人教版八年级下册数学岳阳数学期末试卷达标训练题(Word版含答案).doc
《人教版八年级下册数学岳阳数学期末试卷达标训练题(Word版含答案).doc》由会员分享,可在线阅读,更多相关《人教版八年级下册数学岳阳数学期末试卷达标训练题(Word版含答案).doc(33页珍藏版)》请在咨信网上搜索。
人教版八年级下册数学岳阳数学期末试卷达标训练题(Word版含答案) 一、选择题 1.函数中,自变量x的取值范围是( ) A. B. C.且 D.且 2.下列各组数中,能构成直角三角形的是( ) A.2,3,4 B.4,5,6 C.1,,2 D.5,11,13 3.在中,、分别在、上,若想使四边形为平行四边形,须添加一个条件,这个条件可以是( ) ①;②;③;④. A.①或② B.②或③ C.③或④ D.①或③或④ 4.校篮球队所买10双运动鞋的尺码统计如表,则这10双运动鞋尺码的众数和中位数分别为( ) 尺码(cm) 25 25.5 26 26.5 27 购买量(双) 1 1 2 4 2 A.4 cm,26 cm B.4 cm,26.5 cm C.26.5 cm,26.5 cm D.26.5 cm,26 cm 5.已知实数a,b为的两边,且满足,第三边,则第三边c上的高的值是 A. B. C. D. 6.如图,菱形中,,则( ) A.60° B.30° C.25° D.15° 7.如图,点P为正方形ABCD对角线BD的延长线上一点,点M为AD上一点,连接CP,BM,MP,已知AB=4,AM=1,BM=PM,则CP=( ) A.4 B. C.4 D.5 8.如图,在平面直角坐标系中,四边形,…都是菱形,点…都在x轴上,点,…都在直线上,且,则点的横坐标是( ) A. B. C. D. 二、填空题 9.若二次根式有意义,且关于x的分式方程+2=有正数解,则符合条件的整数m的和是 _____. 10.如图,菱形ABCD的对角线AC=3cm,BD=4cm,则菱形ABCD的面积是_____. 11.如图,小正方形边长为,连接小正方形的三个顶点,可得. 则边上的高长度为___________. 12.如图,在中,,,,则______. 13.如图,直线l的解析式为y=kx+b(k,b为常数,且k≠0),若0<kx+b<1.5,则自变量x的取值范围为_________. 14.如图,O是矩形ABCD的对角线AC、BD的交点,OM⊥AD,垂足为M,若AB=8,则OM长为_______. 15.甲、乙两车从A地出发,匀速驶向B地.甲车以的速度行驶1小时后,乙车才沿相同路线行驶乙车先到达B地并停留1小时后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离与乙车行驶时间之间的函数关系如图所示下列说法:①乙车的速度是;②;③点H的坐标是;④.其中错误的是_______.(只填序号) 16.如图,△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC与△EBC的周长分别是40cm,24cm,则AB=_______cm. 三、解答题 17.计算: (1). (2). 18.如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C处折断,顶部(B)着地,离旗杆底部(A)4米,工人在修复的过程中,发现在折断点C的下方1.25米D处,有一明显裂痕,若下次大风将旗杆从D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险? 19.如图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点.A,B两点均在格点上,在给定的网格中,按下列要求画图: (1)在图①中,画出以AB为底边的等腰△ABC,并且点C为格点. (2)在图②中,画出以AB为腰的等腰△ABD,并且点D为格点. (3)在图③中,画出以AB为腰的等腰△ABE,并且点E为格点,所画的△ABE与图②中所画的△ABD不全等. 20.如图,在平行四边形中,点是边的中点,连接并延长交的延长线于点,连接,. (1)求证:四边形是平行四边形 (2)当的度数为______度时,四边形是菱形; (3)若,则当的度数为______度时,四边形是矩形. 21.[阅读材料] 我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用秦九韶公式可以更简便地求出面积,比如说在测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地求出答案,即三角形的三边长分别为a、b、c,则其面积S=(秦九韶公式),此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a、b、c,记p=,则其面积S=(海伦公式),虽然这两个公式形式上有所不同,但它们本质是等价的,计算各有优劣,它填补了中国数学史中的一个空白,从中可以看出中国古代已经具有很高的数学水平. [解决问题] (1)当三角形的三边a=7,b=8,c=9时,请你从上面两个公式里,选择合适的公式计算出三角形的面积. (2)当三角形的三边a=,b=2,c=3时,请你从上面两个公式里,选择合适的公式计算出三角形的面积. 22.福州地铁一号线实行里程分段计价票制,具体如下:起步价为5公里(含)2元;超过5公里后,5公里~15公里(含),按每5公里加收1元计价(不足5公里按5公里计价);15公里﹣29公里(含),按每7公里加收1元计价(不足7公里按7公里计价);29公里以上,按每9公里加收1元计价(不足9公里按9公里计价). (1)已知福州火车站到南门兜站地铁路程约为6公里,从福州火车站到南门兜站的地铁票价为多少元? (2)设地铁路线长为x公里,票价为y元,请直接写出当y=5时x的取值范围,并画出当5<x≤15时y关于x的函数的图象, 23.已知:如图,平行四边形ABCD中,AB=5,BD=8,点E、F分别在边BC、CD上(点E、F与平行四边形ABCD的顶点不重合),CE=CF,AE=AF. (1)求证:四边形ABCD是菱形; (2)设BE=x,AF=y,求y关于x的函数解析式,并写出定义域; (3)如果AE=5,点P在直线AF上,△ABP是以AB为腰的等腰三角形,那么△ABP的底边长为 .(请将答案直接填写在空格内) 24.如图,在平面直角坐标系中,直线:经过,两点,且、满足,过点作轴,交直线:于点,连接. (1)求直线的函数表达式; (2)在直线上是否存在一点,使得?若存在,求出点的坐标;若不存在,请说明理由. (3)点是轴上的一个动点,点是轴上的一个动点,过点作轴的垂线交直线、于点、,若是等腰直角三角形,请直接写出符合条件的的值. 25.已知中,.点从点出发沿线段移动,同时点从点出发沿线段的延长线移动,点、移动的速度相同,与直线相交于点. (1)如图①,当点为的中点时,求的长; (2)如图②,过点作直线的垂线,垂足为,当点、在移动的过程中,设,是否为常数?若是请求出的值,若不是请说明理由. (3)如图③,E为BC的中点,直线CH垂直于直线AD,垂足为点H,交AE的延长线于点M;直线BF垂直于直线AD,垂足为F;找出图中与BD相等的线段,并证明. 26.如图,在等腰中,,,点D为边中点,点E在线段上,,过点C作于F,交于点G. (1)求的大小(用含的式子表示) (2)①求证:; ②写出______的值. 【参考答案】 一、选择题 1.D 解析:D 【分析】 根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围. 【详解】 解:根据题意得:, 解得:x≥−1且x≠1. 故选D. 【点睛】 本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负. 2.C 解析:C 【分析】 根据勾股定理的逆定理对四组数据进行逐一判断即可. 【详解】 解:A、∵22 +32 ≠4 2 ,∴不能构成直角三角形; B、∵42 +52 ≠62 ,∴不能构成直角三角形; C、∵ ,∴能构成直角三角形; D、∵5 2 +11 2 ≠13 2 ,∴不能构成直角三角形. 故选C. 【点睛】 本题考查了用勾股定理的逆定理判断三角形的形状,即只要三角形的三边满足a 2 +b 2 =c 2 ,则此三角形是直角三角形. 3.D 解析:D 【解析】 【分析】 由平行四边形的判定定理依次判断即可解答. 【详解】 解:∵四边形ABCD是平行四边形, ∴AB//CD,AB=CD,∠B=∠D,AD//BC,AD=BC, ∴AF//EC ∵AF=EC, ∴四边形AFCE是平行四边形,故①符合题意; ∵AF//EC,, ∴四边形AFCE可能是平行四边形、也可能是等腰梯形,故②不符合题意; 如果∠BAE=∠FCD,则△ABE≌△DFC(ASA) ∴BE=DF, ∴AD-DF=BC-BE, 即AF=CE, ∵AF//CE, ∴四边形AFCE是平行四边形,故③符合题意; 如果∠BEA=∠FCE, ∴AE//CF, ∵AF//CE, ∴四边形AFCE是平行四边形、故④符合题意. 故选D. 【点睛】 本题主要考查了平行四边形的性质与判定.灵活运用平行四边形的性质与判定定理是解答本题的关键. 4.C 解析:C 【解析】 【分析】 根据众数的含义及中位数的求法进行即可. 【详解】 在这一组数据中26.5是出现次数最多的,故众数是26.5cm; 处于这组数据中间位置的数是26.5、26.5,那么中位数的定义可知,这组数据的中位数是(26.5+26.5)÷2=26.5cm. 故选C. 【点睛】 本题考查了众数及中位数,一组数据中出现次数最多的数称为众数,一组数据的众数可以不止一个,把一组数据按大小排列,中间位置一个数或两个数的平均数是这组数据的中位数;掌握它们的含义是关键. 5.D 解析:D 【分析】 本题主要考查了算术平方根的非负性及偶次方的非负性,勾股定理的逆定理及三角形面积的运算,首先根据非负性的性质得出a、b的值是解题的关键,再根据勾股定理的逆定理判定三角形为直角三角形,再根据三角形的面积得出c边上高即可. 【详解】 解:整理得,, 所以, 解得; 因为, , 所以, 所以是直角三角形,, 设第三边c上的高的值是h, 则的面积, 所以. 故选:D. 【点睛】 本题考查了非负数的性质、勾股定理的逆定理,解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0. 6.B 解析:B 【解析】 【分析】 由菱形的性质可得AB=BC,∠B=∠D=120°,由菱形的性质可求解. 【详解】 解:∵四边形ABCD是菱形, ∴AB=BC,∠B=∠D=120°, ∴∠1=30°, 故选:B 【点睛】 本题考查了菱形的性质,等腰三角形的性质,掌握菱形的性质是本题的关键. 7.B 解析:B 【解析】 【分析】 过点M作ME⊥BP于E,过点P作PF⊥BC交BC延长线于F,先根据正方形的性质得到MD=AD-AM=3,∠DME=∠DBC=45°,再由勾股定理求出,,即可得到,由三线合一定理得到,再利用勾股定理求出BF=PF=5,即可得到CF=1,再由求解即可. 【详解】 解:如图所示,过点M作ME⊥BP于E,过点P作PF⊥BC交BC延长线于F, ∵四边形ABCD是正方形, ∴AD=AB=4,∠MDE=45°,∠A=90° ∴MD=AD-AM=3,∠DME=∠DBC=45°, ∴ME=DE, ∵, ∴, ∴, ∵, ∴, ∴, ∵BM=PM, ∴, ∵∠PBC=45°,∠PFB=90°, ∴∠BPF=45°, ∴BF=PF,, ∴, ∴PF=BF=5, ∴CF=BF-BC=1, ∴, 故选B. 【点睛】 本题主要考查了正方形的性质,勾股定理,等腰三角形的性质与判定 ,解题的关键在于能够熟练掌握相关知识进行求解. 8.A 解析:A 【分析】 分别过点作轴的垂线,交于,再连接 ,利用勾股定理及根据菱形的边长求得、、的坐标然后分别表示出、、的坐标找出规律进而求得的坐标. 【详解】 解:分别过点作轴的垂线,交于,再连接 如下图: , , , 在中, 根据勾股定理得:, 即, 解得:, 的纵坐标为:,横坐标为, ,, 四边形,,,都是菱形, ,,,, 的纵坐标为:,代入,求得横坐标为2, , 的纵坐标为:,代入,求得横坐标为5, ,, ,, ,, ,; ,, , 则点的横坐标是:, 故选:A. 【点睛】 本题是对点的坐标变化规律的考查,主要利用了菱形的性质,解直角三角形,根据已知点的变化规律求出菱形的边长,得出系列点的坐标,找出规律是解题的关键. 二、填空题 9.-4 【解析】 【分析】 根据二次根式有意义,可得m≤2,解出关于x的分式方程 +2=的解为x=,解为正数解,进而确定m的取值范围,注意增根时m的值除外,再根据m为整数,确定m的所有可能的整数值,求和即可. 【详解】 解:+2=, 去分母得,﹣m+2(x﹣1)=3, 解得,x=, ∵关于x的分式方程+2=有正数解, ∴>0, ∴m>﹣5, 又∵x=1是增根,当x=1时,=1,即m=﹣3, ∴m≠﹣3, ∵有意义, ∴2﹣m≥0, ∴m≤2, 因此﹣5<m≤2且m≠﹣3, ∵m为整数, ∴m可以为﹣4,﹣2,﹣1,0,1,2,其和为﹣4, 故答案为:﹣4. 【点睛】 考查二次根式的意义、分式方程的解法,以及分式方程产生增根的条件等知识,理解正数解,整数m的意义是正确解答的关键. 10.A 解析:12cm2 【解析】 【分析】 利用菱形的面积公式可求解. 【详解】 解:因为菱形的对角线互相垂直平分, ∵AC=cm,BD=cm, 则菱形ABCD的面积是cm2. 故答案为12cm2. 【点睛】 此题主要考查菱形的面积计算,关键是掌握菱形的面积计算方法. 11.A 解析: 【解析】 【分析】 求出三角形ABC的面积,再根据三角形的面积公式即可求得AC边上的高. 【详解】 解:∵三角形的面积等于正方形的面积减去三个直角三角形的面积, 即==6, 设AC上的高为h,则S△ABC=AC•h=6, ∵AC==, ∴AC边上的高h==, 故答案为:. 【点睛】 本题考查三角形的面积公式、勾股定理,首先根据大正方形的面积减去三个直角三角形的面积计算,再根据勾股定理求得AC的长,最后根据三角形的面积公式计算. 12.A 解析:8 【分析】 根据直角三角形斜边上的中线等于斜边的一半求解即可. 【详解】 解:∵∠ABC=90°,AD=DC,BD=4, ∴AC=2BD=8. 故答案为:8. 【点睛】 本题主要考查了直角三角形斜边上的中线,解题的关键在于能够熟练掌握直角三角形斜边上的中线等于斜边的一半. 13.﹣2<x<1 【分析】 把(1,1.5),(﹣2,0)代入y=kx+b解不等式即可得到结论. 【详解】 解:把(1,1.5),(﹣2,0)代入y=kx+b 得 解得: ∴直线l的解析式为y=x+1, ∵0<kx+b<1.5, ∴0<x+1<1.5, 解得:﹣2<x<1, ∴自变量x的取值范围为﹣2<x<1, 故答案为:﹣2<x<1. 【点睛】 本题主要考查了一次函数与一元一次不等式组,解题的关键在于能够准确求出一次函数的解析式. 14.A 解析:4 【解析】 【分析】 根据三角形的中位线即可求解. 【详解】 ∵O是矩形ABCD的对角线AC、BD的交点, ∴O是AC中点, 又OM⊥AD,AD⊥CD ∴,又AB=CD=8 故OM=4 故填:4 【点睛】 此题主要考查矩形的性质,解题的关键是熟知三角形中位线的性质. 15.④ 【分析】 根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量. 【详解】 解:由图象可知,乙出发时,甲乙相距80km,2小时 解析:④ 【分析】 根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量. 【详解】 解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确; 由图象第2-6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确; 当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确; 乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误. 故答案为:④. 【点睛】 本题考查函数的应用,主要是以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态. 16.【详解】 试题分析:首先根据DE是AB的垂直平分线,可得AE=BE;然后根据△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,可得△ABC的周长-△ 解析:【详解】 试题分析:首先根据DE是AB的垂直平分线,可得AE=BE;然后根据△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,可得△ABC的周长-△EBC的周长=AB,据此求出AB的长度是多少即可. 解:DE是AB的垂直平分线, ∴AE=BE; ∵△ABC的周长=AB+AC+BC, △EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC, ∴AB=△ABC的周长−△EBC的周长, ∴AB=40−24=16(cm). 故答案为16. 三、解答题 17.(1);(2) 【分析】 (1)根据二次根式的除法法则计算,二次根式的性质化简即可; (2)根据二次根式的乘法以及二次根式的加减法运算进行计算即可 【详解】 (1) ; (2) . 【点睛】 解析:(1);(2) 【分析】 (1)根据二次根式的除法法则计算,二次根式的性质化简即可; (2)根据二次根式的乘法以及二次根式的加减法运算进行计算即可 【详解】 (1) ; (2) . 【点睛】 本题考查了二次根式的混合运算,掌握二次根式的性质以及二次根式的运算法则是解题的关键. 18.6 【分析】 先根据勾股定理求得,进而求得,根据勾股定理即可求得范围. 【详解】 由题意可知, 则, 即, 解得, 若下次大风将旗杆从D处吹断,如图, , BD, . 则距离旗杆底部周围6米范围内 解析:6 【分析】 先根据勾股定理求得,进而求得,根据勾股定理即可求得范围. 【详解】 由题意可知, 则, 即, 解得, 若下次大风将旗杆从D处吹断,如图, , BD, . 则距离旗杆底部周围6米范围内有被砸伤的危险. 【点睛】 本题考查了勾股定理的应用,掌握勾股定理是解题的关键. 19.(1)见解析;(2)见解析;(3)见解析. 【解析】 【分析】 (1)根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x, 根据勾股定理求出,找横1竖2个格,或横2竖1个格画线即可; (2) 解析:(1)见解析;(2)见解析;(3)见解析. 【解析】 【分析】 (1)根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x, 根据勾股定理求出,找横1竖2个格,或横2竖1个格画线即可; (2)以AB=为腰的等腰△ABD,AB=AD,以点A为起点找横1竖3个格,或横3竖1个格画线;如图△ABD; AB=BD,以点B为起点找横1竖3个格,或横3竖1个格画线;如图△ABD. (3)以AB=为腰的等腰△ABD,AB=BE,以点B为起点找横1竖3个格,或横3竖1个格;如图△ABE.AB=AE,以点A为起点找横1竖3个格,或横3竖1个格;所画的△ABE与图②中所画的△ABD不同即可. 【详解】 解:(1)∵根据勾股定理AB=,以AB为底等腰直角三角形,两直角边为x, 根据勾股定理,解得,横1竖2,或横2竖1个画线;如图△ABC; (2)以AB=为腰的等腰△ABD,AB=AD,以点A为起点找横1竖3个格,或横3竖1个格画线;如图△ABD;AB=BD,以点B为起点找横1竖3个格画线,或横3竖1个格;如图△ABD; (3)以AB=为腰的等腰△ABD,AB=BE,以点B为起点找横1竖3个格,或横3竖1个格;如图△ABE.AB=AE,以点A为起点找横1竖3个格,或横3竖1个格;所画的△ABE与图②中所画的△ABD不全等. 【点睛】 本题考查网格作图,掌握网格作图方法与勾股定理,利用勾股定理确定腰长构造直角三角形是解题关键. 20.(1)见解析;(2)90;(3)104 【分析】 (1)根据题意,可以先证明和全等,然后即可得到,然后对角线互相平分的四边形是平行四边形可以证明结论成立; (2)根据菱形的性质,可以得到的度数; ( 解析:(1)见解析;(2)90;(3)104 【分析】 (1)根据题意,可以先证明和全等,然后即可得到,然后对角线互相平分的四边形是平行四边形可以证明结论成立; (2)根据菱形的性质,可以得到的度数; (3)根据矩形的性质,可以得到的度数. 【详解】 (1)证明:四边形是平行四边形, , , 点是边的中点, , 在和中, , , , 又, 四边形是平行四边形; (2)当的度数为时,四边形是菱形, 理由:四边形是菱形, , , 故答案为:90; (3)当的度数为104度时,四边形是矩形, 理由:四边形是矩形, , , , 四边形是平行四边形,, , , , 故答案为:104. 【点睛】 本题考查了平行四边形的判定与性质、全等三角形的判定与性质、矩形的性质、菱形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 21.(1)S=12;(2)S= 【解析】 【分析】 (1)利用三角形的三边均为整数,可选择海伦公式进行计算; (2)利用三角形的三边中有无理数,可选择秦九韶公式进行计算. 【详解】 解:(1), 由海伦 解析:(1)S=12;(2)S= 【解析】 【分析】 (1)利用三角形的三边均为整数,可选择海伦公式进行计算; (2)利用三角形的三边中有无理数,可选择秦九韶公式进行计算. 【详解】 解:(1), 由海伦公式得: , , ; (2)由秦九韶公式得: , , , . 【点睛】 本题主要考查了数学常识,三角形的面积,二次根式的应用,根据三角形三边数字的特征选择恰当的公式是解题的关键. 22.(1)3元;(2)15<x≤22,见解析 【分析】 (1)根据起步价为5公里(含)2元;超过5公里后,5公里~15公里(含),按每5公里加收1元计价(不足5公里按5公里计价),5<6<15,票价在2 解析:(1)3元;(2)15<x≤22,见解析 【分析】 (1)根据起步价为5公里(含)2元;超过5公里后,5公里~15公里(含),按每5公里加收1元计价(不足5公里按5公里计价),5<6<15,票价在2元的基础上加1元即可; (2)根据票价为5元,按着铁路收费的标准即可求出铁路长的取值范围,根据题意画出图象. 【详解】 解:(1)∵5<6<15,且6﹣5=1<5, ∴从福州火车站到南门兜站的地铁票价为2+1=3(元), 答:从福州火车站到南门兜站的地铁票价为3元; (2)当票价为5元时,由题意知: 铁路长5公里时票价2元,10公里时票价2+1=3元, 15公里时票价3+1=4元, ∴x>15, 又∵15公里﹣29公里(含),按每7公里加收1元计价(不足7公里按7公里计价), ∴铁路长22公里时票价4+1=5元, ∴x≤22, 因此x的取值范围:15<x≤22, 根据上面计算结果,画函数图象如图所示. 【点睛】 本题考查一次函数的应用,关键是分清铁路长在不同范围内的票价情况. 23.(1)见解析;(2);(3)8或或6 【分析】 (1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形; (2)连结,交于点,作于点,由菱形的面积及边长求出菱形的 解析:(1)见解析;(2);(3)8或或6 【分析】 (1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形; (2)连结,交于点,作于点,由菱形的面积及边长求出菱形的高,再求的长,由勾股定理列出关于、的等式,整理得到关于的函数解析式; (3)以为腰的等腰三角形分三种情况,其中有两种情况是等腰三角形与或全等,另一种情况可由(2)中求得的菱形的高求出的长,再求等腰三角形的底边长. 【详解】 解:(1)证明:如图1,连结, ,,, , , 即; 四边形是平行四边形, , , , , 四边形是菱形 (2)如图2,连结,交于点,作于点,则, 由(1)得,四边形是菱形, , , ,, , , , 由,且,得, 解得; , , 由,且,得, 点在边上且不与点、重合, , 关于的函数解析式为, (3)如图3,,且点在的延长线上, ,, , , , , , , , , , , , ,, , , 即等腰三角形的底边长为8; 如图4,,作于点,于点,则, , , , , , 由(2)得,, , , 即等腰三角形的底边长为; 如图5,,点与点重合,连结, ,,, , , 即, 等腰三角形的底边长为6. 综上所述,以为腰的等腰三角形的底边长为8或或6, 故答案为:8或或6. 【点睛】 此题重点考查菱形的性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理、求与几何图形有关的函数关系式等知识与方法,在解第(3)题时,需要进行分类讨论,求出所有符合条件的值,以免丢解. 24.(1);(2)存在点,点的纵坐标为0或4;(3)4或或47或. 【解析】 【分析】 (1)根据非负性求出a、b的值,然后运用待定系数法解答即可; (2)根据平行和坐标以及SΔBPQ=SΔBPA确定Q 解析:(1);(2)存在点,点的纵坐标为0或4;(3)4或或或. 【解析】 【分析】 (1)根据非负性求出a、b的值,然后运用待定系数法解答即可; (2)根据平行和坐标以及确定Q坐标即可; (3)连接DM、DN,由题意可得M、N的坐标分别为(n,),(n,n),MN=|n-2|,然后再分MN=DM,MN=DN,DM=DN三种情况解答即可. 【详解】 解:(1)∵ ∴ ∴ 把、代入中,得: 解得: ∴ (2)存在点,使. ∵ ∴ ∴ ∵ ∴点的纵坐标为0或4 ∴ (3) ①当DM=MN或DM=DN时,如图:过M做DM∥x轴交y轴于D点,连接DN ∵C点坐标为(n,n), ∴M、N的坐标分别为(n,),(n,n),D(0,n) MN=|n-2|, ∴|n-2|=|n|,解得:n=4或n= ②当DM=DN或DM=DN时,如图 ∵C点坐标为(n,n), ∴M、N的坐标分别为(n,),(n,n),D(0,n) MN=|n-2|, 又∵是等腰直角三角形 ∴D在MN的垂直平分线上,DF=MN ∴,D(0, +1)F(n,|) ∴|n| =|n-2|,解得:或 综上,n的取值为4或或或时,是等腰直角三角形. 【点睛】 本题属于一次函数综合题,考查了一次函数图像上点的坐标特点、一次函数的解析式、一次函数的动点问题以及等腰三角形等知识,考查知识点较多难度较大,解答的关键在于对所学知识的灵活应用以及较强的计算能力. 25.(1)3;(2)6(3)BD=AM,证明见解析 【分析】 (1)因为速度相等和等腰三角形的已知条件,作平行线构造全等三角形,问题得以解决. (2)这类题一般结论成立,根据(1)中的思路,加上等腰三角 解析:(1)3;(2)6(3)BD=AM,证明见解析 【分析】 (1)因为速度相等和等腰三角形的已知条件,作平行线构造全等三角形,问题得以解决. (2)这类题一般结论成立,根据(1)中的思路,加上等腰三角形的性质,可以求出定值. (3)根据已知条件可以判断是等腰直角三角形,近而求出≌,得出ED=EM,即可得出结论. 【详解】 (1) 如图,过P点作PF∥AC交BC于F, ∵点P和点Q同时出发,且速度相同, ∴BP=CQ, ∵PF//AQ, ∴∠PFB=∠ACB,∠DPF=∠CQD, 又∵AB=AC, ∴∠B=∠ACB, ∴∠B=∠PFB, ∴BP=PF, ∴PF=CQ,又∠PDF=∠QDC, ∴△PFD≌△QCD, ∴DF=CD=CF, 又因P是AB的中点,PF∥AQ, ∴F是BC的中点,即FC=BC=6, ∴CD=CF=3; (2)为定值. 如图②,点P在线段AB上, 过点P作PF//AC交BC于F, 则有(1)可知△PBF为等腰三角形, ∵PE⊥BF ∴BE=BF ∵有(1)可知△PFD≌△QCD ∴CD= ∴ (3)BD=AM 证明:∵ ∴ ∴是等腰直角三角形 ∵E为BC的中点 ∴ ∴, ∴, ∵AH⊥CM ∴ ∵ ∴ ∴≌ (ASA) ∴ ∴ 即: 26.(1)见解析;(2)①见解析;② 【分析】 (1)根据直角三角形中两锐角互余以及三角形外角的性质可得结果; (2)①延长AD至Q,使得,连接BQ,可证,根据已知以及等腰三角形的性质可得结论; ②作, 解析:(1)见解析;(2)①见解析;② 【分析】 (1)根据直角三角形中两锐角互余以及三角形外角的性质可得结果; (2)①延长AD至Q,使得,连接BQ,可证,根据已知以及等腰三角形的性质可得结论; ②作,连接,证明,设,则,根据勾股定理求得AE、AD的长度,求比值即可. 【详解】 解:(1)在中,, ∴ ∵, ∴, ∵, ∴ ∵, ∴, ∵, ∴; (2)①延长AD至Q,使得,连接BQ, ∵点D为边中点, ∴, 又∵, ∴, ∴, ∵, ∴, ∴, ∴, ∵, ∴; ②作,连接, ∴, 由(2)知, ∴ ∴, ∵, 又∵,, ∴, ∵, ∴, ∴, ∴, 设,则, ∴, ∵, ∴, ∴, ∴, ∴, ∴, ∴, 故答案为:. 【点睛】 本题主要考查三角形综合问题,涉及到全等三角形判定与性质,等腰三角形的判定与性质,勾股定理等知识点,作出合理辅助线构造全等三角形以及应用勾股定理表示出各线段的长度是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版八 年级 下册 数学 岳阳 期末试卷 达标 训练 Word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文