2022年人教版七7年级下册数学期末复习题(及答案).doc
《2022年人教版七7年级下册数学期末复习题(及答案).doc》由会员分享,可在线阅读,更多相关《2022年人教版七7年级下册数学期末复习题(及答案).doc(24页珍藏版)》请在咨信网上搜索。
2022年人教版七7年级下册数学期末复习题(及答案) 一、选择题 1.25的算数平方根是 A. B.±5 C. D.5 2.下列哪些图形是通过平移可以得到的( ) A. B. C. D. 3.若点在轴上,则点所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中错误的有( ) A.②③ B.②④ C.③④ D.②③④ 5.如图,直线,,则的度数为( ) A. B. C. D. 6.小雪在作业本上做了四道题目:①=﹣3;②±=4;③=9;④=-6,她做对了的题目有( ) A.1道 B.2道 C.3道 D.4道 7.如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知2=35°,则∠1的度数为( ) A.45° B.125° C.55° D.35° 8.如图,动点 P在平面直角坐标系中按图中箭头所示方向运动,第 1 次从原点运 动到点(1,1),第 2 次接着运动到点(2,0),第 3 次接着运动到点(3,2),…, 按这样的运动规律,经过第 2021 次运动后,动点 P的坐标是( ) A.(2020,1) B.(2020,2) C.(2021,1) D.(2021,2) 九、填空题 9.如果,的平方根是,则__________. 十、填空题 10.若与点关于轴对称,则的值是___________; 十一、填空题 11.在△ABC中,若∠A=60°,点O是∠ABC和∠ACB角平分线的交点,则∠BOC=________. 十二、填空题 12.如图,,直角三角板直角顶点在直线上.已知,则的度数为______°. 十三、填空题 13.将一条长方形纸带按如图方式折叠,若,则的度数为________°. 十四、填空题 14.如图,将面积为5的正方形放在数轴上,以表示-1的点为圆心,以正方形的边长为半径作圆,交数轴于点,两点,则点,表示的数分别为__________. 十五、填空题 15.如果点P(x,y)的坐标满足x+y=xy,那么称点P为“美丽点”,若某个“美丽点”P到y轴的距离为2,则点P的坐标为___. 十六、填空题 16.如图,动点在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点,第次运动到点,第次接着运动到点按这样的运动规律,经过第次运动后动点的坐标是________. 十七、解答题 17.计算: (1) (2) 十八、解答题 18.求下列各式中的x值: (1)25x2-64=0 (2)x3-3= 十九、解答题 19.根据下列证明过程填空:已知:如图,于点,于点,.求证:. 证明:∵,(已知) ∴(______________) ∴(_____________) ∴(_____________) 又∵(已知) ∴(_________) ∴(_________) ∴(__________) 二十、解答题 20.如图,在平面直角坐标系中,的顶点都在格点上,点. (1)写出点,的坐标; (2)求的面积. 二十一、解答题 21.在学习《实数》内容时,我们通过“逐步逼近”的方法可以计算出的近似值,得出1.4<<1.5.利用“逐步逼近“法,请回答下列问题: (1)介于连续的两个整数a和b之间,且a<b,那么a= ,b= . (2)x是+2的小数部分,y是﹣1的整数部分,求x= ,y= . (3)(﹣x)y的平方根. 二十二、解答题 22.如图,8块相同的小长方形地砖拼成一个大长方形, (1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答) (2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗? 二十三、解答题 23.如图,已知//,点是射线上一动点(与点不重合),分别平分和,分别交射线于点. (1)当时,的度数是_______; (2)当,求的度数(用的代数式表示); (3)当点运动时,与的度数之比是否随点的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律. (4)当点运动到使时,请直接写出的度数. 二十四、解答题 24.如图1,,在、内有一条折线. (1)求证:; (2)在图2中,画的平分线与的平分线,两条角平分线交于点,请你补全图形,试探索与之间的关系,并证明你的结论; (3)在(2)的条件下,已知和均为钝角,点在直线、之间,且满足,,(其中为常数且),直接写出与的数量关系. 二十五、解答题 25.已知ABCD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F. (1)若点E的位置如图1所示. ①若∠ABE=60°,∠CDE=80°,则∠F= °; ②探究∠F与∠BED的数量关系并证明你的结论; (2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是 . (3)若点E的位置如图3所示,∠CDE 为锐角,且,设∠F=α,则α的取值范围为 . 【参考答案】 一、选择题 1.D 解析:D 【分析】 一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数,特别地,我们规定0的算术平方根是0负数没有算术平方根,但i的平方是-1,i是一个虚数,是复数的基本单位. 【详解】 , ∴25的算术平方根是:5. 故答案为5. 【点睛】 本题考查了算术平方根,熟练掌握该知识点是本题解题的关键. 2.B 【分析】 根据平移、旋转、轴对称的定义逐项判断即可. 【详解】 A、通过旋转得到,故本选项错误 B、通过平移得到,故本选项正确 C、通过轴对称得到,故本选项错误 D、通过旋转得到,故本选项错误 解析:B 【分析】 根据平移、旋转、轴对称的定义逐项判断即可. 【详解】 A、通过旋转得到,故本选项错误 B、通过平移得到,故本选项正确 C、通过轴对称得到,故本选项错误 D、通过旋转得到,故本选项错误 故选:B. 【点睛】 本题考查了平移、旋转、轴对称的定义,熟记定义是解题关键. 3.D 【分析】 根据点在轴上,求得,从而求得点的坐标,进而判断所在的象限. 【详解】 在轴上, , , 在第四象限, 故选D. 【点睛】 本题考查了直角坐标系中坐标和象限的知识;解题的关键是熟练掌握直角坐标系中坐标和象限的性质,从而完成求解. 4.D 【分析】 根据对顶角的定义对①③进行判断;根据过直线外一点有且只有一条直线与已知直线平行对②进行判断;根据平行线的性质对④进行判断. 【详解】 对顶角相等,所以①正确,不符合题意; 过直线外一点有且只有一条直线与已知直线平行,所以②不正确,符合题意; 相等的角不一定为对顶角,所以③不正确,符合题意; 两直线平行,同位角相等,所以④不正确,符合题意, 故选:D. 【点睛】 本题考查了命题与定理,主要是判断命题的真假,属于基础题,熟练掌握这些定理是解题的关键. 5.B 【分析】 记∠1顶点为A,∠2顶点为B,∠3顶点为C,过点B作BD∥l1,由平行线的性质可得∠3+∠DBC=180°,∠ABD+(180°-∠1)=180°,由此得到∠3+∠2+(180°-∠1)=360°,再结合已知条件即可求出结果. 【详解】 如图,过点B作BD∥l1, ∵, ∴BD∥l1∥l2, ∴∠3+∠DBC=180°,∠ABD+(180°-∠1)=180°, ∴∠3+∠DBC+∠ABD+(180°-∠1)=360°,即∠3+∠2+(180°-∠1)=360°, 又∵∠2+∠3=216°, ∴216°+(180°-∠1)=360°, ∴∠1=36°. 故选:B. 【点睛】 本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键. 6.A 【分析】 依据立方根、平方根算术平方根的定义求解即可 【详解】 ①=-3,故①正确;②±=±4,故②错误; =3,故③错误;④=6,故④错误. 故选:A. 【点睛】 此题考查立方根,算术平方根和平方根,掌握运算法则是解题关键 7.C 【分析】 根据∠ACB=90°,∠2=35°求出∠3的度数,根据平行线的性质得出∠1=∠3,代入即可得出答案. 【详解】 解:∵∠ACB=90°,∠2=35°, ∴∠3=180°-90°-35°=55°, ∵a∥b, ∴∠1=∠3=55°. 故选:C. 【点睛】 本题考查了平行线的性质和邻补角的定义,解此题的关键是求出∠3的度数和得出∠1=∠3,题目比较典型,难度适中. 8.C 【分析】 分析点P的运动规律找到循环规律即可. 【详解】 解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位, 因为2021=505×4+1, 所以,前505次循环运动点P 解析:C 【分析】 分析点P的运动规律找到循环规律即可. 【详解】 解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位, 因为2021=505×4+1, 所以,前505次循环运动点P共向右运动505×4=2020个单位,剩余一次运动向右走1个单位,且纵坐标为1. 故点P坐标为(2021,1), 故选:C. 【点睛】 本题是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题. 九、填空题 9.-4 【分析】 根据题意先求出 ,再代入,即可. 【详解】 解:∵的平方根是, ∴ , ∴ , ∴, 故答案为: 【点睛】 本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值. 解析:-4 【分析】 根据题意先求出 ,再代入,即可. 【详解】 解:∵的平方根是, ∴ , ∴ , ∴, 故答案为: 【点睛】 本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值. 十、填空题 10.1 【分析】 根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案. 【详解】 由点与点的坐标关于y轴对称,得: ,, 解得:,, ∴. 故答案为:. 【点睛】 本题 解析:1 【分析】 根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案. 【详解】 由点与点的坐标关于y轴对称,得: ,, 解得:,, ∴. 故答案为:. 【点睛】 本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数. 十一、填空题 11.120° 【分析】 由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB= 解析:120° 【分析】 由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=120°. 【详解】 ∵∠A=60°, ∴∠ABC+∠ACB=120°, ∵BO平分∠ABC,CO平分∠ACB, ∴∠OBC=∠ABC,∠OCB=∠ACB, ∴∠OBC+∠OCB=∠ABC+∠ACB=60°, ∴∠BOC=180°-∠OBC-∠OCB=120° 故答案为120° 【点睛】 本题考查三角形内角和定理,解题的关键是熟练运用三角形内角和定理 十二、填空题 12.40 【分析】 根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解. 【详解】 解:如图所示 ∵a∥b ∴∠1=∠DAE,∠2=∠CAB ∵∠DAC=90° ∴∠D 解析:40 【分析】 根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解. 【详解】 解:如图所示 ∵a∥b ∴∠1=∠DAE,∠2=∠CAB ∵∠DAC=90° ∴∠DAE+∠CAB=180°-∠DAC=90° ∴∠1+∠2=90° ∴∠2=90°-∠1=40° 故答案为:40. 【点睛】 本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质. 十三、填空题 13.36 【分析】 根据平行线的性质、折叠的性质即可解决. 【详解】 ∵AB∥CD,如图 ∴∠GEC=∠1=108゜ 由折叠的性质可得:∠2=∠FED ∵∠2+∠FED+∠GEC=180゜ ∴∠2= 解析:36 【分析】 根据平行线的性质、折叠的性质即可解决. 【详解】 ∵AB∥CD,如图 ∴∠GEC=∠1=108゜ 由折叠的性质可得:∠2=∠FED ∵∠2+∠FED+∠GEC=180゜ ∴∠2= 故答案为:36 【点睛】 本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质. 十四、填空题 14., 【分析】 根据算术平方根的定义以及数轴的定义解答即可. 【详解】 解:∵正方形的面积为5, ∴圆的半径为, ∴点A表示的数为,点B表示的数为. 故答案为:,. 【点睛】 本题考查了实数与数轴,熟 解析:, 【分析】 根据算术平方根的定义以及数轴的定义解答即可. 【详解】 解:∵正方形的面积为5, ∴圆的半径为, ∴点A表示的数为,点B表示的数为. 故答案为:,. 【点睛】 本题考查了实数与数轴,熟记算术平方根的定义是解答本题的关键. 十五、填空题 15.(2,2),(-2,) 【分析】 直接利用某个“美丽点”到y轴的距离为2,得出x的值,进而求出y的值求出答案. 【详解】 解:∵某个“美丽点”到y轴的距离为2, ∴x=±2, ∵x+y=xy, ∴当 解析:(2,2),(-2,) 【分析】 直接利用某个“美丽点”到y轴的距离为2,得出x的值,进而求出y的值求出答案. 【详解】 解:∵某个“美丽点”到y轴的距离为2, ∴x=±2, ∵x+y=xy, ∴当x=2时, 则y+2=2y, 解得:y=2, ∴点P的坐标为(2,2), 当x=-2时, 则y-2=-2y, 解得:y=, ∴点P的坐标为(-2,), 综上所述:点P的坐标为(2,2)或(-2,). 故答案为:(2,2)或(-2,). 【点睛】 此题主要考查了点的坐标,正确分类讨论是解题关键. 十六、填空题 16.【分析】 根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可. 【详解】 解:根据动点在平面直角坐标系中按图中箭头所示方向运动 解析: 【分析】 根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可. 【详解】 解:根据动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点, 第2次接着运动到点,第3次接着运动到点, 第4次运动到点,第5次接着运动到点,, 横坐标为运动次数的2倍,经过第2021次运动后,动点的横坐标为4042, 纵坐标为2,0,1,0,每4次一轮, 经过第2021次运动后,, 故动点的纵坐标为2, 经过第2021次运动后,动点的坐标是. 故答案为:. 【点睛】 此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键. 十七、解答题 17.(1)1.2;(2) 【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值, 解析:(1)1.2;(2) 【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,然后进行求和得出答案. 试题解析:(1)原式 (2)原式 十八、解答题 18.(1)x=±;(2)x=. 【解析】 【分析】 (1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得; (2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可 解析:(1)x=±;(2)x=. 【解析】 【分析】 (1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得; (2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可得. 【详解】 解:(1)∵25x2-64=0, ∴25x2=64, 则x2=, ∴x=±; (2)∵x3-3=, ∴x3=, 则x=. 故答案为:(1)x=;(2)x=. 【点睛】 本题主要考查立方根和平方根,解题的关键是将原等式变形为x3=a或x2=a(a为常数)的形式及平方根、立方根的定义. 十九、解答题 19.;垂直的定义;同位角相等,两直线平行;;两直线平行,同位角相等;GD;同位角相等,两直线平行;;两直线平行,内错角相等;等量代换 【分析】 结合图形,根据已知证明过程,写出相关的依据即可. 【详解】 解析:;垂直的定义;同位角相等,两直线平行;;两直线平行,同位角相等;GD;同位角相等,两直线平行;;两直线平行,内错角相等;等量代换 【分析】 结合图形,根据已知证明过程,写出相关的依据即可. 【详解】 证明:证明:∵,(已知) ∴(垂直的定义) ∴(同位角相等,两直线平行) ∴(两直线平行,同位角相等) 又∵(已知) ∴(同位角相等,两直线平行) ∴(两直线平行,内错角相等) ∴(等量代换) 【点睛】 本题考查证明过程中每一步的依据,根据推理过程明白相关知识点是解题关键. 二十、解答题 20.(1),;(2)9 【分析】 (1)根据坐标的特性以及C点坐标,直接可以得出A、B的坐标 (2)利用面积的和差求解:三角形ABC的面积等于一个长方形的面积减去三个直角三角形的面积. 【详解】 解:( 解析:(1),;(2)9 【分析】 (1)根据坐标的特性以及C点坐标,直接可以得出A、B的坐标 (2)利用面积的和差求解:三角形ABC的面积等于一个长方形的面积减去三个直角三角形的面积. 【详解】 解:(1), (2) 【点睛】 本题考查了坐标上的点以及求坐标上图形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键. 二十一、解答题 21.(1)4;5;(2);3;(3)±8. 【分析】 (1)首先估算出的取值范围,即可得出结论; (2)根据 (1)的结论,得到,即可求得答案; (3)根据(2)的结论代入计算即可求得答案. 【详解】 解析:(1)4;5;(2);3;(3)±8. 【分析】 (1)首先估算出的取值范围,即可得出结论; (2)根据 (1)的结论,得到,即可求得答案; (3)根据(2)的结论代入计算即可求得答案. 【详解】 解:(1)∵16<17<25, ∴, ∴a=4,b=5. 故答案为:4;5 (2)∵, ∴, 由此:的整数部分为6,小数部分为, ∴,. 故答案为:;3 (3)当,时,代入, . ∴64的平方根为:. 【点睛】 本题考查了平方和平方根估算无理数大小应用,正确计算是解题的关键,注意平方根是一对互为相反数的两个数. 二十二、解答题 22.(1) 长是1.5m,宽是0.5m.;(2)不能. 【解析】 【分析】 (1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可. 【详解】 解: 解析:(1) 长是1.5m,宽是0.5m.;(2)不能. 【解析】 【分析】 (1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可. 【详解】 解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得: , 解得:, ∴长是1.5m,宽是0.5m. (2)∵正方形的面积为7平方米, ∴正方形的边长是米, ∵<3, ∴他不能剪出符合要求的桌布. 【点睛】 本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键. 二十三、解答题 23.(1)120°;(2)90°-x°;(3)不变,;(4)45° 【分析】 (1)由平行线的性质:两直线平行同旁内角互补可得; (2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ 解析:(1)120°;(2)90°-x°;(3)不变,;(4)45° 【分析】 (1)由平行线的性质:两直线平行同旁内角互补可得; (2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°; (3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1; (4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行线的性质可得∠A+∠ABN=90°,即可得出答案. 【详解】 解:(1)∵AM∥BN,∠A=60°, ∴∠A+∠ABN=180°, ∴∠ABN=120°; (2)∵AM∥BN, ∴∠ABN+∠A=180°, ∴∠ABN=180°-x°, ∴∠ABP+∠PBN=180°-x°, ∵BC平分∠ABP,BD平分∠PBN, ∴∠ABP=2∠CBP,∠PBN=2∠DBP, ∴2∠CBP+2∠DBP=180°-x°, ∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°; (3)不变,∠ADB:∠APB=. ∵AM∥BN, ∴∠APB=∠PBN,∠ADB=∠DBN, ∵BD平分∠PBN, ∴∠PBN=2∠DBN, ∴∠APB:∠ADB=2:1, ∴∠ADB:∠APB=; (4)∵AM∥BN, ∴∠ACB=∠CBN, 当∠ACB=∠ABD时,则有∠CBN=∠ABD, ∴∠ABC+∠CBD=∠CBD+∠DBN, ∴∠ABC=∠DBN, ∵BC平分∠ABP,BD平分∠PBN, ∴∠ABP=2∠ABC,∠PBN=2∠DBN, ∴∠ABP=∠PBN=2∠DBN=∠ABN, ∵AM∥BN, ∴∠A+∠ABN=180°, ∴∠A+∠ABN=90°, ∴∠A+2∠DBN=90°, ∴∠A+∠DBN=(∠A+2∠DBN)=45°. 【点睛】 本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键. 二十四、解答题 24.(1)见解析;(2);见解析;(3) 【分析】 (1)过点作,根据平行线性质可得; (2)由(1)结论可得:,,再根据角平分线性质可得; (3)由(2)结论可得:. 【详解】 (1)证明:如图1,过 解析:(1)见解析;(2);见解析;(3) 【分析】 (1)过点作,根据平行线性质可得; (2)由(1)结论可得:,,再根据角平分线性质可得; (3)由(2)结论可得:. 【详解】 (1)证明:如图1,过点作, ∵, ∴, ∴,, 又∵, ∴; (2)如图2, 由(1)可得:,, ∵的平分线与的平分线相交于点, ∴ , ∴; (3)由(2)可得:,, ∵,, ∴ , ∴; 【点睛】 考核知识点:平行线性质和判定的综合运用.熟练运用平行线性质和判定是关键. 二十五、解答题 25.(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3) 【分析】 (1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A 解析:(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3) 【分析】 (1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解; ②分别过E、F作EN//AB,FM//AB,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解; (2)根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED与∠BFD之间的数量关系; (3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得. 【详解】 (1)①过F作FG//AB,如图: ∵AB∥CD,FG∥AB, ∴CD∥FG, ∴∠ABF=∠BFG,∠CDF=∠DFG, ∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF, ∵BF平分∠ABE, ∴∠ABE=2∠ABF, ∵DF平分∠CDE, ∴∠CDE=2∠CDF, ∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140, ∴∠ABF+∠CDF=70, ∴∠DFB=∠ABF+∠CDF=70, 故答案为:70; ②∠F=∠BED, 理由是:分别过E、F作EN//AB,FM//AB, ∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE, ∴∠BED=∠ABE+∠CDE, ∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线, ∴∠ABE=2∠ABF,∠CDE=2∠CDF, 即∠BED=2(∠ABF+∠CDF); 同理,由FM//AB,可得∠F=∠ABF+∠CDF, ∴∠F=∠BED; (3)2∠F+∠BED=360°. 如图,过点E作EG∥AB, 则∠BEG+∠ABE=180°, ∵AB∥CD,EG∥AB, ∴CD∥EG, ∴∠DEG+∠CDE=180°, ∴∠BEG+∠DEG=360°-(∠ABE+∠CDE), 即∠BED=360°-(∠ABE+∠CDE), ∵BF平分∠ABE, ∴∠ABE=2∠ABF, ∵DF平分∠CDE, ∴∠CDE=2∠CDF, ∠BED=360°-2(∠ABF+∠CDF), 由①得:∠BFD=∠ABF+∠CDF, ∴∠BED=360°-2∠BFD, 即2∠F+∠BED=360°; (3)∵,∠F=α, ∴, 解得:, 如图, ∵∠CDE 为锐角,DF是∠CDE的角平分线, ∴∠CDH=∠DHB, ∴∠F∠DHB,即, ∴, 故答案为:. 【点睛】 本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版七 年级 下册 数学 期末 复习题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文