“谐数”的百位数字为x、十位数字为y,个位数字为z,根据“谐数”的概念得x=y2-z2=(y+z)(y-z),由x+y+z=(y+z)(y-z)+y+z=(y+z)(y-z+1)及y+z、y-z+1必然一奇一偶可得答案; (3)先判断出2≤b+2≤9、10≤3c+7≤19,据此可得m=10b+3c+817=8×100+(b+2)×10+(3c-3),根据“和数”的概念知8=b+2+3c-3,即b+3c=9,从而进一步求解可得. 【详解】(1)最小的和谐数是110,最大的和谐数是954. (2)设:“谐数”的百位数字为,十位数字为y,个位数字为z(且 且 均为正数), 由题意知,, ∴, z∵与奇偶性相同, ∴与必一奇一偶, ∴必是偶数, ∴任意“谐数”的各个数位上的数字之和一定是偶数; (3)∵, ∴, ∵, ∴, ∴, ∴, , ∵m为和数, ∴, 即, ∴或或, ∴或853或826. 【点睛】本题考查因式分解的应用,解题的关键是理解题意、熟练掌握“和数”与“谐数”的概念及整式的运算、不等式的性质. 25、(1)a=2,b=-1;(2)满足条件的点C(2,1)或(1,-1);(3)①证明见解析;②1. 【分析】(1)可得(a−2)2+=0,由非负数的性质可得出答案; (2)分两种情况:∠BAC=90° 【解析】(1)a=2,b=-1;(2)满足条件的点C(2,1)或(1,-1);(3)①证明见解析;②1. 【分析】(1)可得(a−2)2+=0,由非负数的性质可得出答案; (2)分两种情况:∠BAC=90°或∠ABC=90°,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标; (3)①如图3,过点C作CL⊥y轴于点L,则CL=1=BO,根据AAS可证明△BOE≌△CLE,得出BE=CE,根据ASA可证明△ABE≌△BCF,得出BE=CF,则结论得证; ②如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,根据SAS可证明△CDE≌△CDF,可得∠BAE=∠CBF,由角平分线的性质可得CK=CH=1. 【详解】(1)∵a2−4a+4+=0, ∴(a−2)2+=0, ∵(a-2)2≥0,≥0, ∴a-2=0,2b+2=0, ∴a=2,b=-1; (2)由(1)知a=2,b=-1, ∴A(0,2),B(-1,0), ∴OA=2,OB=1, ∵△ABC是直角三角形,且∠ACB=45°, ∴只有∠BAC=90°或∠ABC=90°, Ⅰ、当∠BAC=90°时,如图1, ∵∠ACB=∠ABC=45°, ∴AB=CB, 过点C作CG⊥OA于G, ∴∠CAG+∠ACG=90°, ∵∠BAO+∠CAG=90°, ∴∠BAO=∠ACG, 在△AOB和△BCP中, , ∴△AOB≌△CGA(AAS), ∴CG=OA=2,AG=OB=1, ∴OG=OA-AG=1, ∴C(2,1), Ⅱ、当∠ABC=90°时,如图2, 同Ⅰ的方法得,C(1,-1); 即:满足条件的点C(2,1)或(1,-1) (3)①如图3,由(2)知点C(1,-1), 过点C作CL⊥y轴于点L,则CL=1=BO, 在△BOE和△CLE中, , ∴△BOE≌△CLE(AAS), ∴BE=CE, ∵∠ABC=90°, ∴∠BAO+∠BEA=90°, ∵∠BOE=90°, ∴∠CBF+∠BEA=90°, ∴∠BAE=∠CBF, 在△ABE和△BCF中, , ∴△ABE≌△BCF(ASA), ∴BE=CF, ∴CF=BC; ②点C到DE的距离为1. 如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H, 由①知BE=CF, ∵BE=BC, ∴CE=CF, ∵∠ACB=45°,∠BCF=90°, ∴∠ECD=∠DCF, ∵DC=DC, ∴△CDE≌△CDF(SAS), ∴∠BAE=∠CBF, ∴CK=CH=1. 【点睛】此题考查三角形综合题,非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,坐标与图形的性质,等腰三角形的性质,点到直线的距离,角平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 003 2023 东营 年级 上册 期末 数学试卷
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文