沪科版数学八年级下册19.2-第3课时-平行四边形的判定2.doc
《沪科版数学八年级下册19.2-第3课时-平行四边形的判定2.doc》由会员分享,可在线阅读,更多相关《沪科版数学八年级下册19.2-第3课时-平行四边形的判定2.doc(10页珍藏版)》请在咨信网上搜索。
小学教育复习系列资料 19.2 平行四边形 第3课时 平行四边形的判定 一、选择——基础知识运用 1.下列条件中,不能判定四边形是平行四边形的是( ) A.两组对边分别平行 B.一组对边平行,另一组对边相等 C.两组对边分别相等 D.一组对边平行且相等 2.如图,在四边形ABCD中,∠DAC=∠ACB,要使四边形ABCD成为平行四边形,则应增加的条件不能是( ) A.AD=BC B.OA=OC C.AB=CD D.∠ABC+∠BCD=180° 3.分别过一个三角形的3个顶点作对边的平行线,这些平行线两两相交,则构成的平行四边形的个数是( ) A.1个 B.2个 C.3个 D.4个 4.已知四边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么可以判定四边形ABCD是平行四边形的是( ) ①再加上条件“BC=AD”,则四边形ABCD一定是平行四边形. ②再加上条件“∠BAD=∠BCD”,则四边形ABCD一定是平行四边形. ③再加上条件“AO=CO”,则四边形ABCD一定是平行四边形. ④再加上条件“∠DBA=∠CAB”,则四边形ABCD一定是平行四边形. A.①和② B.①③和④ C.②和③ D.②③和④ 5.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( ) A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1) 二、解答——知识提高运用 6.如图,凸四边形ABCD中,AB∥CD,且AB+BC=CD+AD.求证:ABCD是平行四边形. 7.如图,△ABC和△ADE都是等边三角形,点D在BC边上,AB边上有一点F,且BF=DC,连接EF、EB. (1)求证:△ABE≌△ACD; (2)求证:四边形EFCD是平行四边形. 8.如图,在平面直角坐标系中,A(0,20),B在原点,C(26,0),D(24,20),动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB以3cm/s的速度向点B运动,P、Q同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动时间为ts,当t为何值时,四边形PQCD是平行四边形?并写出P、Q的坐标. 9.如图,已知△ABC,分别以它的三边为边长,在BC边的同侧作三个等边三角形,即△ABD,△BCE,△ACF,求证:四边形ADEF是平行四边形. 10.已知,如图OM⊥ON,OP=x-3,OM=4,ON=x-5,MN=5,MP=11-x,求证:四边形OPMN是平行四边形. 11.如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD方向以每秒1个单位的速度运动,同时点Q从点C出发沿射线CB方向以每秒2个单位的速度运动,在线段QC上取点E,使得QE=2,连结PE,设点P的运动时间为t秒. (1)若PE⊥BC,求BQ的长; (2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由. 参考答案 一、选择——基础知识运用 1.【答案】B 2.【答案】C 【解析】∵∠DAC=∠ACB,∴AD∥BC, A、根据平行四边形的判定有一组对边平行且相等的四边形是平行四边形,不符合题意; B、可利用对角线互相平分的四边形是平行四边形判断平行四边形,不符合题意; C、可能是等腰梯形,故本选项错误,符合题意; D、根据AD∥BC和∠ABC+∠BAD=180°,能推出符合判断平行四边形的条件,不符合题意.故选C. 3.【答案】C 【解析】如图所示: □ACBD,□ABCF,□ABEC, 可构成3个平行四边形,故选C. 4.【答案】C 【解析】∵一组对边平行且相等的四边形是平行四边形, ∴①不正确; ∵AB∥CD, ∴∠ABC+∠BCD=180°, ∵∠BAD=∠BCD, ∴∠ABC+∠BAD=180°, ∴AD∥BC, ∴四边形ABCD是平行四边形, ∴②正确,如图所示; ∵AB∥CD, ∴△AOB∽△COD, ∴AO:CO=BO:DO, ∵AO=CO, ∴BO=DO, ∴四边形ABCD是平行四边形, ∴③正确; ∵∠DBA=∠CAB, ∴AO=BO, ∵AB∥CD, ∴△AOB∽△COD, ∴AO:CO=BO:DO, ∵AO=BO, ∴CO=DO,四边形ABCD不一定是平行四边形, ∴④不正确;故选C. 5.【答案】B 【解析】如图所示: ①以AC为对角线,可以画出▱AFCB,F(-3,1); ②以AB为对角线,可以画出▱ACBE,E(1,-1); ③以BC为对角线,可以画出▱ACDB,D(3,1); 故选B. 二、解答——知识提高运用 6.【答案】 证明:假设ABCD不是平行四边形,即AB≠CD, 不妨设AB>CD.在AB边上取点E,使AE=CD,则AECD是平行四边形, ∴AD=CE, 由AB+BC=CD+AD, 即(AE+EB)+BC=CD+AD, ∴EB+BC=CE,与三角形不等式EB+BC>CE矛盾, 因此,ABCD必是平行四边形。 7.【答案】(1)∵△ABC和△ADE都是等边三角形, ∴AE=AD,AB=AC,∠EAD=∠BAC=60°, ∴∠EAD-∠BAD=∠BAC-∠BAD, 即:∠EAB=∠DAC, ∴△ABE≌△ACD(SAS); (2)证明:∵△ABE≌△ACD, ∴BE=DC,∠EBA=∠DCA, 又∵BF=DC, ∴BE=BF. ∵△ABC是等边三角形, ∴∠DCA=60°, ∴△BEF为等边三角形. ∴∠EFB=60°,EF=BF ∵△ABC是等边三角形, ∴∠ABC=60°, ∴∠ABC=∠EFB, ∴EF∥BC,即EF∥DC, ∵EF=BF,BF=DC, ∴EF=DC, ∴四边形EFCD是平行四边形。 8.【答案】运动时间为t s, 则AP=t,PD=24-t,CQ=3t, ∵四边形PQCD为平行四边形 ∴PD=CQ ∴24-t=3t 解得:t=6 即当t=6时,四边形PQCD为平行四边形, 此时AP=6,所以点P的坐标为(6,20), CQ=3t=18,所以点Q的坐标为(8,0). 9.【答案】∵△ABD,△BEC都是等边三角形, ∴BD=AB,BE=BC,∠DBA=∠EBC=60°, ∴∠DBE=60°-∠EBA,∠ABC=60°-∠EBA, ∴∠DBE=∠ABC, 在△DBE和△ABC中, BD=AB ;∠DBE=∠ABC;BE=BC ∴△DBE≌△ABC(SAS), ∴DE=AC, 又∵△ACF是等边三角形, ∴AC=AF, ∴DE=AF。 同理可得:△ABC≌△FEC, ∴EF=AB=DA。 ∵DE=AF,DA=EF, ∴四边形ADEF为平行四边形. 10.【答案】∵OM⊥ON, ∴在直角三角形MON中,OM2+ON2=MN2, ∵OM=4,ON=x-5,MN=5, ∴42+(x-5)2=52, 解得:x=8, ∴MP=11-x=11-8=3, ON=x-5=8-5=3, OP=x-3=8-3=5, ∴MP=ON,PO=NM ∴四边形OPMN是平行四边形. 11.【答案】(1)作AM⊥BC于M,如图所示: ∵∠BAC=90°,∠B=45°, ∴∠C=45°=∠B, ∴AB=AC, ∴BM=CM, ∴AM=BC=5, ∵AD∥BC, ∴∠PAN=∠C=45°, ∵PE⊥BC, ∴PE=AM=5,PE⊥AD, ∴△APN和△CEN是等腰直角三角形, ∴PN=AP=t,CE=NE=5-t, ∵CE=CQ-QE=2t-2, ∴5-t=2t-2, 解得:t=,BQ=BC-CQ=10-2× = ; (2)存在,t=4;理由如下: 若以A,B,E,P为顶点的四边形为平行四边形, 则AP=BE, ∴t=10-2t+2, 解得:t=4, ∴存在t的值,使以A,B,E,P为顶点的四边形为平行四边形,t=4.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 沪科版 数学 年级 下册 19.2 课时 平行四边形 判定
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文