2022年人教版中学七7年级下册数学期末质量检测题(含答案).doc
《2022年人教版中学七7年级下册数学期末质量检测题(含答案).doc》由会员分享,可在线阅读,更多相关《2022年人教版中学七7年级下册数学期末质量检测题(含答案).doc(25页珍藏版)》请在咨信网上搜索。
2022年人教版中学七7年级下册数学期末质量检测题(含答案) 一、选择题 1.的平方根是() A.- B. C. D. 2.下列各组图形,可经平移变换,由一个图形得到另一个图形的是( ) A. B. C. D. 3.已知点P的坐标为P(3,﹣5),则点P在第( )象限. A.一 B.二 C.三 D.四 4.下列说法中,真命题的个数为( ) ①两条平行线被第三条直线所截,同位角相等; ②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行; ③过一点有且只有一条直线与这条直线平行; ④点到直线的距离是这一点到直线的垂线段; A.1个 B.2个 C.3个 D.4个 5.如图,直线,点E,F分别在直线.AB和直线CD上,点P在两条平行线之间,和的角平分线交于点H,已知,则的度数为( ) A. B. C. D. 6.下列说法错误的是( ) A.的平方根是 B.的值是 C.的立方根是 D.的值是 7.如图,已知,点在上,连接,作平分交于点,,则的度数为( ). A. B. C. D. 8.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则运动到第2021秒时,点P所处位置的坐标是( ) A.(2020,﹣1) B.(2021,0) C.(2021,1) D.(2022,0) 九、填空题 9.正方形木块的面积为,则它的周长为____________. 十、填空题 10.在平面直角坐标系中,点A(2,1)关于x轴对称的点的坐标是_____. 十一、填空题 11.若点A(9﹣a,3﹣a)在第二、四象限的角平分线上,则A点的坐标为_____. 十二、填空题 12.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=_____°. 十三、填空题 13.如图,在△ABC中,将∠B、∠C按如图所示的方式折叠,点B、C均落于边BC上的点Q处,MN、EF为折痕,若∠A=82°,则∠MQE= _________ 十四、填空题 14.如图,数轴上,两点表示的数分别为和4.1,则,两点之间表示整数的点共有____个. 十五、填空题 15.已知点A(0,0),|AB|=5,点B和点A在同一坐标轴上,那么点B的坐标是________. 十六、填空题 16.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→⋯,且每秒移动一个单位,那么粒子运动到点(3,0)时经过了__________秒;2014秒时这个粒子所在的位置的坐标为_____________. 十七、解答题 17.(1)计算: (2)解方程: 十八、解答题 18.求下列各式中实数的x值. (1)25x2﹣36=0 (2)|x+2|=π 十九、解答题 19.完成下列证明: 已知:如图,△ABC中,AD平分∠BAC,E为线段BA延长线上一点,G为BC边上一点,连接EG交AC于点H,且∠ADC+∠EGD=180°,过点D作DF∥AC交EG的延长线于点F.求证:∠E=∠F. 证明:∵AD平分∠BAC(已知), ∴∠1=∠2( ), 又∵∠ADC+∠EGD=180°(已知), ∴EF∥ (同旁内角互补,两直线平行). ∴∠1=∠E(两直线平行,同位角相等),∠2=∠3( ). ∴∠E= (等量代换). 又∵AC∥DF(已知), ∴∠3=∠F( ). ∴∠E=∠F(等量代换). 二十、解答题 20.如图,在正方形网格中,三角形的三个顶点和点都在格点上(正方形网格的交点称为格点).点,,的坐标分别为,,.平移三角形,使点平移到点,点,分别是,的对应点. (1)请画出平移后的三角形,并分别写出点E、F的坐标; (2)求的面积; (3)在轴上是否存在一点,使得,若存在,请求出的坐标,若不存在,请说明理由. 二十一、解答题 21.已知某正数的两个不同的平方根是3a﹣14和a+2;b+11的立方根为﹣3;c是的整数部分; (1)求a+b+c的值; (2)求3a﹣b+c的平方根. 二十二、解答题 22.(1)若一圆的面积与这个正方形的面积都是,设圆的周长为,正方形的周长为,则______.(填“=”或“<”或“>”号) (2)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由. 二十三、解答题 23.已知:直线AB∥CD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN. (1)如图1,延长HN至G,∠BMH和∠GND的角平分线相交于点E.求证:2∠MEN﹣∠MHN=180°; (2)如图2,∠BMH和∠HND的角平分线相交于点E. ①请直接写出∠MEN与∠MHN的数量关系: ; ②作MP平分∠AMH,NQ∥MP交ME的延长线于点Q,若∠H=140°,求∠ENQ的度数.(可直接运用①中的结论) 二十四、解答题 24.[感知]如图①,,求的度数. 小乐想到了以下方法,请帮忙完成推理过程. 解:(1)如图①,过点P作. ∴(_____________), ∴, ∴________(平行于同一条直线的两直线平行), ∴_____________(两直线平行,同旁内角互补), ∴, ∴, ∴,即. [探究]如图②,,求的度数; [应用](1)如图③,在[探究]的条件下,的平分线和的平分线交于点G,则的度数是_________º. (2)已知直线,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接,若平分平分,且所在的直线交于点E.设,请直接写出的度数(用含的式子表示). 二十五、解答题 25.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数. 小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移: (1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由; (2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据平方根的定义(如果一个数的平方等于,那么这个数叫做的平方根)即可得. 【详解】 解:因为, 所以的平方根是, 故选:C. 【点睛】 本题考查了平方根,熟练掌握平方根的定义是解题关键. 2.B 【分析】 根据平移的性质,结合图形对选项进行一一分析,选出正确答案. 【详解】 解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到; B、图形的形状和大小没有变化,符合平移的性质,属于 解析:B 【分析】 根据平移的性质,结合图形对选项进行一一分析,选出正确答案. 【详解】 解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到; B、图形的形状和大小没有变化,符合平移的性质,属于平移得到; C、图形由轴对称得到,不属于平移得到; D、图形的方向发生变化,不符合平移的性质,不属于平移得到; 故选:B. 【点睛】 本题考查平移的基本性质,平移不改变图形的形状、大小和方向.注意结合图形解题的思想. 3.D 【分析】 直接利用第四象限内的点横坐标大于0,纵坐标小于0解答即可. 【详解】 解:∵点P的坐标为P(3,﹣5), ∴点P在第四象限. 故选D. 【点睛】 本题主要考查了点的坐标,各象限坐标特点如下:第一象限(+,+),第二象限(-,+)第三象限(-,-)第一象限(+,-). 4.B 【分析】 根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可 【详解】 ①两条平行线被第三条直线所截,同位角相等,故①是真命题; ②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题; ③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题, ④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题, 故真命题是①②, 故选B 【点睛】 本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键. 5.D 【分析】 过点P作PQ∥AB,过点H作HG∥AB,根据平行线的性质得到∠EPF=∠BEP+∠DFP=78°,结合角平分线的定义得到∠AEH+∠CFH,同理可得∠EHF=∠AEH+∠CFH. 【详解】 解:过点P作PQ∥AB,过点H作HG∥AB, , 则PQ∥CD,HG∥CD, ∴∠BEP=∠QPE,∠DFP=∠QPF, ∵∠EPF=∠QPE+∠QPF=78°, ∴∠BEP+∠DFP=78°, ∴∠AEP+∠CFP=360°-78°=282°, ∵EH平分∠AEP,HF平分∠CFP, ∴∠AEH+∠CFH=282°÷2=141°, 同理可得:∠EHF=∠AEH+∠CFH=141°, 故选D. 【点睛】 本题主要考查了平行线的性质,解决问题的关键是作平行线构造内错角,利用两直线平行,内错角相等得出结论. 6.B 【分析】 根据算术平方根与平方根、立方根的性质逐项判断即可得. 【详解】 A、的平方根是,此项说法正确; B、的值是4,此项说法错误; C、的立方根是,此项说法正确; D、的值是,此项说法正确; 故选:B. 【点睛】 本题考查了算术平方根与平方根、立方根的性质,熟练掌握算术平方根与平方根、立方根的性质是解题关键. 7.A 【分析】 由平行线的性质可得,再由角平分线性质可得,利用邻补角可求的度数. 【详解】 解:,, , 平分交于点, , . 故选:A. 【点睛】 本题主要考查平行线的性质及角平分线的定义,解答的关键是熟记并灵活运用平行线的性质. 8.C 【分析】 根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标. 【详解】 半径为1个单位长度的半圆的周长为:, ∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度 解析:C 【分析】 根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标. 【详解】 半径为1个单位长度的半圆的周长为:, ∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度, ∴点P1秒走个半圆, 当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1), 当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0), 当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,-1), 当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0), 当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1), 当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0), …, 可得移动4次图象完成一个循环, ∵2021÷4=505…1, ∴点P运动到2021秒时的坐标是(2021,1), 故选:C. 【点睛】 此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题. 九、填空题 9.【分析】 设正方形的边长为xm,则x2=5,根据平方根的定义求解可得. 【详解】 设正方形的边长为xm, 则x2=5, 所以x=或x=−(舍), 即正方形的边长为m, 所以周长为4cm 故答案为: 解析: 【分析】 设正方形的边长为xm,则x2=5,根据平方根的定义求解可得. 【详解】 设正方形的边长为xm, 则x2=5, 所以x=或x=−(舍), 即正方形的边长为m, 所以周长为4cm 故答案为:4. 【点睛】 本题主要考查算术平方根,解题的关键是掌握算术平方根的定义. 十、填空题 10.(2,﹣1) 【分析】 平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标 解析:(2,﹣1) 【分析】 平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标变成相反数. 【详解】 解:点(2,1)关于x轴对称的点的坐标是(2,﹣1), 故答案为(2,﹣1). 【点睛】 熟练掌握关于坐标轴对称的点的坐标特点是本题的解题关键. 关于x轴的对称点,横坐标不变,纵坐标变成相反数.关于y轴的对称点,纵坐标不变,横坐标变成相反数. 十一、填空题 11.(3,﹣3). 【分析】 根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a=0,然后解方程即可. 【详解】 ∵点P在第二、四象限角平分线上, ∴9﹣a+3﹣a=0, ∴a=6, ∴A点的坐标 解析:(3,﹣3). 【分析】 根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a=0,然后解方程即可. 【详解】 ∵点P在第二、四象限角平分线上, ∴9﹣a+3﹣a=0, ∴a=6, ∴A点的坐标为(3,﹣3). 故答案为:(3,﹣3). 【点睛】 本题考查了坐标与图形性质:解题的关键是利用坐标特征判断线段与坐标轴的位置关系;记住坐标轴和第一、三象限角平分线、第二、四象限角平分线上点的坐标特征. 十二、填空题 12.70 【分析】 根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C. 【详解】 ∵DE∥AC, ∴∠C=∠1=70°, ∵AF∥BC, ∴∠2=∠C=70°. 故答 解析:70 【分析】 根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C. 【详解】 ∵DE∥AC, ∴∠C=∠1=70°, ∵AF∥BC, ∴∠2=∠C=70°. 故答案为70. 【点睛】 本题考查了平行线的性质,熟记性质并准确识图是解题的关键. 十三、填空题 13.【分析】 根据折叠的性质得到,,再根据的度数即可求出的度数,再根据求解即可. 【详解】 解:∵折叠, ∴,, ∵, ∴, ∴. 故答案是:. 【点睛】 本题考查折叠问题,解题的关键是掌握折叠的性质 解析: 【分析】 根据折叠的性质得到,,再根据的度数即可求出的度数,再根据求解即可. 【详解】 解:∵折叠, ∴,, ∵, ∴, ∴. 故答案是:. 【点睛】 本题考查折叠问题,解题的关键是掌握折叠的性质. 十四、填空题 14.3 【分析】 根据无理数的估算、结合数轴求解即可 【详解】 解: ∴ ∴ ∴在到4.1之间由2,3,4这三个整数 故答案为:3. 【点睛】 本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是 解析:3 【分析】 根据无理数的估算、结合数轴求解即可 【详解】 解: ∴ ∴ ∴在到4.1之间由2,3,4这三个整数 故答案为:3. 【点睛】 本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解题关键. 十五、填空题 15.(5,0)或(﹣5,0)或(0,5)或(0,﹣5) 【分析】 根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案. 【详解】 解 解析:(5,0)或(﹣5,0)或(0,5)或(0,﹣5) 【分析】 根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案. 【详解】 解:∵点A(0,0),点B和点A在同一坐标轴上, ∴点B在x轴上或在y轴上, ∵|AB|=5, ∴当点B在x轴上时,点B的坐标为(5,0)或(﹣5,0), 当点B在y轴上时,点B的坐标为(0,5)或(0,﹣5); 故答案为:(5,0)或(﹣5,0)或(0,5)或(0,﹣5). 【点睛】 本题考查了点的坐标,解决本题的关键是要注意坐标轴上到一点距离相等的点有两个,以防遗漏. 十六、填空题 16.(10,44) 【分析】 该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4 解析:(10,44) 【分析】 该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4=20,…, 【详解】 解:由题意,粒子运动到点(3,0)时经过了15秒, 设粒子运动到A1,A2,…,An时所用的间分别为a1,a2,…,an, 则a1=2,a2=6,a3=12,a4=20,…, a2-a1=2×2, a3-a2=2×3, a4-a3=2×4, …, an-an-1=2n, 各式相加得: an-a1=2(2+3+4+…+n)=n2+n-2, ∴an=n(n+1). ∵44×45=1980,故运动了1980秒时它到点A44(44,44); 又由运动规律知:A1,A2,…,An中,奇数点处向下运动,偶数点处向左运动. 故达到A44(44,44)时向左运动34秒到达点(10,44), 即运动了2014秒.所求点应为(10,44). 故答案为:(10,44). 故答案为:15,(10,44). 【点睛】 本题考查了平面直角坐标系内点的运动规律,分析粒子在第一象限的运动规律得到递推关系式an-an-1=2n是本题的突破口,本题对运动规律的探索可知知:A1,A2,…An中,奇数点处向下运动,偶数点处向左运动,找到这个规律是解题的关键. 十七、解答题 17.(1);(2) 【分析】 (1)根据实数的运算法则直接计算即可, (2)利用立方根的含义求解再求解即可. 【详解】 (1)原式= (2)解: 【点睛】 本题考查的是实数的运算,求一个数的立方根 解析:(1);(2) 【分析】 (1)根据实数的运算法则直接计算即可, (2)利用立方根的含义求解再求解即可. 【详解】 (1)原式= (2)解: 【点睛】 本题考查的是实数的运算,求一个数的立方根,掌握求解的方法是解题关键. 十八、解答题 18.(1)x=±;(2)x=﹣2﹣π或x=﹣2+π 【分析】 (1)先移项,再将两边都除以25,再开平方即可求解; (2)根据绝对值的性质即可求解. 【详解】 解:(1)25x2﹣36=0, 25x2= 解析:(1)x=±;(2)x=﹣2﹣π或x=﹣2+π 【分析】 (1)先移项,再将两边都除以25,再开平方即可求解; (2)根据绝对值的性质即可求解. 【详解】 解:(1)25x2﹣36=0, 25x2=36, x2=, x=±; (2)|x+2|=π, x+2=±π, x=﹣2﹣π或x=﹣2+π. 【点睛】 本题主要考查了绝对值及平方根,注意一个正数的平方根有两个,它们互为相反数. 十九、解答题 19.角平分线的定义;AD;两直线平行,同位角相等;∠3;两直线平行,内错角相等 【分析】 先根据角平分线的定义求得∠1=∠2,再根据平行线的判定证得EF∥AD,运用平行线的性质和等量代换得到∠E=∠3, 解析:角平分线的定义;AD;两直线平行,同位角相等;∠3;两直线平行,内错角相等 【分析】 先根据角平分线的定义求得∠1=∠2,再根据平行线的判定证得EF∥AD,运用平行线的性质和等量代换得到∠E=∠3,继而由AC∥DF证出∠3=∠F,从而得到最后结论. 【详解】 证明:∵AD平分∠BAC(已知), ∴∠1=∠2(角平分线的定义), 又∵∠ADC+∠EGD=180°(已知), ∴EF∥AD(同旁内角互补,两直线平行). ∴∠1=∠E(两直线平行,同位角相等),∠2=∠3(两直线平行,同位角相等). ∴∠E=∠3(等量代换). 又∵AC∥DF(已知), ∴∠3=∠F(两直线平行,内错角相等). ∴∠E=∠F(等量代换). 故答案为:角平分线的定义;AD;两直线平行,同位角相等;∠3;两直线平行,内错角相等. 【点睛】 本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键. 二十、解答题 20.(1)画图见解析,E(2,-2),F(6,-1);(2)7;(3)(10,0)或(-18,0) 【分析】 (1)根据平移的性质即可画出平移后的三角形DEF,并写出点E,F的坐标; (2)利用割补法计 解析:(1)画图见解析,E(2,-2),F(6,-1);(2)7;(3)(10,0)或(-18,0) 【分析】 (1)根据平移的性质即可画出平移后的三角形DEF,并写出点E,F的坐标; (2)利用割补法计算即可; (3)根据△ABC的面积得到△BCM的面积,从而计算出BM,可得点M的坐标; 【详解】 解:(1)如图,三角形DEF即为所求,点E(2,-2),F(6,-1); (2)S△ABC==7; (3)∵,点C的坐标为(0,1), ∴BM=, ∵B(-4,0), ∴点M的坐标为(10,0)或(-18,0). 【点睛】 本题考查了作图-平移变换,三角形的面积,解决本题的关键是掌握平移的性质. 二十一、解答题 21.(1)-33;(2) 【分析】 (1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值; (2)分别将a,b,c的值代入3a-b+c,可 解析:(1)-33;(2) 【分析】 (1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值; (2)分别将a,b,c的值代入3a-b+c,可解答. 【详解】 解:(1)∵某正数的两个平方根分别是3a-14和a+2, ∴(3a-14)+(a+2)=0, ∴a=3, 又∵b+11的立方根为-3, ∴b+11=(-3)3=-27, ∴b=-38, 又∵, ∴, 又∵c是的整数部分, ∴c=2; ∴a+b+c=3+(-38)+2=-33; (2)当a=3,b=-38,c=2时, 3a-b+c=3×3-(-38)+2=49, ∴3a-b+c的平方根是±7. 【点睛】 本题主要考查了立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义. 二十二、解答题 22.(1)<;(2)不能,理由见解析 【分析】 (1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案; (2)设裁出的长方形的长为,宽为,由题意得关于 解析:(1)<;(2)不能,理由见解析 【分析】 (1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案; (2)设裁出的长方形的长为,宽为,由题意得关于的方程,解得的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案. 【详解】 解:(1)圆的面积与正方形的面积都是, 圆的半径为,正方形的边长为, ,, , , . (2)不能裁出长和宽之比为的长方形,理由如下: 设裁出的长方形的长为,宽为,由题意得: , 解得或(不合题意,舍去), 长为,宽为, 正方形的面积为, 正方形的边长为, , 不能裁出长和宽之比为的长方形. 【点睛】 本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键. 二十三、解答题 23.(1)见解析;(2)①2∠MEN+∠MHN=360°;②20° 【分析】 (1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即 解析:(1)见解析;(2)①2∠MEN+∠MHN=360°;②20° 【分析】 (1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证. (2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°. ②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数. 【详解】 解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1 ∵EP∥AB且ME平分∠BMH, ∴∠MEQ=∠BME=∠BMH. ∵EP∥AB,AB∥CD, ∴EP∥CD,又NE平分∠GND, ∴∠QEN=∠DNE=∠GND.(两直线平行,内错角相等) ∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND). ∴2∠MEN=∠BMH+∠GND. ∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH. ∴∠DHN=∠BMH﹣∠MHN. ∴∠GND+∠BMH﹣∠MHN=180°, 即2∠MEN﹣∠MHN=180°. (2)①:过点H作GI∥AB.如答图2 由(1)可得∠MEN=(∠BMH+∠HND), 由图可知∠MHN=∠MHI+∠NHI, ∵GI∥AB, ∴∠AMH=∠MHI=180°﹣∠BMH, ∵GI∥AB,AB∥CD, ∴GI∥CD. ∴∠HNC=∠NHI=180°﹣∠HND. ∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND). 又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN, ∴∠BMH+∠HND=360°﹣∠MHN. 即2∠MEN+∠MHN=360°. 故答案为:2∠MEN+∠MHN=360°. ②:由①的结论得2∠MEN+∠MHN=360°, ∵∠H=∠MHN=140°, ∴2∠MEN=360°﹣140°=220°. ∴∠MEN=110°. 过点H作HT∥MP.如答图2 ∵MP∥NQ, ∴HT∥NQ. ∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补). ∵MP平分∠AMH, ∴∠PMH=∠AMH=(180°﹣∠BMH). ∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH. ∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°. ∵∠ENH=∠HND. ∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°. ∴∠ENQ+(HND+∠BMH)=130°. ∴∠ENQ+∠MEN=130°. ∴∠ENQ=130°﹣110°=20°. 【点睛】 本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强. 二十四、解答题 24.[感知]见解析;[探究]70°;[应用](1)35;(2)或 【分析】 [感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果; 解析:[感知]见解析;[探究]70°;[应用](1)35;(2)或 【分析】 [感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果; [探究]过点P作PM∥AB,根据AB∥CD,PM∥CD,进而根据平行线的性质即可求∠EPF的度数; [应用](1)如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数; (2)画出图形,分点A在点B左侧和点A在点B右侧,两种情况,分别求解. 【详解】 解:[感知]如图①,过点P作PM∥AB, ∴∠1=∠AEP=40°(两直线平行,内错角相等) ∵AB∥CD, ∴PM∥CD(平行于同一条直线的两直线平行), ∴∠2+∠PFD=180°(两直线平行,同旁内角互补), ∴∠PFD=130°(已知), ∴∠2=180°-130°=50°, ∴∠1+∠2=40°+50°=90°,即∠EPF=90°; [探究]如图②,过点P作PM∥AB, ∴∠MPE=∠AEP=50°, ∵AB∥CD, ∴PM∥CD, ∴∠PFC=∠MPF=120°, ∴∠EPF=∠MPF-∠MPE=120°-50°=70°; [应用](1)如图③所示, ∵EG是∠PEA的平分线,FG是∠PFC的平分线, ∴∠AEG=∠AEP=25°,∠GFC=∠PFC=60°, 过点G作GM∥AB, ∴∠MGE=∠AEG=25°(两直线平行,内错角相等) ∵AB∥CD(已知), ∴GM∥CD(平行于同一条直线的两直线平行), ∴∠GFC=∠MGF=60°(两直线平行,内错角相等). ∴∠G=∠MGF-∠MGE=60°-25°=35°. 故答案为:35. (2)当点A在点B左侧时, 如图,故点E作EF∥AB,则EF∥CD, ∴∠ABE=∠BEF,∠CDE=∠DEF, ∵平分平分,, ∴∠ABE=∠BEF=,∠CDE=∠DEF=, ∴∠BED=∠BEF+∠DEF=; 当点A在点B右侧时, 如图,故点E作EF∥AB,则EF∥CD, ∴∠DEF=∠CDE,∠ABG=∠BEF, ∵平分平分,, ∴∠DEF=∠CDE=,∠ABG=∠BEF=, ∴∠BED=∠DEF-∠BEF=; 综上:∠BED的度数为或. 【点睛】 本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质. 二十五、解答题 25.(1),理由见解析; (2)当点P在B、O两点之间时,; 当点P在射线AM上时,. 【分析】 (1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C 解析:(1),理由见解析; (2)当点P在B、O两点之间时,; 当点P在射线AM上时,. 【分析】 (1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案; (2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论. 【详解】 解:(1)∠CPD=∠α+∠β,理由如下: 如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠DPE+∠CPE=∠α+∠β. (2)当点P在A、M两点之间时,∠CPD=∠β-∠α. 理由:如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠CPE-∠DPE=∠β-∠α; 当点P在B、O两点之间时,∠CPD=∠α-∠β. 理由:如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠DPE-∠CPE=∠α-∠β. 【点睛】 本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版 中学 年级 下册 数学 期末 质量 检测 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文