人教版中学七年级数学下册期末质量监测卷及答案.doc
《人教版中学七年级数学下册期末质量监测卷及答案.doc》由会员分享,可在线阅读,更多相关《人教版中学七年级数学下册期末质量监测卷及答案.doc(23页珍藏版)》请在咨信网上搜索。
人教版中学七年级数学下册期末质量监测卷及答案 一、选择题 1.的算术平方根为() A. B. C. D. 2.下列各组图形可以通过平移互相得到的是( ) A. B. C. D. 3.平面直角坐标系中,点M(1,﹣5)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列语句中,是假命题的是( ) A.有理数和无理数统称实数 B.在同一平面内,过一点有且只有一条直线与已知直线垂直 C.在同一平面内,垂直于同一条直线的两条直线互相平行 D.两个锐角的和是锐角 5.如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内CD上方的一点(点E不在直线AB,CD,AC上),设∠BAE=,∠DCE=.下列各式:①+,②﹣,③﹣,④180°﹣﹣,⑤360°﹣﹣中,∠AEC的度数可能是( ) A.①②③ B.①②④⑤ C.①②③⑤ D.①②③④⑤ 6.若,,,则a,b,c的大小关系是( ) A. B. C. D. 7.如图,AB∥CD,直线EF分别交AB、CD于点E、F,FH平分∠EFD,若∠1=110°,则∠2的度数为( ) A.45° B.40° C.55° D.35° 8.在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的幸运点.已知点A1的幸运点为A2,点A2的幸运点为A3,点A3的幸运点为A4,…,这样依次得到点A1,A2,A3,…,An.若点A1的坐标为(3,1),则点A2021的坐标为( ) A.(﹣3,1) B.(0,﹣2) C.(3,1) D.(0,4) 九、填空题 9.已知,则x+y=___________ 十、填空题 10.点关于轴的对称点的坐标为______. 十一、填空题 11.如图,是的两条角平分线,,则的度数为_________. 十二、填空题 12.如图,把一把直尺放在含度角的直角三角板上,量得,则的度数是_______. 十三、填空题 13.如图,将长方形纸片沿折叠,交于点E,得到图1,再将纸片沿折叠.得到图2,若,则图2中的为_______ 十四、填空题 14.实数a、b在数轴上所对应的点如图所示,则|﹣b|+|a+|+的值_____. 十五、填空题 15.如果点P(m+3,m﹣2)在x轴上,那么m=_____. 十六、填空题 16.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A1,第2次移动到A2,…第n次移动到An,则A2021的坐标是___________. 十七、解答题 17.计算:(1) (2) 十八、解答题 18.求下列各式中实数的x值. (1)25x2﹣36=0 (2)|x+2|=π 十九、解答题 19.完成下列证明: 已知:如图,△ABC中,AD平分∠BAC,E为线段BA延长线上一点,G为BC边上一点,连接EG交AC于点H,且∠ADC+∠EGD=180°,过点D作DF∥AC交EG的延长线于点F.求证:∠E=∠F. 证明:∵AD平分∠BAC(已知), ∴∠1=∠2( ), 又∵∠ADC+∠EGD=180°(已知), ∴EF∥ (同旁内角互补,两直线平行). ∴∠1=∠E(两直线平行,同位角相等),∠2=∠3( ). ∴∠E= (等量代换). 又∵AC∥DF(已知), ∴∠3=∠F( ). ∴∠E=∠F(等量代换). 二十、解答题 20.如图,在平面直角坐标系中,三角形ABC经过平移得到三角形A1B1C1,结合图形,完成下列问题: (1)三角形ABC先向左平移 个单位,再向 平移 个单位得到三角形A1B1C1. (2)三角形ABC内有一点P(,),则在三角形A1B1C1内部的对应点P1的坐标是 . (3)三角形ABC的面积是 . 二十一、解答题 21.实数在数轴上的对应点的位置如图所示,. (1)求的值; (2)已知的小数部分是,的小数部分是,求的平方根. 二十二、解答题 22.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长. 二十三、解答题 23.已知:如图(1)直线AB、CD被直线MN所截,∠1=∠2. (1)求证:AB//CD; (2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分∠BPE,QF平分∠EQD,则∠PEQ和∠PFQ之间有什么数量关系,请直接写出你的结论; (3)如图(3),在(2)的条件下,过P点作PH//EQ交CD于点H,连接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度数. 二十四、解答题 24.已知:和同一平面内的点. (1)如图1,点在边上,过作交于,交于.根据题意,在图1中补全图形,请写出与的数量关系,并说明理由; (2)如图2,点在的延长线上,,.请判断与的位置关系,并说明理由. (3)如图3,点是外部的一个动点.过作交直线于,交直线于,直接写出与的数量关系,并在图3中补全图形. 二十五、解答题 25.如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在内的点处. (1)若,________. (2)如图①,若各个角度不确定,试猜想,,之间的数量关系,直接写出结论. ②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,,,之间又存在什么关系?请说明. (3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据算术平方根的定义求解. 【详解】 解:因为, 所以的算术平方根为. 故选C. 【点睛】 本题主要考查算术平方根的定义,解决本题的关键是要熟练掌握算术平方根的定义. 2.B 【分析】 根据平移的定义逐项分析判断即可. 【详解】 解:A、不能通过平移得到,故本选项错误; B、能通过平移得到,故本选项正确; C、不能通过平移得到,故本选项错误; D、不能通过平移得到,故 解析:B 【分析】 根据平移的定义逐项分析判断即可. 【详解】 解:A、不能通过平移得到,故本选项错误; B、能通过平移得到,故本选项正确; C、不能通过平移得到,故本选项错误; D、不能通过平移得到,故本选项错误. 故选:B. 【点睛】 本题考查了图形的平移,正确掌握平移的定义和性质是解题关键. 3.D 【分析】 根据各个象限点坐标的符号特点进行判断即可得到答案. 【详解】 解:∵1>0,-5<0, ∴点M(1,-5)在第四象限. 故选D. 【点睛】 本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.D 【分析】 根据实数的分类,垂直的性质,平行线的判定,锐角的定义逐项分析即可 【详解】 A. 有理数和无理数统称实数,正确,是真命题,不符合题意; B. 在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,不符合题意; C. 在同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意; D. 两个锐角的和不一定是锐角,例如,故D选项是假命题,符合题意 故选D 【点睛】 本题考查了真假命题的判定,实数的分类,垂直的性质,平行线的判定,锐角的定义,掌握相关性质定理是解题的关键. 5.C 【分析】 根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可. 【详解】 解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=, ∵∠AOC=∠BAE1+∠AE1C, ∴∠AE1C=﹣. (2)如图2,过E2作AB平行线,则由AB∥CD, 可得∠1=∠BAE2=,∠2=∠DCE2=, ∴∠AE2C=+. (3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=, ∵∠BAE3=∠BOE3+∠AE3C, ∴∠AE3C=﹣. (4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°, ∴∠AE4C=360°﹣﹣. 综上所述,∠AEC的度数可能是﹣,+,﹣,360°﹣﹣. 故选:C. 【点睛】 本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等. 6.D 【分析】 根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案. 【详解】 解:∵,,, ∴, 故选:D. 【点睛】 本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简. 7.D 【分析】 根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补求出∠DFE,然后根据角平分线的定义求出∠DFH,再根据两直线平行,内错角相等解答. 【详解】 解:∵∠1=110°, ∴∠3=∠1=110°, ∵AB∥CD, ∴∠DFE=180°-∠3=180°-110°=70°, ∵HF平分∠EFD, ∴∠DFH=∠DFE=×70°=35°, ∵AB∥CD, ∴∠2=∠DFH=35°. 故选:D. 【点睛】 本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键. 8.C 【分析】 根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:∵A1的坐标为(3,1), ∴ 解析:C 【分析】 根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:∵A1的坐标为(3,1), ∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1), …, 依此类推,每4个点为一个循环组依次循环, ∵2021÷4=505•••1, ∴点A2021的坐标与A1的坐标相同,为(3,1). 故选:C. 【点睛】 本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键. 九、填空题 9.-1 【解析】 【分析】 根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解. 【详解】 解:由题意得,x-2=0,x2-3y-13=0, 解得x=2,y=-3, 所以,x+y=2+ 解析:-1 【解析】 【分析】 根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解. 【详解】 解:由题意得,x-2=0,x2-3y-13=0, 解得x=2,y=-3, 所以,x+y=2+(-3)=-1. 故答案为:-1. 【点睛】 本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0. 十、填空题 10.【分析】 关于y轴对称的点,纵坐标相同,横坐标互为相反数. 【详解】 ∵关于y轴对称的点,纵坐标相同,横坐标互为相反数 ∴点关于y轴的对称点的坐标为. 故答案为: 【点睛】 考核知识点:轴对称与点 解析: 【分析】 关于y轴对称的点,纵坐标相同,横坐标互为相反数. 【详解】 ∵关于y轴对称的点,纵坐标相同,横坐标互为相反数 ∴点关于y轴的对称点的坐标为. 故答案为: 【点睛】 考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键. 十一、填空题 11.140°. 【分析】 △ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO和CO分别是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解. 【详 解析:140°. 【分析】 △ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO和CO分别是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解. 【详解】 △ABC中,∠ABC+∠ACB=180°−∠A=180°−100°=80°, ∵BO、CO是∠ABC,∠ACB的两条角平分线. ∴∠OBC=∠ABC,∠OCB=∠ACB, ∴∠OBC+∠OCB=(∠ABC+∠ACB)=40°, 在△OBC中,∠BOC=180°−(∠OBC+∠OCB)=140°. 故填:140°. 【点睛】 本题主要考查了三角形的内角和定理,以及三角形的角平分线的定义. 十二、填空题 12.【分析】 由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案. 【详解】 已知可知 直尺的两边平行 故答案为:114° 【点睛】 本题考查了平行线的性质,三角形的外角性质,掌握三 解析: 【分析】 由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案. 【详解】 已知可知 直尺的两边平行 故答案为:114° 【点睛】 本题考查了平行线的性质,三角形的外角性质,掌握三角形的外角性质是解题的关键. 十三、填空题 13.126° 【分析】 在图1中,求出∠BCE,根据折叠的性质和外角的性质得到∠EDG,在图2中结合折叠的性质,利用∠CDG=∠EDG-∠CDE可得结果. 【详解】 解:在图1中,∠AEC=36°, ∵ 解析:126° 【分析】 在图1中,求出∠BCE,根据折叠的性质和外角的性质得到∠EDG,在图2中结合折叠的性质,利用∠CDG=∠EDG-∠CDE可得结果. 【详解】 解:在图1中,∠AEC=36°, ∵AD∥BC, ∴∠BCE=180°-∠AEC=144°, 由折叠可知:∠ECD=(180°-144°)÷2=18°, ∴∠CDE=∠AEC-∠ECD=18°, ∵∠DEF=∠AEC=36°, ∴∠EDG=180°-36°=144°, 在图2中,∠CDG=∠EDG-∠CDE=126°, 故答案为:126°. 【点睛】 本题考查了平行线的性质,折叠问题以及三角形的外角性质,利用三角形的外角性质,找出∠EDG的度数是解题的关键. 十四、填空题 14.﹣2a﹣b 【分析】 直接利用数轴结合绝对值以及平方根的性质化简得出答案. 【详解】 解:由数轴可得:a<﹣,0<b<, 故|﹣b|+|a+|+ =﹣b﹣(a+)﹣a =﹣b﹣a﹣﹣a =﹣2a﹣b 解析:﹣2a﹣b 【分析】 直接利用数轴结合绝对值以及平方根的性质化简得出答案. 【详解】 解:由数轴可得:a<﹣,0<b<, 故|﹣b|+|a+|+ =﹣b﹣(a+)﹣a =﹣b﹣a﹣﹣a =﹣2a﹣b. 故答案为:﹣2a﹣b. 【点睛】 此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键. 十五、填空题 15.【分析】 根据x轴上的点的纵坐标等于0列式计算即可得解. 【详解】 ∵点P(m+3,m﹣2)在x轴上, ∴m﹣2=0, 解得m=2. 故答案为:2. 【点睛】 此题考查点的坐标,熟记x轴上的点的纵 解析:【分析】 根据x轴上的点的纵坐标等于0列式计算即可得解. 【详解】 ∵点P(m+3,m﹣2)在x轴上, ∴m﹣2=0, 解得m=2. 故答案为:2. 【点睛】 此题考查点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键. 十六、填空题 16.(1011,0) 【分析】 根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标. 【详解】 解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3, 解析:(1011,0) 【分析】 根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标. 【详解】 解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…, 2021÷4=505•••1, 所以A2021的坐标为(505×2+1,0), 则A2021的坐标是(1011,0). 故答案为:(1011,0). 【点睛】 本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般. 十七、解答题 17.(1)-1;(2)-1 【分析】 (1)根据乘方及二次根式的化简即可求解; (2)根据乘法的分配率计算即可. 【详解】 (1) (2) 【点睛】 本题考查的是实数的运算,掌握运算法则及乘法的分配率是 解析:(1)-1;(2)-1 【分析】 (1)根据乘方及二次根式的化简即可求解; (2)根据乘法的分配率计算即可. 【详解】 (1) (2) 【点睛】 本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键. 十八、解答题 18.(1)x=±;(2)x=﹣2﹣π或x=﹣2+π 【分析】 (1)先移项,再将两边都除以25,再开平方即可求解; (2)根据绝对值的性质即可求解. 【详解】 解:(1)25x2﹣36=0, 25x2= 解析:(1)x=±;(2)x=﹣2﹣π或x=﹣2+π 【分析】 (1)先移项,再将两边都除以25,再开平方即可求解; (2)根据绝对值的性质即可求解. 【详解】 解:(1)25x2﹣36=0, 25x2=36, x2=, x=±; (2)|x+2|=π, x+2=±π, x=﹣2﹣π或x=﹣2+π. 【点睛】 本题主要考查了绝对值及平方根,注意一个正数的平方根有两个,它们互为相反数. 十九、解答题 19.角平分线的定义;AD;两直线平行,同位角相等;∠3;两直线平行,内错角相等 【分析】 先根据角平分线的定义求得∠1=∠2,再根据平行线的判定证得EF∥AD,运用平行线的性质和等量代换得到∠E=∠3, 解析:角平分线的定义;AD;两直线平行,同位角相等;∠3;两直线平行,内错角相等 【分析】 先根据角平分线的定义求得∠1=∠2,再根据平行线的判定证得EF∥AD,运用平行线的性质和等量代换得到∠E=∠3,继而由AC∥DF证出∠3=∠F,从而得到最后结论. 【详解】 证明:∵AD平分∠BAC(已知), ∴∠1=∠2(角平分线的定义), 又∵∠ADC+∠EGD=180°(已知), ∴EF∥AD(同旁内角互补,两直线平行). ∴∠1=∠E(两直线平行,同位角相等),∠2=∠3(两直线平行,同位角相等). ∴∠E=∠3(等量代换). 又∵AC∥DF(已知), ∴∠3=∠F(两直线平行,内错角相等). ∴∠E=∠F(等量代换). 故答案为:角平分线的定义;AD;两直线平行,同位角相等;∠3;两直线平行,内错角相等. 【点睛】 本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键. 二十、解答题 20.(1)5,下,4;(2)(,);(3)7. 【分析】 (1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可. 【详解】 解:(1)根据题图 解析:(1)5,下,4;(2)(,);(3)7. 【分析】 (1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可. 【详解】 解:(1)根据题图可知,三角形ABC先向左平移5个单位,再向下平移4个单位得到三角形A1B1C1; 故答案是:5,下,4; (2)由平移的性质:上加下减,左减右加可知,三角形ABC内有一点P(,),则在三角形A1B1C1内部的对应点P1的坐标是(,), 故答案是:(,); (3), 故答案是:7. 【点睛】 本题考查作图:平移变换,三角形的面积等知识,熟练掌握基本知识,学会用分割法求三角形的面积是解题的关键. 二十一、解答题 21.(1);(2) 【分析】 (1)根据A点在数轴上的位置,可以知道2<a<3,根据a的范围去绝对值化简即可; (2)先求出b+2,得到它的整数部分,用b+2减去整数部分就是小数部分,从而求出m;同理可 解析:(1);(2) 【分析】 (1)根据A点在数轴上的位置,可以知道2<a<3,根据a的范围去绝对值化简即可; (2)先求出b+2,得到它的整数部分,用b+2减去整数部分就是小数部分,从而求出m;同理可求出n.然后求出2m+2n+1,再求平方根. 【详解】 解:(1)由图知:, ,, ; (2), 整数部分是3, ; 的整数部分是6, , , 的平方根为. 【点睛】 本题主要考查了无理数的估算,考核学生的运算能力,解题时注意一个正数的平方根有两个. 二十二、解答题 22.正方形纸板的边长是18厘米 【分析】 根据正方形的面积公式进行解答. 【详解】 解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得: , ∴, 取正值,可得, 解析:正方形纸板的边长是18厘米 【分析】 根据正方形的面积公式进行解答. 【详解】 解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得: , ∴, 取正值,可得, ∴答:正方形纸板的边长是18厘米. 【点评】 本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式. 二十三、解答题 23.(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30° 【分析】 (1)首先证明∠1=∠3,易证得AB//CD; (2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线 解析:(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30° 【分析】 (1)首先证明∠1=∠3,易证得AB//CD; (2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线的性质即可证明; (3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,想办法构建方程即可解决问题; 【详解】 (1)如图1中, ∵∠2=∠3,∠1=∠2, ∴∠1=∠3, ∴AB//CD. (2)结论:如图2中,∠PEQ+2∠PFQ=360°. 理由:作EH//AB. ∵AB//CD,EH//AB, ∴EH//CD, ∴∠1=∠2,∠3=∠4, ∴∠2+∠3=∠1+∠4, ∴∠PEQ=∠1+∠4, 同法可证:∠PFQ=∠BPF+∠FQD, ∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°, ∴∠1+∠4+∠EQD+∠BPE=2×180°, 即∠PEQ+2(∠FQD+∠BPF)=360°, ∴∠PEQ+2∠PFQ=360°. (3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y, ∵EQ//PH, ∴∠EQC=∠PHQ=x, ∴x+10y=180°, ∵AB//CD, ∴∠BPH=∠PHQ=x, ∵PF平分∠BPE, ∴∠EPQ+∠FPQ=∠FPH+∠BPH, ∴∠FPH=y+z﹣x, ∵PQ平分∠EPH, ∴Z=y+y+z﹣x, ∴x=2y, ∴12y=180°, ∴y=15°, ∴x=30°, ∴∠PHQ=30°. 【点睛】 本题考查了平行线的判定与性质,角平分线的定义等知识.(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键. 二十四、解答题 24.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或. 【分析】 (1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得; (2)如图(见解析),先根据平行线的性质可 解析:(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或. 【分析】 (1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得; (2)如图(见解析),先根据平行线的性质可得,再根据等量代换可得,然后根据平行线的判定即可得; (3)先根据点D的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得. 【详解】 (1)由题意,补全图形如下: ,理由如下: , , , , ; (2),理由如下: 如图,延长BA交DF于点O, , , , , ; (3)由题意,有以下两种情况: ①如图3-1,,理由如下: , , , , , 由对顶角相等得:, ; ②如图3-2,,理由如下: , , , , . 【点睛】 本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键. 二十五、解答题 25.(1)50°;(2)①见解析;②见解析;(3)360°. 【分析】 (1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ 解析:(1)50°;(2)①见解析;②见解析;(3)360°. 【分析】 (1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,由两个平角∠AEB和∠ADC得:∠1+∠2等于360°与四个折叠角的差,化简得结果; ②利用两次外角定理得出结论; (3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解. 【详解】 解:(1)∵,, ∴∠A′=∠A=180°-(65°+70°)=45°, ∴∠A′ED+∠A′DE =180°-∠A′=135°, ∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°; (2)①,理由如下 由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED, ∵∠AEB+∠ADC=360°, ∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED, ∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A; ②,理由如下: ∵是的一个外角 ∴. ∵是的一个外角 ∴ 又∵ ∴ (3)如图 由题意知, ∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A') 又∵∠B=∠B',∠C=∠C',∠A=∠A', ∠A+∠B+∠C=180°, ∴∠1+∠2+∠3+∠4+∠5+∠6=360°. 【点睛】 题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 中学 七年 级数 下册 期末 质量 监测 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文