2023年人教版中学七7年级下册数学期末质量检测试卷(附解析).doc
《2023年人教版中学七7年级下册数学期末质量检测试卷(附解析).doc》由会员分享,可在线阅读,更多相关《2023年人教版中学七7年级下册数学期末质量检测试卷(附解析).doc(24页珍藏版)》请在咨信网上搜索。
2023年人教版中学七7年级下册数学期末质量检测试卷(附解析) 一、选择题 1.的算术平方根为() A. B. C. D. 2.下列图案中,是通过下图平移得到的是( ) A. B. C. D. 3.在平面直角坐标系中,下列点中位于第四象限的是( ) A. B. C. D. 4.下列命题是假命题的是( ) A.三角形三个内角的和等于 B.对顶角相等 C.在同一平面内,垂直于同一条直线的两条直线互相平行 D.两条直线被第三条直线所截,同位角相等 5.直线,直线与,分别交于点,,.若,则的度数为( ) A. B. C. D. 6.下列说法中:①立方根等于本身的是,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( ) A.3 B.4 C.5 D.6 7.如图,,分别交,于点,,若,则的度数为( ) A. B. C. D. 8.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点(1,0)、(2,0)、(2,1)(1,1)、(1,2)、(2,2)..根据这个规律,第2021个点的坐标为( ) A.(45,4) B.(45,9) C.(45,21) D.(45,0) 九、填空题 9.如果一个正方形的面积为3,则这个正方形的边长是 _____________. 十、填空题 10.若与点关于轴对称,则的值是___________; 十一、填空题 11.已知点A(3a+5,a﹣3)在二、四象限的角平分线上,则a=__________. 十二、填空题 12.如图,直线,若,,______. 十三、填空题 13.如图,折叠宽度相等的长方形纸条,若∠1=54°,则∠2=____度. 十四、填空题 14.如图,数轴上,两点表示的数分别为和4.1,则,两点之间表示整数的点共有____个. 十五、填空题 15.若点P(a+3,2a+4)在y轴上,则点P到x轴的距离为________. 十六、填空题 16.在平面直角坐标系中,点经过某种变换后得到点,我们把点叫做点的终结点已知点的终结点为点的终结点为,点的终结点为,这样依次得到,若点的坐标为,则点的坐标为____ 十七、解答题 17.计算(每小题4分) (1) (2). (3). (4)+|﹣2 | + ( -1 )2017 十八、解答题 18.求下列各式中的x: (1); (2); (3). 十九、解答题 19.完成下面推理过程,并在括号中填写推理依据: 如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3,试说明:AD平分∠BAC. 证明:∵AD⊥BC,EG⊥BC ∴∠ADC= =90°(垂直定义) ∴ ∥EG(同位角相等,两直线平行) ∴∠1= ( ) ∠2=∠3( ) 又∵∠3=∠E(已知) ∴ =∠2 ∴AD平分∠BAC 二十、解答题 20.如图,三角形的顶点都在格点上,将三角形向右平移5个单位长度,再向上平移3个单位长度请回答下列问题: (1)平移后的三个顶点坐标分别为:______,______,______; (2)画出平移后三角形; (3)求三角形的面积. 二十一、解答题 21.阅读下面的文字,解答问题. 大家知道是无理数,面无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于,所以的整数部分为1.将减去其整数部分1,差就是小数部分.根据以上的内容,解答下面的问题: (1)的整数部分是___________,小数部分是___________; (2)若设整数部分是,小数部分是,求的值. 二十二、解答题 22.(1)若一圆的面积与这个正方形的面积都是,设圆的周长为,正方形的周长为,则______.(填“=”或“<”或“>”号) (2)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由. 二十三、解答题 23.如图,已知直线射线CD,.P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP.作,交直线AB于点F,CG平分. (1)若点P,F,G都在点E的右侧,求的度数; (2)若点P,F,G都在点E的右侧,,求的度数; (3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由. 二十四、解答题 24.[感知]如图①,,求的度数. 小乐想到了以下方法,请帮忙完成推理过程. 解:(1)如图①,过点P作. ∴(_____________), ∴, ∴________(平行于同一条直线的两直线平行), ∴_____________(两直线平行,同旁内角互补), ∴, ∴, ∴,即. [探究]如图②,,求的度数; [应用](1)如图③,在[探究]的条件下,的平分线和的平分线交于点G,则的度数是_________º. (2)已知直线,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接,若平分平分,且所在的直线交于点E.设,请直接写出的度数(用含的式子表示). 二十五、解答题 25.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F. (1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角: ;所有与∠C相等的角: . (2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) . ① 求∠B的度数; ②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据算术平方根的定义求解. 【详解】 解:因为, 所以的算术平方根为. 故选C. 【点睛】 本题主要考查算术平方根的定义,解决本题的关键是要熟练掌握算术平方根的定义. 2.C 【分析】 根据平移的性质,即可解答. 【详解】 由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现. 故选C 【点睛】 本题考查了图形的平移,图形的平移只改变图形的位置,而不改变 解析:C 【分析】 根据平移的性质,即可解答. 【详解】 由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现. 故选C 【点睛】 本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,掌握平移的性质是解题的关键. 3.C 【分析】 根据各象限内点的坐标特征对各选项分析判断后利用排除法求解. 【详解】 解:A、在y轴上,故本选项不符合题意; B、在第二象限,故本选项不符合题意; C、在第四象限,故本选项符合题意; D、在第三象限,故本选项不符合题意. 故选:C. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限. 4.D 【分析】 根据三角形内角和定理,对顶角的性质,平行线的判定和性质逐一判断即可. 【详解】 解:A、三角形三个内角的和等于180°,故此说法正确,是真命题; B、对顶角相等,故此说法正确,是真命题; C、在同一平面内,垂直于同一条直线的两条直线互相平行两条,故此说法正确,是真命题; D、两条平行直线被第三条直线所截,同位角相等,故此说法错误,是假命题. 故选D. 【点睛】 本题主要考查了命题的真假,解题的关键在于能够熟练掌握相关知识进行判断求解. 5.B 【分析】 由对顶角相等得∠DFE=55°,然后利用平行线的性质,得到∠BEF=125°,即可求出的度数. 【详解】 解:由题意,根据对顶角相等,则 , ∵, ∴, ∴, ∵, ∴, ∴; 故选:B. 【点睛】 本题考查了平行线的性质,对顶角相等,解题的关键是掌握平行线的性质,正确的求出. 6.A 【分析】 根据平方根和立方根的性质,以及无理数的性质判断选项的正确性. 【详解】 解:立方根等于本身的数有:,1,0,故①正确; 平方根等于本身的数有:0,故②错误; 两个无理数的和不一定是无理数,比如和的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确; 是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确. 故选:A. 【点睛】 本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 7.B 【分析】 根据平行线的性质和对顶角相等即可得∠2的度数. 【详解】 解:∵, ∴∠2=∠FHD, ∵∠FHD=∠1=39°, ∴∠2=39°. 故选:B. 【点睛】 本题考查了平行线的性质,解决本题的关键是掌握平行线的性质. 8.A 【分析】 到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,横坐标以n结束的有n2个 解析:A 【分析】 到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,横坐标以n结束的有n2个点, 【详解】 解:观察图形可知,到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方, 横坐标是奇数时最后以横坐标为该数,纵坐标为0结束, 横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束, ∴横坐标以n结束的有n2个点, 第2025个点是(45,0), ∴2021个点的坐标是(45,4); 故选:A. 【点睛】 本题考查了点的坐标,观察出点的个数与横坐标存在平方关系是解题的关键. 九、填空题 9.【分析】 设这个正方形的边长为x(x>0),由题意得x2=3,根据算术平方根的定义解决此题. 【详解】 解:设这个正方形的边长为x(x>0). 由题意得:x2=3. ∴x=. 故答案为:. 【点睛 解析: 【分析】 设这个正方形的边长为x(x>0),由题意得x2=3,根据算术平方根的定义解决此题. 【详解】 解:设这个正方形的边长为x(x>0). 由题意得:x2=3. ∴x=. 故答案为:. 【点睛】 本题主要考查正方形的面积以及算术平方根,熟练掌握算术平方根的定义是解决本题的关键. 十、填空题 10.1 【分析】 根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案. 【详解】 由点与点的坐标关于y轴对称,得: ,, 解得:,, ∴. 故答案为:. 【点睛】 本题 解析:1 【分析】 根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案. 【详解】 由点与点的坐标关于y轴对称,得: ,, 解得:,, ∴. 故答案为:. 【点睛】 本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数. 十一、填空题 11.﹣ 【详解】 ∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0, ∴3a+5+a-3=0, ∴a=﹣. 故答案是:﹣. 解析:﹣ 【详解】 ∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0, ∴3a+5+a-3=0, ∴a=﹣. 故答案是:﹣. 十二、填空题 12.60°. 【分析】 过点E作EF∥AB,由平行线的性质,先求出∠CEF=120°,即可求出的度数. 【详解】 解:过点E作EF∥AB,如图: ∴, ∴,, ∵, ∴∠CEF=120°, ∴; 故答 解析:60°. 【分析】 过点E作EF∥AB,由平行线的性质,先求出∠CEF=120°,即可求出的度数. 【详解】 解:过点E作EF∥AB,如图: ∴, ∴,, ∵, ∴∠CEF=120°, ∴; 故答案为:60°. 【点睛】 本题考查了平行线的性质,解题的关键是掌握平行线的性质,正确的作出辅助线,从而进行解题. 十三、填空题 13.72 【分析】 根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得. 【详解】 解:如图, 长方形的两边平行, , 折叠, , . 故答案为:. 【点睛】 本题考查了平行线的性质,折叠的 解析:72 【分析】 根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得. 【详解】 解:如图, 长方形的两边平行, , 折叠, , . 故答案为:. 【点睛】 本题考查了平行线的性质,折叠的性质,掌握以上知识是解题的关键. 十四、填空题 14.3 【分析】 根据无理数的估算、结合数轴求解即可 【详解】 解: ∴ ∴ ∴在到4.1之间由2,3,4这三个整数 故答案为:3. 【点睛】 本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是 解析:3 【分析】 根据无理数的估算、结合数轴求解即可 【详解】 解: ∴ ∴ ∴在到4.1之间由2,3,4这三个整数 故答案为:3. 【点睛】 本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解题关键. 十五、填空题 15.2 【分析】 点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可. 【详解】 ∵点P(a+3,2a+4)在y轴上 ∴a+3=0,解得:a=-3 ∴P(0,-2) ∴点P到x轴的距离 解析:2 【分析】 点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可. 【详解】 ∵点P(a+3,2a+4)在y轴上 ∴a+3=0,解得:a=-3 ∴P(0,-2) ∴点P到x轴的距离为:2 故答案为:2 【点睛】 本题考查坐标点与坐标轴的关系,注意,点到坐标轴的距离一定是非负的. 十六、填空题 16.【分析】 利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,−1),点P5的坐标为(2,0),…,从而得到每4次变换一个循环,然后 解析: 【分析】 利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,−1),点P5的坐标为(2,0),…,从而得到每4次变换一个循环,然后利用2021=4×505+1可判断点P2021的坐标与点P1的坐标相同. 【详解】 解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,-1),点P5的坐标为(2,0),…, 而2021=4×505+1, 所以点P2021的坐标与点P1的坐标相同,为(2,0), 故答案为:. 【点睛】 本题考查了坐标的变化规律探索,找出前5个点的坐标,找出变化规律,是解题的关键. 十七、解答题 17.(1)0;(2);(3)1;(4)3. 【分析】 (1)先算根号和平方,再根据实数的加减运算计算即可得出答案; (2)先去绝对值,再根据实数的加减运算法则计算即可得出答案; (3)先算绝对值、立方根 解析:(1)0;(2);(3)1;(4)3. 【分析】 (1)先算根号和平方,再根据实数的加减运算计算即可得出答案; (2)先去绝对值,再根据实数的加减运算法则计算即可得出答案; (3)先算绝对值、立方根和乘方,再根据实数的加减运算法则计算即可得出答案; (4)先算根号、绝对值和乘方,再根据实数的加减运算法则计算即可得出答案. 【详解】 解:(1)原式=-3+4-3 =-2 (2)原式= = (3)原式=2+(-2)+1 =1 (4)原式=2+2-1 =3 【点睛】 本题考查的是实数的运算,难度不大,需要熟练掌握实数的加减运算法则. 十八、解答题 18.(1);(2)1;(3)-1. 【分析】 (1)根据立方根的定义解方程即可; (2)根据立方根的定义解方程即可; (3)根据立方根的定义解方程即可. 【详解】 解:(1), ∴ , ∴, ∴; (2 解析:(1);(2)1;(3)-1. 【分析】 (1)根据立方根的定义解方程即可; (2)根据立方根的定义解方程即可; (3)根据立方根的定义解方程即可. 【详解】 解:(1), ∴ , ∴, ∴; (2) ∴ ∴ ∴; (3), ∴, ∴, ∴. 【点睛】 本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键. 十九、解答题 19.;两直线平等行,同位角相等;两直线平行,内错角相等;;等量代换;角平分线定义 【分析】 根据AD⊥BC,EG⊥BC,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,,由已知条件∠ 解析:;两直线平等行,同位角相等;两直线平行,内错角相等;;等量代换;角平分线定义 【分析】 根据AD⊥BC,EG⊥BC,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,,由已知条件∠3=∠E,等量代换即可的,即可证明AD平分∠BAC. 【详解】 证明:∵AD⊥BC,EG⊥BC ∴∠ADC==90°(垂直定义) ∴∥EG(同位角相等,两直线平行) ∴∠1=(两直线平等行,同位角相等) ∠2=∠3(两直线平行,内错角相等) 又∵∠3=∠E(已知) ∴=∠2(等量代换) ∴AD平分∠BAC(角平分线的定义) 故答案是:∠EGC;AD;∠E;两直线平等行,同位角相等;两直线平行,内错角相等;∠1;等量代换;角平分线定义. 【点睛】 本题考查了垂线的定义,平行线的性质与判定,角平分线的定义,掌握以上定理性质是解题的关键. 二十、解答题 20.(1),,;(2)见解析;(3) 【分析】 (1)先画出平移后的图形,结合直角坐标系可得出三点坐标; (2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案; (3)将△ABC补全为长方形 解析:(1),,;(2)见解析;(3) 【分析】 (1)先画出平移后的图形,结合直角坐标系可得出三点坐标; (2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案; (3)将△ABC补全为长方形,然后利用作差法求解即可. 【详解】 解:(1)平移后的三个顶点坐标分别为:,,; (2)画出平移后三角形; (3). 【点睛】 本题考查了平移作图的知识,解答本题的关键是根据平移的特点准确作出图形,第三问求解不规则图形面积的时候可以先补全,再减去. 二十一、解答题 21.(1)2,;(2). 【分析】 (1)利用求解; (2)由于,则,,然后计算. 【详解】 解:(1)的整数部分是2,小数部分是; (2), 而整数部分是,小数部分是, ,, . 【点睛】 本题考查了 解析:(1)2,;(2). 【分析】 (1)利用求解; (2)由于,则,,然后计算. 【详解】 解:(1)的整数部分是2,小数部分是; (2), 而整数部分是,小数部分是, ,, . 【点睛】 本题考查了估算无理数的大小,熟悉相关性质是解题得关键. 二十二、解答题 22.(1)<;(2)不能,理由见解析 【分析】 (1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案; (2)设裁出的长方形的长为,宽为,由题意得关于 解析:(1)<;(2)不能,理由见解析 【分析】 (1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案; (2)设裁出的长方形的长为,宽为,由题意得关于的方程,解得的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案. 【详解】 解:(1)圆的面积与正方形的面积都是, 圆的半径为,正方形的边长为, ,, , , . (2)不能裁出长和宽之比为的长方形,理由如下: 设裁出的长方形的长为,宽为,由题意得: , 解得或(不合题意,舍去), 长为,宽为, 正方形的面积为, 正方形的边长为, , 不能裁出长和宽之比为的长方形. 【点睛】 本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键. 二十三、解答题 23.(1)40°;(2)65°;(3)存在,56°或20° 【分析】 (1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数; (2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G 解析:(1)40°;(2)65°;(3)存在,56°或20° 【分析】 (1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数; (2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°; (3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可. 【详解】 解:(1)∵∠CEB=100°,AB∥CD, ∴∠ECQ=80°, ∵∠PCF=∠PCQ,CG平分∠ECF, ∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°; (2)∵AB∥CD ∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°, ∴∠EGC+∠ECG=80°, 又∵∠EGC-∠ECG=30°, ∴∠EGC=55°,∠ECG=25°, ∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°, ∵PQ∥CE, ∴∠CPQ=∠ECP=65°; (3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x, ①当点G、F在点E的右侧时, 则∠ECG=x,∠PCF=∠PCD=x, ∵∠ECD=80°, ∴x+x+x+x=80°, 解得x=16°, ∴∠CPQ=∠ECP=x+x+x=56°; ②当点G、F在点E的左侧时, 则∠ECG=∠GCF=x, ∵∠CGF=180°-4x,∠GCQ=80°+x, ∴180°-4x=80°+x, 解得x=20°, ∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°, ∴∠PCQ=∠FCQ=60°, ∴∠CPQ=∠ECP=80°-60°=20°. 【点睛】 本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等. 二十四、解答题 24.[感知]见解析;[探究]70°;[应用](1)35;(2)或 【分析】 [感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果; 解析:[感知]见解析;[探究]70°;[应用](1)35;(2)或 【分析】 [感知]过点P作PM∥AB,根据平行线的性质得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果; [探究]过点P作PM∥AB,根据AB∥CD,PM∥CD,进而根据平行线的性质即可求∠EPF的度数; [应用](1)如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数; (2)画出图形,分点A在点B左侧和点A在点B右侧,两种情况,分别求解. 【详解】 解:[感知]如图①,过点P作PM∥AB, ∴∠1=∠AEP=40°(两直线平行,内错角相等) ∵AB∥CD, ∴PM∥CD(平行于同一条直线的两直线平行), ∴∠2+∠PFD=180°(两直线平行,同旁内角互补), ∴∠PFD=130°(已知), ∴∠2=180°-130°=50°, ∴∠1+∠2=40°+50°=90°,即∠EPF=90°; [探究]如图②,过点P作PM∥AB, ∴∠MPE=∠AEP=50°, ∵AB∥CD, ∴PM∥CD, ∴∠PFC=∠MPF=120°, ∴∠EPF=∠MPF-∠MPE=120°-50°=70°; [应用](1)如图③所示, ∵EG是∠PEA的平分线,FG是∠PFC的平分线, ∴∠AEG=∠AEP=25°,∠GFC=∠PFC=60°, 过点G作GM∥AB, ∴∠MGE=∠AEG=25°(两直线平行,内错角相等) ∵AB∥CD(已知), ∴GM∥CD(平行于同一条直线的两直线平行), ∴∠GFC=∠MGF=60°(两直线平行,内错角相等). ∴∠G=∠MGF-∠MGE=60°-25°=35°. 故答案为:35. (2)当点A在点B左侧时, 如图,故点E作EF∥AB,则EF∥CD, ∴∠ABE=∠BEF,∠CDE=∠DEF, ∵平分平分,, ∴∠ABE=∠BEF=,∠CDE=∠DEF=, ∴∠BED=∠BEF+∠DEF=; 当点A在点B右侧时, 如图,故点E作EF∥AB,则EF∥CD, ∴∠DEF=∠CDE,∠ABG=∠BEF, ∵平分平分,, ∴∠DEF=∠CDE=,∠ABG=∠BEF=, ∴∠BED=∠DEF-∠BEF=; 综上:∠BED的度数为或. 【点睛】 本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质. 二十五、解答题 25.(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30 【分析】 (1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角; (2)①由三角形内角和定理可得, 解析:(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30 【分析】 (1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角; (2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数. ②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可. 【详解】 (1)由翻折的性质可得:∠E=∠B, ∵∠BAC=90°,AE⊥BC, ∴∠DFE=90°, ∴180°-∠BAC=180°-∠DFE=90°, 即:∠B+∠C=∠E+∠FDE=90°, ∴∠C=∠FDE, ∴AC∥DE, ∴∠CAF=∠E, ∴∠CAF=∠E=∠B 故与∠B相等的角有∠CAF和∠E; ∵∠BAC=90°,AE⊥BC, ∴∠BAF+∠CAF=90°, ∠CFA=180°-(∠CAF+∠C)=90° ∴∠BAF+∠CAF=∠CAF+∠C=90° ∴∠BAF=∠C 又AC∥DE, ∴∠C=∠CDE, ∴故与∠C相等的角有∠CDE、∠BAF; (2)①∵ ∴ 又∵, ∴∠C=70°,∠B=20°; ②∵∠BAD=x°, ∠B=20°则,, 由翻折可知:∵, , ∴, , 当∠FDE=∠DFE时,, 解得:; 当∠FDE=∠E时,,解得:(因为0<x≤45,故舍去); 当∠DFE=∠E时,,解得:(因为0<x≤45,故舍去); 综上所述,存在这样的x的值,使得△DEF中有两个角相等.且. 【点睛】 本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年人教版 中学 年级 下册 数学 期末 质量 检测 试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文