2024年人教版中学七7年级下册数学期末测试试卷含答案.doc
《2024年人教版中学七7年级下册数学期末测试试卷含答案.doc》由会员分享,可在线阅读,更多相关《2024年人教版中学七7年级下册数学期末测试试卷含答案.doc(24页珍藏版)》请在咨信网上搜索。
2024年人教版中学七7年级下册数学期末测试试卷含答案 一、选择题 1.化简的结果为() A.16 B.4 C.2 D. 2.下列图案可以由部分图案平移得到的是( ) A. B. C. D. 3.平面直角坐标系中,点所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中: ①若,则点在原点处; ②点一定在第四象限 ③已知点与点,m,n均不为0,则直线平行x轴; ④已知点A(2,-3),轴,且,则B点的坐标为(2,2). 以上命题是真命题的有( ) A.1个 B.2个 C.3个 D.4个 5.如图,,将一个含角的直角三角尺按如图所示的方式放置,若的度数为,则的度数为( ) A. B. C. D. 6.若,则x和y的关系是( ). A.x=y=0 B.x和y互为相反数 C.x和y相等 D.不能确定 7.如图,和相交于点O,则下列结论正确的是( ) A. B. C. D. 8.一只青蛙在第一象限及、轴上跳动,第一次它从原点跳到,然后按图中箭头所示方向跳动……,每次跳一个单位长度,则第2021次跳到点( ) A.(6,45) B.(5,44) C.(4,45) D.(3,44) 九、填空题 9.计算:﹣1=___. 十、填空题 10.已知点,点关于x轴对称,则的值是____. 十一、填空题 11.如图,点D是△ABC三边垂直平分线的交点,若∠A=64°,则∠D=_____°. 十二、填空题 12.如图,已知AB//EF,∠B=40°,∠E=30°,则∠C-∠D的度数为________________. 十三、填空题 13.如图1是的一张纸条,按图示方式把这一纸条先沿折叠并压平,再沿折叠并压平,若图3中,则图2中的度数为______. 十四、填空题 14.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第棵树种植在点处,其中,当时,,表示非负实数的整数部分,例如,. 按此方案,第6棵树种植点为________;第2011棵树种植点________. 十五、填空题 15.如图,在平面直角坐标系中,已知点,,连接,交y轴于B,且,,则点B坐标为__. 十六、填空题 16.如图,动点在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点,第次运动到点,第次接着运动到点按这样的运动规律,经过第次运动后动点的坐标是________. 十七、解答题 17.计算下列各题: (1)+- (2). 十八、解答题 18.求下列各式中的的值: (1); (2). 十九、解答题 19.根据下列证明过程填空:已知:如图,于点,于点,.求证:. 证明:∵,(已知) ∴(______________) ∴(_____________) ∴(_____________) 又∵(已知) ∴(_________) ∴(_________) ∴(__________) 二十、解答题 20.如图,在平面直角坐标系中,DABC的顶点 C的坐标为(1,3).点A、B分别在格点上. (1)直接写出A、B两点的坐标; (2)若把DABC向上平移3个单位,再向右平移2个单位得DA¢B¢C¢,画出DA¢B¢C¢; (3)若DABC内有一点 M(m,n),按照(2)的平移规律直接写出平移后点M的对应点 M¢的坐标. 二十一、解答题 21.阅读下面的文字,解答问题: 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小辉用来表示的小数部分,你同意小辉的表示方法吗? 事实上,小辉的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分. 又例如:∵,即,∴的整数部分为2,小数部分为. 请解答: (1)的整数部分是______ ,小数部分是______ . (2)如果的小数部分为,的整数部分为,求的值. 二十二、解答题 22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1). (1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________; (2)迁移应用: 请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形. ①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图. ②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 的点,并比较它们的大小. 二十三、解答题 23.已知:AB∥CD,截线MN分别交AB、CD于点M、N. (1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数; (2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由; (3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为 (直接写出答案). 二十四、解答题 24.如图1,,E是、之间的一点. (1)判定,与之间的数量关系,并证明你的结论; (2)如图2,若、的两条平分线交于点F.直接写出与之间的数量关系; (3)将图2中的射线沿翻折交于点G得图3,若的余角等于的补角,求的大小. 二十五、解答题 25.在中,,,点在直线上运动(不与点、重合),点在射线上运动,且,设. (1)如图①,当点在边上,且时,则__________,__________; (2)如图②,当点运动到点的左侧时,其他条件不变,请猜想和的数量关系,并说明理由; (3)当点运动到点的右侧时,其他条件不变,和还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑) 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据算术平方根的的性质即可化简. 【详解】 =2 故选C. 【点睛】 此题主要考查算术平方根,解题的关键是熟知算术平方根的性质. 2.C 【分析】 根据平移的定义,逐一判断即可. 【详解】 解:、是旋转变换,不是平移,选项错误,不符合题意; 、轴对称变换,不是平移,选项错误,不符合题意; 、是平移,选项正确,符合题意; 、图形的大 解析:C 【分析】 根据平移的定义,逐一判断即可. 【详解】 解:、是旋转变换,不是平移,选项错误,不符合题意; 、轴对称变换,不是平移,选项错误,不符合题意; 、是平移,选项正确,符合题意; 、图形的大小发生了变化,不是平移,选项错误,不符合题意. 故选:C. 【点睛】 本题考查平移变换,解题的关键是判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变. 3.D 【分析】 根据点在各象限的坐标特点即可得答案. 【详解】 ∵点的横坐标2>0,纵坐标-3<0, ∴点所在的象限是第四象限, 故选:D. 【点睛】 本题考查直角坐标系,解决本题的关键是记住平面直角坐标系中各个象限内点的坐标的符号:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 利用有理数的性质和坐标轴上点的坐标特征可对①进行判断;利用或可对②进行判断;利用、点的纵坐标相同可对③进行判断;通过把点坐标向上或向下平移5个单位得到点坐标可对④进行判断. 【详解】 解:若,则或,所以点坐标轴上,所以①为假命题; ,点一定在第四象限,所以②为真命题; 已知点与点,,均不为0,则直线平行轴,所以③为真命题; 已知点,轴,且,则点的坐标为或,所以④为假命题. 故选:B. 【点睛】 本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 5.A 【分析】 过三角板60°角的顶点作直线EF∥AB,则EF∥CD,利用平行线的性质,得到∠3+∠4=∠1+∠2=60°,代入计算即可. 【详解】 如图,过三角板60°角的顶点作直线EF∥AB, ∵AB∥CD, ∴EF∥CD, ∴∠3=∠1,∠4=∠2, ∵∠3+∠4=60°, ∴∠1+∠2=60°, ∵∠1=25°, ∴∠2=35°, 故选A. 【点睛】 本题考查了平行线的辅助线构造,平行线的判定与性质,三角板的意义,熟练掌握平行线的判定与性质是解题的关键. 6.B 【解析】 分析:先移项,再两边立方,即可得出x=-y,得出选项即可. 详解: ∵, ∴, ∴x=-y, 即x、y互为相反数, 故选B. 点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y. 7.A 【分析】 根据对顶角的性质和平行线的性质判断即可. 【详解】 解:A、∵和是对顶角, ∴,选项正确,符合题意; B、∵与OB相交于点A, ∴与OB不平行, ∴,选项错误,不符合题意; C、∵AO与BC相交于点B, ∴AO与BC不平行, ∴,选项错误,不符合题意; D、∵OD与BC相交于点C, ∴OD与BC不平行, ∴,选项错误,不符合题意. 故选:A. 【点睛】 此题考查了对顶角的性质,平行线的性质,解题的关键是熟练掌握对顶角的性质和平行线的性质.对顶角相等. 8.D 【分析】 根据青蛙运动的速度确定:(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次 解析:D 【分析】 根据青蛙运动的速度确定:(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次,到(0,6)是第48(6×8)次,依此类推,到(0,45)是第2025次,后退4次可得2021次所对应的坐标. 【详解】 解:青蛙运动的速度是每秒运动一个单位长度,(0,1)用的次数是1(12)次,到(0,2)是第8(2×4)次,到(0,3)是第9(32)次,到(0,4)是第24(4×6)次,到(0,5)是第25(52)次,到(0,6)第48(6×8)次,依此类推,到(0,45)是第2025次. 2025-1-3=2021, 故第2021次时青蛙所在位置的坐标是(3,44). 故选:D. 【点睛】 此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间. 九、填空题 9.1 【分析】 先计算算术平方根,然后计算减法. 【详解】 解:原式=2-1=1. 故答案是:1. 【点睛】 本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x 解析:1 【分析】 先计算算术平方根,然后计算减法. 【详解】 解:原式=2-1=1. 故答案是:1. 【点睛】 本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根. 十、填空题 10.-6 【分析】 让两点的横坐标相等,纵坐标相加得0,即可得关于x,y的二元一次方程组,解值即可. 【详解】 解:∵点,点关于x轴对称, ∴; 解得:, ∴, 故答案为-6. 【点睛】 本题考查平面直 解析:-6 【分析】 让两点的横坐标相等,纵坐标相加得0,即可得关于x,y的二元一次方程组,解值即可. 【详解】 解:∵点,点关于x轴对称, ∴; 解得:, ∴, 故答案为-6. 【点睛】 本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数. 十一、填空题 11.128° 【解析】 【分析】 由点D为三边垂直平分线交点,得到点D为△ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果 【详解】 ∵D为△ABC三边垂直平分线交点, ∴点D为△ABC的 解析:128° 【解析】 【分析】 由点D为三边垂直平分线交点,得到点D为△ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果 【详解】 ∵D为△ABC三边垂直平分线交点, ∴点D为△ABC的外心, ∴∠D=2∠A ∵∠A=64° ∴∠D=128° 故∠D的度数为128° 【点睛】 此题考查线段垂直平分线的性质,解题关键在于根据同弧所对的圆周角等于圆心角的一半来解答 十二、填空题 12.10° 【分析】 过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得AB∥CG∥DH∥EF,从而可得∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,即可求解. 【详解】 解析:10° 【分析】 过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得AB∥CG∥DH∥EF,从而可得∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,即可求解. 【详解】 解:如图,过点C作CG∥AB,过点D作DH∥EF, ∵AB//EF, ∴AB∥CG∥DH∥EF, ∵∠B=40°,∠E=30°, ∴∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH, ∴∠BCD-∠CDE=∠BCG-∠EDH=40°-30°=10°. 故答案为:10°. 【点睛】 本题主要考查了平行线的性质,准确作出辅助线是解题的关键. 十三、填空题 13.113° 【分析】 如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定 解析:113° 【分析】 如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定义可计算出x=67°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=113°,所以∠AEF=113°. 【详解】 解:如图,设∠B′FE=x, ∵纸条沿EF折叠, ∴∠BFE=∠B′FE=x,∠AEF=∠A′EF, ∴∠BFC=∠BFE﹣∠CFE=x﹣21°, ∵纸条沿BF折叠, ∴∠C′FB=∠BFC=x﹣21°, 而∠B′FE+∠BFE+∠C′FE=180°, ∴x+x+x﹣21°=180°,解得x=67°, ∵A′D′∥B′C′, ∴∠A′EF=180°﹣∠B′FE=180°﹣67°=113°, ∴∠AEF=113°. 故答案为113°. 【点睛】 本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形. 十四、填空题 14.403 【解析】 当k=6时,x6=T(1)+1=1+1=2, 当k=2011时,=T()+1=403. 故答案是:2,403. 【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk的表达 解析:403 【解析】 当k=6时,x6=T(1)+1=1+1=2, 当k=2011时,=T()+1=403. 故答案是:2,403. 【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk的表达式并写出用T表示出的表达式是解题的关键. 十五、填空题 15.【分析】 由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出. 【详解】 解:(1),, ,,, ,, . 如图,连接,设, , , 解析: 【分析】 由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出. 【详解】 解:(1),, ,,, ,, . 如图,连接,设, , , , , , 点的坐标为, 故答案是:. 【点睛】 本题考查了立方根及算术平方根、完全平方公式、三角形的面积、坐标与图形的性质,解题的关键是利用分割的思想解答. 十六、填空题 16.【分析】 根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可. 【详解】 解:根据动点在平面直角坐标系中按图中箭头所示方向运动 解析: 【分析】 根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可. 【详解】 解:根据动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点, 第2次接着运动到点,第3次接着运动到点, 第4次运动到点,第5次接着运动到点,, 横坐标为运动次数的2倍,经过第2021次运动后,动点的横坐标为4042, 纵坐标为2,0,1,0,每4次一轮, 经过第2021次运动后,, 故动点的纵坐标为2, 经过第2021次运动后,动点的坐标是. 故答案为:. 【点睛】 此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键. 十七、解答题 17.(1)1 (2) 【详解】 试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可; 试题解析: (1)原式=; (2)原式=-3-0-+0.5+ = 解析:(1)1 (2) 【详解】 试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可; 试题解析: (1)原式=; (2)原式=-3-0-+0.5+ = 十八、解答题 18.(1);(2). 【分析】 (1)先将原式变形为形式,再利用平方根的定义开平方求出答案; (2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案. 【详解】 解:(1), , , 解析:(1);(2). 【分析】 (1)先将原式变形为形式,再利用平方根的定义开平方求出答案; (2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案. 【详解】 解:(1), , , ; (2), , , 解得:. 【点睛】 此题主要考查了平方根以及立方根的定义,正确把握相关定义解方程是解题关键. 十九、解答题 19.;垂直的定义;同位角相等,两直线平行;;两直线平行,同位角相等;GD;同位角相等,两直线平行;;两直线平行,内错角相等;等量代换 【分析】 结合图形,根据已知证明过程,写出相关的依据即可. 【详解】 解析:;垂直的定义;同位角相等,两直线平行;;两直线平行,同位角相等;GD;同位角相等,两直线平行;;两直线平行,内错角相等;等量代换 【分析】 结合图形,根据已知证明过程,写出相关的依据即可. 【详解】 证明:证明:∵,(已知) ∴(垂直的定义) ∴(同位角相等,两直线平行) ∴(两直线平行,同位角相等) 又∵(已知) ∴(同位角相等,两直线平行) ∴(两直线平行,内错角相等) ∴(等量代换) 【点睛】 本题考查证明过程中每一步的依据,根据推理过程明白相关知识点是解题关键. 二十、解答题 20.(1),;(2)见解析;(3). 【分析】 (1)根据原点的位置确定点的坐标即可; (2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可; (3)将M(m,n)向上平移3个单位,再向右平移 解析:(1),;(2)见解析;(3). 【分析】 (1)根据原点的位置确定点的坐标即可; (2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可; (3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3即可得到的坐标. 【详解】 (1)根据原点的位置确定点的坐标, 则,; (2)将三点向上平移3个单位,再向右平移2个单位得到, , , 在图中描出点,连接,DA¢B¢C¢即为所求. (3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3 . 【点睛】 本题考查了平面直角坐标系的定义,平移的作图,根据平移的方向和距离确定点的坐标是解题的关键. 二十一、解答题 21.(1)4,;(2)1 【分析】 (1)根据题意求出所在整数范围,即可求解; (2)求出a,b然后代入代数式即可. 【详解】 解:(1)∵<<,即4<<5 ∴的整数部分为4,小数部分为−4. (2), 解析:(1)4,;(2)1 【分析】 (1)根据题意求出所在整数范围,即可求解; (2)求出a,b然后代入代数式即可. 【详解】 解:(1)∵<<,即4<<5 ∴的整数部分为4,小数部分为−4. (2), ∴. ∵, ∴, ∴. 【点睛】 此题主要考查了无理数的估算,实数的运算,熟练掌握相关知识是解题的关键. 二十二、解答题 22.(1);(2)①见解析;②见解析, 【分析】 (1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形; ② 解析:(1);(2)①见解析;②见解析, 【分析】 (1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形; ②由题(1)的原理得出大正方形的边长为,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小. 【详解】 解:设正方形边长为a, ∵a2=2, ∴a=, 故答案为:,; (2)解:①裁剪后拼得的大正方形如图所示: ②设拼成的大正方形的边长为b, ∴b2=5, ∴b=±, 在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+,看图可知,表示-0.5的N点在M点的右方, ∴比较大小:. 【点睛】 本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键. 二十三、解答题 23.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3) 【分析】 (1)由非负性可求α,β的值,由平行线的性质和外角性质可求解; (2)过点E作直线EH∥AB,由角平分线的性质和平行 解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3) 【分析】 (1)由非负性可求α,β的值,由平行线的性质和外角性质可求解; (2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解; (3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解. 【详解】 解:(1)∵+(β﹣60)2=0, ∴α=30,β=60, ∵AB∥CD, ∴∠AMN=∠MND=60°, ∵∠AMN=∠B+∠BEM=60°, ∴∠BEM=60°﹣30°=30°; (2)∠DEF+2∠CDF=150°. 理由如下:过点E作直线EH∥AB, ∵DF平分∠CDE, ∴设∠CDF=∠EDF=x°; ∵EH∥AB, ∴∠DEH=∠EDC=2x°, ∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°; ∴∠DEF=150°﹣2∠CDF, 即∠DEF+2∠CDF=150°; (3)如图3,设MQ与CD交于点E, ∵MQ平分∠BMT,QC平分∠DCP, ∴∠BMT=2∠PMQ,∠DCP=2∠DCQ, ∵AB∥CD, ∴∠BME=∠MEC,∠BMP=∠PND, ∵∠MEC=∠Q+∠DCQ, ∴2∠MEC=2∠Q+2∠DCQ, ∴∠PMB=2∠Q+∠PCD, ∵∠PND=∠PCD+∠CPM=∠PMB, ∴∠CPM=2∠Q, ∴∠Q与∠CPM的比值为, 故答案为:. 【点睛】 本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键. 二十四、解答题 24.(1),见解析;(2);(3)60° 【分析】 (1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED; (2)如图2, 解析:(1),见解析;(2);(3)60° 【分析】 (1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED; (2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,根据角平分线的定义得到∠BAF=∠BAE,∠CDF=∠CDE,则∠AFD=(∠BAE+∠CDE),加上(1)的结论得到∠AFD=∠AED; (3)由(1)的结论得∠AGD=∠BAF+∠CDG,利用折叠性质得∠CDG=4∠CDF,再利用等量代换得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,从而可计算出∠BAE的度数. 【详解】 解:(1) 理由如下: 作,如图1, , . ,, ; (2)如图2,由(1)的结论得, 、的两条平分线交于点F, ,, , , ; (3)由(1)的结论得, 而射线沿翻折交于点G, , , , , . 【点睛】 本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等. 二十五、解答题 25.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析 【分析】 (1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC 解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析 【分析】 (1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°; (2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE; (3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE. 【详解】 解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°. ∵在△ABC中,∠BAC=100°,∠ABC=∠ACB, ∴∠ABC=∠ACB=40°, ∴∠ADC=∠ABC+∠BAD=40°+60°=100°. ∵∠DAC=40°,∠ADE=∠AED, ∴∠ADE=∠AED=70°, ∴∠CDE=∠ADC-∠ADE=100°-70°=30°. 故答案为60,30. (2)∠BAD=2∠CDE,理由如下: 如图②,在△ABC中,∠BAC=100°, ∴∠ABC=∠ACB=40°. 在△ADE中,∠DAC=n, ∴∠ADE=∠AED=, ∵∠ACB=∠CDE+∠AED, ∴∠CDE=∠ACB-∠AED=40°-=, ∵∠BAC=100°,∠DAC=n, ∴∠BAD=n-100°, ∴∠BAD=2∠CDE. (3)成立,∠BAD=2∠CDE,理由如下: 如图③,在△ABC中,∠BAC=100°, ∴∠ABC=∠ACB=40°, ∴∠ACD=140°. 在△ADE中,∠DAC=n, ∴∠ADE=∠AED=, ∵∠ACD=∠CDE+∠AED, ∴∠CDE=∠ACD-∠AED=140°-=, ∵∠BAC=100°,∠DAC=n, ∴∠BAD=100°+n, ∴∠BAD=2∠CDE. 【点睛】 本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 年人教版 中学 年级 下册 数学 期末 测试 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文