人教版八年级数学下册期末试卷检测(提高-Word版含解析)(1).doc
《人教版八年级数学下册期末试卷检测(提高-Word版含解析)(1).doc》由会员分享,可在线阅读,更多相关《人教版八年级数学下册期末试卷检测(提高-Word版含解析)(1).doc(29页珍藏版)》请在咨信网上搜索。
人教版八年级数学下册期末试卷检测(提高,Word版含解析)(1) 一、选择题 1.式子在实数范围内有意义,则x的取值范围是( ) A.x≥10 B.x≠10 C.x≤10 D.x>10 2.下列条件中,满足ABC是直角三角形的是( ) A.∠A:∠B:∠C=3:4:5 B.a:b:c=1::1 C.(a+b)2=c2+2ab D. 3.已知四边形,对角线和交于点O,从下列条件中:①;②;③;④.任选其中两个,以下组合能够判定四边形是平行四边形的是( ) A.①④ B.②③ C.②④ D.③④ 4.为迎接建党一百周年,某班开展“我最想看的红色电影”投票活动,参选的五部电影的得票数分别是9,10,11,11,8,则这组得票数据的中位数,众数分别是( ) A.10,11 B.11,10 C.11,11 D.10.5,11 5.三角形的三边长分别为6,8,10,则它的最长边上的高为( ) A.4.8 B.8 C.6 D.2.4 6.如图,将矩形ABCD沿对角线BD折叠,使点C落在F处,BF交AD于点E.若∠BDC=62°,则∠DEF的度数为( ) A.31° B.28° C.62° D.56° 7.如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,点H为AF与DG的交点.若AC=9,则DH为( ) A.1 B.2 C. D.3 8.已知:如图1,点G是BC的中点,点H在AF上,动点P以每秒2cm的速度沿图1的边线运动,运动路径为:G→C→D→E→F→H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图2,若AB=6cm,则下列四个结论中正确的个数有( ) ①图1中的BC长是8cm, ②图2中的M点表示第4秒时y的值为24cm2, ③图1中的CD长是4cm, ④图2中的N点表示第12秒时y的值为18cm2. A.1个 B.2个 C.3个 D.4个 二、填空题 9.若式子有意义,则x的取值范围为__________. 10.如图,菱形周长为40,对角线,则菱形的面积为______. 11.图中阴影部分是一个正方形,则此正方形的面积为_______ . 12.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为________. 13.已知一次函数的图象经过,两点,则该一次函数解析式是______. 14.如图,四边形ABCD的对角线AC与BD交于点O,AC⊥BD,且AC平分BD,若添加一个条件_____,则四边形ABCD为菱形. 15.如图,直线与直线相交于点B,直线与y轴交于点A,直线与x轴交于点D与y轴交于点C,交x轴于点E.直线上有一点P(P在x轴上方)且,则点P的坐标为_______. 16.如图,平面直角坐标系中,A(4,4),B为y轴正半轴上一点,连接AB,在第一象限作AC=AB,∠BAC=90°,过点C作直线CD⊥x轴于D,直线CD与直线y=x交于点E,且ED=5EC,则直线BC解析式为_____. 三、解答题 17.(1) (2) (3) (4) 18.一个25米长的梯子,斜靠在一竖直的墙上,这时的距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B外移多少米? 19.如图是由边长为1的小正方形构成6×6的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点都是格点,点E是边AD与网格线的交点.仅用无刻度尺的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题: (1)直接写出四边形ABCD的形状; (2)在BC边上画点F,连接EF,使得四边形AEFB的面积为5; (3)画出点E绕着B点逆时针旋转90°的对应点G; (4)在CD边(端点除外)上画点H,连接EH,使得EH=AE+CH. 20.如图,在中,对角线、相交于点,,过点作,交延长线于点,过点作,交延长线于点. (1)求证:四边形是矩形; (2)连接,若,,求的长. 21.先阅读下列解答过程,然后再解答:小芳同学在研究化简中发现:首先把化为﹐由于,,即:, ,所以, 问题: (1)填空:__________,____________﹔ (2)进一步研究发现:形如的化简,只要我们找到两个正数a,b(),使,,即,﹐那么便有: __________. (3)化简:(请写出化简过程) 22.甲、乙两个种子店都销售“黄金1号”玉米种子,在甲店,该玉米种子的价格为m元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折.某科技人员对付款金额和购买量这两个变量的对应关系用列表法做了分析,并绘制出函数图象,如表是该科技人员绘制的图象和表格的不完整资料,已知点A的坐标为(2,10).在乙店,不论一次购买该种子的数量是多少,付款金额T(元)与购买数量x(千克)的函数关系式为T=kx. 付款金额(元) m 7.5 10 12 n 购买量(千克) 1 1.5 2 2.5 3 (1)根据题意,得m= ,n= . (2)当x>2时,求出y关于x的函数解析式; (3)如果某农户要购买4千克该玉米种子,那么该农户应选择哪个店更合算? 23.将两张宽度相等的纸片叠放在一起,得到如图的四边形. (1)求证:四边形是菱形; (2)如图,联结,过点A、D分别作的垂线、,垂足分别为点F、E. ①设M为中点,联结、,求证:; ②如果,P是线段上一点(不与点A、C重合),当为等腰三角形时,求的值. 24.如图,在平面直角坐标系中,矩形OABC的两条边分别在坐标轴上,,. (1)求AC所在的直线MN的解析式; (2)把矩形沿直线DE对折,使点C落在点A处,DE与AC相交于点F,求点D的坐标; (3)在直线MN上是否存在点P,使以点P,A,B三点为顶点的三角形是等腰三角形?若存在,请求出P点的坐标;若不存在,请说明理由. 25.如图,在矩形 ABCD中, AB=16 , BC=18 ,点 E在边 AB 上,点 F 是边 BC 上不与点 B、C 重合的一个动点,把△EBF沿 EF 折叠,点B落在点 B' 处. (I)若 AE=0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长; (II)若 AE=3 时, 且△CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长; (III)若AE=8时,且点 B' 落在矩形内部(不含边长),试直接写出 DB' 的取值范围. 26.如图1,若是的中位线,则,解答下列问题: (1)如图2,点是边上一点,连接、 ①若,则 ; ②若,,连接,则 , , . (2)如图3,点是外一点,连接、,已知:,,,求的值; (3)如图4,点是正六边形内一点,连接、、,已知:,,,求的值. 【参考答案】 一、选择题 1.A 解析:A 【分析】 二次根式中的被开方数是非负数.根据二次根式有意义的条件列出不等式,解不等式即可. 【详解】 解:由题意得,x﹣10≥0, 解得x≥10, 故选:A. 【点睛】 本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键. 2.C 解析:C 【分析】 由直角三角形的定义,只要验证最大角是否是;由勾股定理的逆定理,只要验证两较短边的平方和是否等于最长边的平方即可. 【详解】 解:A、∵,,故不能判定是直角三角形; B、,故不能判定是直角三角形; C、由,可得:,故能判定是直角三角形; D、,故不能判定是直角三角形; 故选:C. 【点睛】 本题主要考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,也考查了三角形的内角和定理的应用. 3.A 解析:A 【解析】 【分析】 以①④作为条件能够判定四边形ABCD是平行四边形,根据平行得出全等三角形,即可得解; 【详解】 以①④作为条件能够判定四边形ABCD是平行四边形; 理由:如图所示, ∵, ∴, 在△AOB和△COD中, , ∴, ∴, ∴四边形ABCD是平行四边形; 故答案选A. 【点睛】 本题主要考查了平行四边形的判定,准确分析判断是解题的关键. 4.A 解析:A 【解析】 【分析】 根据中位数和众数的求解方法,求解即可. 【详解】 解:将这五部电影得票数从小到大排列,处在中间位置的一个数是10,因此中位数是10, 这五部电影得票数出现次数最多的是11,共出现2次,因此众数是11, 故选:A. 【点睛】 此题考查了中位数和众数的求解,掌握它们的求解方法是解题的关键. 5.A 解析:A 【分析】 根据已知先判定其形状,再根据三角形的面积公式求得其高. 【详解】 解:∵三角形的三边长分别为6,8,10,符合勾股定理的逆定理62+82=102, ∴此三角形为直角三角形,则10为直角三角形的斜边, 设三角形最长边上的高是h, 根据三角形的面积公式得:×6×8=×10h, 解得h=4.8. 故选A 【点睛】 考查了勾股定理的逆定理,解答此题的关键是先判断出三角形的形状,再根据三角形的面积公式解答.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形. 6.D 解析:D 【解析】 【分析】 先利用互余计算出∠BDE=28°,再根据平行线的性质得∠CBD=∠BDE=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DEF的度数,于是得到结论. 【详解】 解:∵四边形ABCD为矩形, ∴AD∥BC,∠ADC=90°, ∵, ∵AD∥BC, ∴∠CBD=∠BDE=28°, ∵矩形ABCD沿对角线BD折叠, ∴∠FBD=∠CBD=28°, ∴∠DEF=∠FBD+∠BDE=28°+28°=56°. 故选:D. 【点睛】 本题考查了矩形的性质,平行线和折叠的性质,综合运用以上性质是解题的关键. 7.C 解析:C 【解析】 【分析】 依据DH是△AEF的中位线,即可得出DH=EF,再根据△BEF∽△BAC,即可得到EF的长,进而得出DH的长. 【详解】 解:∵D、E为边AB的三等分点,EF∥DG∥AC, ∴BE=DE=AD,BF=GF=CG,AH=HF, ∴AB=3BE,DH是△AEF的中位线, ∴DH=EF, ∵EF∥AC, ∴△BEF∽△BAC, ∴,即 , 解得:EF=3, ∴DH=EF=×3=, 故选:C. 【点睛】 本题考查了相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键. 8.D 解析:D 【分析】 ①根据题意得:动点P在GC上运动的时间是2秒,又由动点的速度,可得GC和BC的长; ②由(1)可得BC的长,又由AB=6cm,可以计算出△ABP的面积,计算可得y的值; ③动点P在DC上运动的时间是2秒,又由动点的速度,可得CD的长; ④根据图2中的N点表示第12秒时,表示点P到达H点,即可得出△ABP的面积; 【详解】 解:①根据函数图象可以知:从0到2,y随x的增大而增大,经过了2秒,P运动了4cm,因而CG=4cm,BC=8cm; ②第4秒时P到达D点.P在CD段时,底边AB不变,高不变,因而面积不变,面积y=×6×8=24cm2; ③第4秒时P到达D点.由图象可知CD=22=4cm ④图2中的N点表示第12秒时,表示点P到达H点.AF=BC+DE=8+23=14,所以AH=AF-FH=14-24=6.△ABP的面积=66=18cm2. 则四个结论正确; 故选D 【点睛】 此题考查了动点问题的函数图象,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论. 二、填空题 9.x≥2且x≠3 【解析】 【分析】 要使有意义,则分母不为0,且分子二次根式的被开方数非负,则可求得x的取值范围. 【详解】 由题意得: ,解不等式组得:x≥2且x≠3. 故答案为:x≥2且x≠3. 【点睛】 本题是求使式子有意义的自变量的取值范围的问题,涉及二次根式的意义,分母不为零,不等式组的解法等知识;一般地,当式子为分式时,分母不为零;当式子中含有二次根式时,要求被开方数非负. 10.A 解析:96 【解析】 【分析】 由菱形的周长为40,对角线,可求得另一对角线的长,这个菱形的面积即可求解. 【详解】 解:∵菱形ABCD的周长为40, ∴菱形的边长BC=10, ∵BD=12, ∴OB=BD=6, ∴OC=, ∴BD=2OB=16, ∴S菱形ABCD=AC•BD=. 故答案为:96. 【点睛】 本题考查了菱形的性质、菱形面积的计算方法、勾股定理的应用,熟练掌握菱形的面积等于两条对角线长乘积的一半是解决问题的关键. 11.36cm2 【解析】 【分析】 利用勾股定理求正方形边长,从而求正方形的面积. 【详解】 解:由题意可知:正方形的边长为: ∴正方形的面积为:6²=36 故答案为:36 cm2. 【点睛】 本题考查勾股定理解直角三角形,题目比较简单,正确计算是解题关键. 12.E 解析: 【分析】 根据矩形的性质和平行线的性质可得∠EFC=∠AEF,由折叠的性质可得∠EFC=∠AFE,从而得到AE=AF=5,由折叠的性质可得BC=BF+FC=3+5=8,根据勾股定理可得AB的长,从而求出AC的长,继而可得到AO的长. 【详解】 解:∵四边形ABCD为矩形, ∴AD∥BC,AD=BC,AB=CD, ∴∠EFC=∠AEF, 由折叠,得 ∠EFC=∠AFE, ∴∠AEF=∠AFE, ∴AE=AF=5, 由折叠,得 FC=AF,OA=OC, ∴BC=BF+FC=3+5=8, 在Rt△ABF中, AB=, 在Rt△ABC中, AC=, ∴OA=OC=. 【点睛】 本题考查了矩形的性质,折叠的性质,勾股定理,平行线的性质.解题的关键是证得AE=AF. 13.y=2x-4 【分析】 由一次函数的图象经过(2,0),(0,-4)两点,可设一次函数解析式为y=kx+b(k≠0).然后将点的坐标代入解析式,故得2k+b=0,b=-4.进而推导出函数解析式为y=2x-4. 【详解】 解:设该一次函数的解析式为:y=kx+b(k≠0). 由题意得:, 解得:, ∴该一次函数的解析式为y=2x-4. 故答案为:y=2x-4. 【点睛】 本题主要考查用待定系数法求一次函数解析式,熟练掌握用待定系数法求一次函数解析式是解决本题的关键. 14.A 解析:OA=OC 【分析】 添加条件OA=OC,先证四边形ABCD是平行四边形,再由AC⊥BD,即可得出平行四边形ABCD是菱形. 【详解】 .解:添加一个条件OA=OC,则四边形ABCD为菱形, 理由如下: ∵AC平分BD,OA=OC, ∴四边形ABCD是平行四边形, 又∵AC⊥BD, ∴平行四边形ABCD是菱形, 故答案为:OA=OC. 【点睛】 此题主要考查了菱形的判定以及平行四边形的判定,熟练掌握菱形的判定和平行四边形的判定与性质是解题的关键. 15.(-3,4) 【分析】 先求出A(0,4),D(-1,0),C(0,-2),得到AC=6,再求出B点坐标,从而求出△ABC的面积;然后求出直线AE的解析式得到E点坐标即可求出DE的长,再由进行求解即 解析:(-3,4) 【分析】 先求出A(0,4),D(-1,0),C(0,-2),得到AC=6,再求出B点坐标,从而求出△ABC的面积;然后求出直线AE的解析式得到E点坐标即可求出DE的长,再由进行求解即可. 【详解】 解:∵A是直线与y轴的交点,C、D是直线与y轴、x轴的交点, ∴A(0,4),D(-1,0),C(0,-2), ∴AC=6; 联立 , 解得, ∴点B的坐标为(-2,2), ∴, ∵, ∴可设直线AE的解析式为, ∴, ∴直线AE的解析式为, ∵E是直线AE与x轴的交点, ∴点E坐标为(2,0), ∴DE=3, ∴, ∴, ∴, ∴点P的坐标为(-3,4), 故答案为:(-3,4). 【点睛】 本题主要考查了一次函数综合,求一次函数与坐标轴的交点,两直线的交点坐标,三角形面积,解题的关键在于能够熟练掌握一次函数的相关知识. 16.y=﹣x+10 【分析】 过A作AM⊥y轴,交y轴于M,交CD于N,证△ABM≌△CAN,推出AN=BM,CN=AM=4,设EC=a,ED=5a,求出a=2,得出B、C的坐标,设直线BC的解析式是y 解析:y=﹣x+10 【分析】 过A作AM⊥y轴,交y轴于M,交CD于N,证△ABM≌△CAN,推出AN=BM,CN=AM=4,设EC=a,ED=5a,求出a=2,得出B、C的坐标,设直线BC的解析式是y=kx+10,把C(10,8)代入求出直线BC的解析式. 【详解】 解:过A作AM⊥y轴,交y轴于M,交CD于N,则∠BMA=∠ANC=90°, ∵∠BAC=90°, ∴∠BAM+∠CAN=90°,∠BAM+∠ABM=90°, ∴∠ABM=∠CAN, ∵A(4,4), ∴OM=DN=4,AM=4, 在△ABM和△CAN中, ∴△ABM≌△CAN(AAS), ∴AN=BM,CN=AM=4, ∵ED=5EC, ∴设EC=a,ED=5a, ∵A(4,4), ∴点A在直线y=x上, ∵CN=4a﹣4, 则4a﹣4=4, ∴a=2,即CD=8,ED=10. ∵点E在直线y=x上, ∴E(10,10), ∴MN=10,C(10,8), ∴AN=BM=10﹣4=6, ∴B(0,10), 设直线BC的解析式是y=kx+10, 把C(10,8)代入得:k=﹣, 即直线BC的解析式是y=﹣x+10, 故答案为:y=﹣x+10. 【点睛】 本题考查了用待定系数法求出一次函数的解析式,全等三角形的性质和判定等,主要考查学生综合运用性质进行推理和计算的能力. 三、解答题 17.(1)1;(2);(3);(4). 【分析】 (1)直接利用二次根式的性质以及立方根的性质分别化简,再利用有理数的加减运算法则计算得出答案; (2)直接利用二次根式的乘法运算法则以及结合绝对值的性质 解析:(1)1;(2);(3);(4). 【分析】 (1)直接利用二次根式的性质以及立方根的性质分别化简,再利用有理数的加减运算法则计算得出答案; (2)直接利用二次根式的乘法运算法则以及结合绝对值的性质化简,先算乘法,再化简二次根式,去绝对值,最后利用二次根式的加减运算法则计算得出答案; (3)直接利用二次根式的乘除运算法则化简,先算乘除,再利用二次根式的加减运算法则计算得出答案; (4)直接利用二次根式的乘法运算法则化简,先算乘除,再利用有理数的加减运算法则计算得出答案. 【详解】 解:(1) =1; (2) =; (3) ; (4) . 【点睛】 本题主要考查了二次根式的混合运算以及实数运算,正确化简二次根式是解题关键. 18.8米. 【分析】 梯子下滑4米,梯子的长度不变始终为25米,利用勾股定理分别求出OB、OB'的长度,进而求出BB'的长度即可. 【详解】 解:如图,依题意可知 AB=25(米),AO=24(米),∠ 解析:8米. 【分析】 梯子下滑4米,梯子的长度不变始终为25米,利用勾股定理分别求出OB、OB'的长度,进而求出BB'的长度即可. 【详解】 解:如图,依题意可知 AB=25(米),AO=24(米),∠O=90°, ∴ BO2=AB2﹣AO2=252-242, ∴ BO=7(米), 移动后,=20(米), ∴ (米), ∴ (米). 答:梯子底端B外移8米. 【点睛】 本题考查的是勾股定理的应用及勾股定理在直角三角形中的正确运用,本题中求的长度是解题的关键. 19.(1)正方形;(2)见解析;(3)见解析;(4)见解析 【解析】 【分析】 (1)利用勾股定理和勾股定理的逆定理可证明四边形ABCD为正方形; (2)延长EO交BC于F,则根据正方形为中心对称图形得 解析:(1)正方形;(2)见解析;(3)见解析;(4)见解析 【解析】 【分析】 (1)利用勾股定理和勾股定理的逆定理可证明四边形ABCD为正方形; (2)延长EO交BC于F,则根据正方形为中心对称图形得到AE=CF,则可根据梯形的面积公式计算出四边形AEFB的面积为5; (3)延长DC交过B点的铅垂线于G点,通过证明△BAE≌△BCG得到BG=BE; (4)利用网格特点,作∠EBG的平分线交CD于H点,证明△BEH≌△BGH,则EH=HG,则AE=CG,则有EH=AE+CH. 【详解】 解:(1)∵AB=BC=CD=AD==, ∴四边形ABCD为菱形, ∵BD==2, ∴AD2+AB2=BD2, ∴∠BAD=90°, 所以四边形ABCD为正方形; (2)如图,点F为所作; (3)如图,点G为所作; (4)如图,H点为所作. 【点睛】 本题考查了作图—旋转变换,解题的关键是熟练掌握轴对称变换和旋转变换的定义,并据此得出变换后的对应点. 20.(1)见解析;(2) 【分析】 (1)根据平行四边形的性质得到AD∥BC,进而得到,再由,得到,根据矩形的判定定理即可得到结论; (2)根据菱形的性质得到AD=AB=BC=5,AO=CO,在、中利用 解析:(1)见解析;(2) 【分析】 (1)根据平行四边形的性质得到AD∥BC,进而得到,再由,得到,根据矩形的判定定理即可得到结论; (2)根据菱形的性质得到AD=AB=BC=5,AO=CO,在、中利用勾股定理分别求BE、AC,进而在中利用斜边上的中线等于斜边的一半求解即可. 【详解】 (1)证明:∵四边形为平行四边形, ∴, ∴, ∵,, ∴, ∴, ∴, ∴四边形为矩形. (2)解:∵四边形为平行四边形,, ∴四边形为菱形, ∴,, 在中,,, ∴, ∴, 在中,,, ∴, ∵, ∴OE是的中线, ∴. 【点睛】 本题考查了矩形的判定和性质,菱形的判定与性质,直角三角形中斜边的中线等于斜边的一半,正确的识别图形是解题的关键. 21.(1),;(2);(3) 【解析】 【分析】 (1)根据题目所给的方法将根号下的数凑成完全平方的形式进行计算; (2)根据题目给的a,b与m、n的关系式,用一样的方法列式算出结果; (3)将写成,4 解析:(1),;(2);(3) 【解析】 【分析】 (1)根据题目所给的方法将根号下的数凑成完全平方的形式进行计算; (2)根据题目给的a,b与m、n的关系式,用一样的方法列式算出结果; (3)将写成,4写成,就可以凑成完全平方的形式进行计算. 【详解】 解:(1); ; (2); (3)==. 【点睛】 本题考查二次根式的计算和化简,解题的关键是掌握二次根式的运算法则. 22.(1)5,14;(2)y=4x+2;(3)当k<2.5时,到乙种子店花合算;当k=2.5时,个种子店花费的钱相同;k>2.5时,到甲种子店花合算. 【分析】 (1)结合函数图象与表格即可得出购买量为 解析:(1)5,14;(2)y=4x+2;(3)当k<2.5时,到乙种子店花合算;当k=2.5时,个种子店花费的钱相同;k>2.5时,到甲种子店花合算. 【分析】 (1)结合函数图象与表格即可得出购买量为函数的自变量,再根据购买2千克花了10元钱即可得出m值,结合超过2千克部分的种子价格打8折可得出n值; (2)设当x>2时,y关于x的函数解析式为y=ax+b,根据点的坐标利用待定系数法即可求出函数解析式; (3)当x=4时,分别求出两家店花费的钱即可. 【详解】 解:(1)结合函数图象以及表格即可得出购买量是函数的自变量x, ∵10÷2=5, ∴m=5,n=12+2=14. 故答案为:5;14; (2)设当x>2时,y关于x的函数解析式为y=ax+b, 将点(2.5,12)、(2,10)代入y=ax+b中, 得:, 解得, ∴当x>2时,y关于x的函数解析式为y=4x+2. (3)∵x>2, ∴当甲、乙两个种子店花费的钱相同时,4×4+2=4k,解得k=2.5, ∴当k<2.5时,到乙种子店花合算; 当k=2.5时,两个种子店花费的钱相同; k>2.5时,到甲种子店花合算. 【点睛】 本题考查了一次函数的应用以及待定系数法求出函数解析式,观察函数图象找出点的坐标再利用待定系数法求出函数解析式是解题的关键. 23.(1)见解析;(2)①见解析;②或 【分析】 (1)首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形. (2)①过点作于,连接,由,可得,再证明 解析:(1)见解析;(2)①见解析;②或 【分析】 (1)首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形. (2)①过点作于,连接,由,可得,再证明,利用三角形内角和定理即可得出答案; ②设,则,设,则,根据勾股定理可得,即,从而得出,即可得到,根据是线段上一点(不与点、重合),不存在,可得出当为等腰三角形时,仅有两种情形:或,分类讨论即可求得答案. 【详解】 解:(1)如图1,过点作于,于, 两条纸条宽度相同, . ,, 四边形是平行四边形. . , 四边形是菱形; (2)①如图2,过点作于,连接, 则, 四边形是菱形, 与互相垂直平分, 经过点, , ,, , , , , , 在和中, , , , , ,,, , , , , , , , , , , ; ②, 设,则, 设,则, , , , , , , , , 即, , , 是线段上一点(不与点、重合), 不存在, 当为等腰三角形时,仅有两种情形:或, Ⅰ.当时,则,如图3, ,, , , , , ; Ⅱ.当时,如图4,过点作于点, 在中,, , , , ; 综上所述,当为等腰三角形时,的值为或. 【点睛】 本题是四边形综合题,考查了平行四边形的判定与性质,菱形的判定与性质,全等三角形判定和性质,三角形面积公式,菱形面积,等腰三角形性质,勾股定理等,运用分类讨论思想和方程思想思考解决问题是解题关键. 24.(1);(2);(3)存在,,,, 【解析】 【分析】 (1)根据矩形的性质确定点、的坐标,利用待定系数法求出直线的解析式; (2)连接,根据折叠的性质得到,设,根据勾股定理列出方程,解方程求出的值 解析:(1);(2);(3)存在,,,, 【解析】 【分析】 (1)根据矩形的性质确定点、的坐标,利用待定系数法求出直线的解析式; (2)连接,根据折叠的性质得到,设,根据勾股定理列出方程,解方程求出的值即可; (3)分、、三种情况,根据等腰三角形的性质和勾股定理计算即可. 【详解】 解:(1)设直线的解析式是. ,, ,. 点、都在直线上, , 解得:, 直线的解析式为; (2)连接,由折叠可知, 设,则, 在中,, , 解得:, 点的坐标为,; (3)存在, ,, . 点在直线上, 设, ①当时,点是线段的中垂线与直线的交点, 则; ②当时,, 整理得:, 解得,, ,,,; ③当时,, 整理得,, 则, , , ,. 综上所述,符合条件的点有: ,,,,,,. 【点睛】 本题考查的是矩形与折叠、勾股定理、待定系数法求函数解析式、等腰三角形的性质,灵活运用待定系数法求出函数解析式是解题的关键,解答时,注意分情况讨论思想的运用. 25.(I) ;(II) 16或10;(III) . 【解析】 【分析】 (I)根据已知条件直接写出答案即可. (II)分两种情况: 或讨论即可. (III)根据已知条件直接写出答案即可. 【详解】 (I 解析:(I) ;(II) 16或10;(III) . 【解析】 【分析】 (I)根据已知条件直接写出答案即可. (II)分两种情况: 或讨论即可. (III)根据已知条件直接写出答案即可. 【详解】 (I) ; (II)∵四边形是矩形,∴,. 分两种情况讨论: (i)如图1, 当时,即是以为腰的等腰三角形. (ii)如图2,当时,过点作∥,分别交与于点、. ∵四边形是矩形, ∴∥,. 又∥, ∴四边形是平行四边形,又, ∴□是矩形,∴,,即, 又, ∴,, ∵,∴, ∴, 在中,由勾股定理得:, ∴, 在中,由勾股定理得:, 综上,的长为16或10. (III) . (或). 【点睛】 本题主要考查了四边形的动点问题. 26.(1)①4;②2,3,10;(2);(3)36 【分析】 (1)①由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可求S△PDE=S△BDE=1,即可求解;②由三角形的中位线定理可得DE 解析:(1)①4;②2,3,10;(2);(3)36 【分析】 (1)①由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可求S△PDE=S△BDE=1,即可求解;②由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可得S△PBD=S△APD=2,S△APE=S△PEC=3,即可求解; (2)连接AP,由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可得S△PBD=S△APD=4,S△APE=S△PEC=5,可求S△ADE,即可求解; (3)先证△NFK是等边三角形,可得NF=NK=NK=FG=KJ,可得S△PGF=S△PFN=7,S△PKJ=S△PKN=8,即可求解. 【详解】 解:(1)如图2,连接BE, ∵DE是△ABC的中位线, ∴DE∥BC,AE=EC,AD=BD, ∴S△PDE=S△BDE=1, ∴S△ABE=2, ∴S△ABC=4, 故答案为:4; ②∵DE是△ABC的中位线, ∴DE∥BC,AE=EC,AD=BD, ∴S△PBD=S△APD=2,S△APE=S△PEC=3, ∴S△ABC=10; 故答案为:2,3,10; (2)如图3,连接AP, ∵DE是△ABC的中位线, ∴DE∥BC,AE=EC,AD=BD,S△ABC=4S△ADE, ∴S△PBD=S△APD=5,S△APE=S△PEC=5, ∴S△ADE=S△APD+S△APE﹣S△PDE=4, ∴S△ABC=4S△ADE=16; (3)如图4,延长GF,JK交于点N,连接GJ,连接PN, ∵六边形FGHIJK是正六边形, ∴FG=FK=KJ,∠GFK=∠JKF=120°,S六边形FGHIJK=2S四边形FGJK, ∴∠NFK=∠NKF=60°, ∴△NFK是等边三角形, ∴NF=NK=FK=FG=KJ, ∴S△PGF=S△PFN=7,S△PKJ=S△PKN=8,FK是△NGJ的中位线, ∴S△NFK=S△PFN+S△PKN﹣S△PFK=6, ∵FK是△NGJ的中位线, ∴S△NGJ=4S△NFK=24; ∴S四边形FGJK=24﹣6=18, ∴S六边形FGHIJK=36. 【点睛】 本题是四边形综合题,考查了等边三角形的判定和性质,三角形的中位线定理,正六边形的性质等知识,熟练运用三角形中位线定理是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 八年 级数 下册 期末试卷 检测 提高 Word 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文