人教版七年级下册数学期末学业水平卷含解析.doc
《人教版七年级下册数学期末学业水平卷含解析.doc》由会员分享,可在线阅读,更多相关《人教版七年级下册数学期末学业水平卷含解析.doc(24页珍藏版)》请在咨信网上搜索。
人教版七年级下册数学期末学业水平卷含解析 一、选择题 1.下列所示的四个图形中,和不是同位角的是( ) A.① B.② C.③ D.④ 2.下列所示的车标图案,其中可以看作由基本图案经过平移得到的是( ) A. B. C. D. 3.点在第二象限内,则点在第______象限. A.一 B.二 C.三 D.四 4.下列命题中是假命题的是( ). A.等角的补角相等 B.平行于同一条直线的两条直线平行 C.对顶角相等 D.同位角相等 5.已知,如图,点D是射线上一动点,连接,过点D作交直线于点E,若,,则的度数为( ) A. B. C.或 D.或 6.下列说法正确的是( ) A.0的立方根是0 B.0.25的算术平方根是-0.5 C.-1000的立方根是10 D.的算术平方根是 7.直角三角板与两边平行的纸条如图所示放置,下列结论不一定正确的是( ) A. B. C. D. 8.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0)、(2,0)、(2,1)、(3,2)、(3,1)、(3,0)、(4,0),……,根据这个规律探索可得,第20个点的坐标为( ) A.(6,4) B.(6,5) C.(7,3) D.(7,5) 九、填空题 9.已知非零实数a.b满足|2a-4|+|b+2|++4=2a,则2a+b=_______. 十、填空题 10.点关于轴的对称点的坐标为______. 十一、填空题 11.如图,在△ABC中,CD是它的角平分线,DE⊥AC于点 E.若BC=6cm,DE=2cm,则△BCD的面积为_____cm2 十二、填空题 12.如图,BD平分∠ABC,ED∥BC,∠1=25°,则∠2=_____°,∠3=______°. 十三、填空题 13.如图,点E、点G、点F分别在AB、AD、BC上,将长方形ABCD按EF、EG翻折,线段EA的对应边EA'恰好落在折痕EF上,点B的对应点B'落在长方形外,B'F与CD交于点H,已知∠B'HC=134°,则∠AGE=_____°. 十四、填空题 14.如图,数轴上,两点表示的数分别为和4.1,则,两点之间表示整数的点共有____个. 十五、填空题 15.在平面直角坐标系中,若在轴上,则线段长度为________. 十六、填空题 16.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→⋯,且每秒移动一个单位,那么粒子运动到点(3,0)时经过了__________秒;2014秒时这个粒子所在的位置的坐标为_____________. 十七、解答题 17.计算: (1) (2) 十八、解答题 18.求下列各式中的值 (1) (2) 十九、解答题 19.如图,直线,被直线,所截,,直线分别交和于点,.点在直线上,,求证:. 请在下列括号中填上理由: 证明:因为(已知),所以(_______). 又因为(已知),所以,即, 所以_______(同位角相等,两直线平行),所以(_______). 二十、解答题 20.如图,在平面直角坐标系中,的三个顶点的坐标分别是,,. (1)求出的面积; (2)平移,若点的对应点的坐标为,画出平移后对应的,写出坐标. 二十一、解答题 21.对于实数a,我们规定:用符号[]表示不大于的最大整数,称[]为a的根整数,例如:[]=3,[]=3. (1)仿照以上方法计算:[]= ;[]= . (2)若[]=1,写出满足题意的x的整数值 . (3)如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次[]=3→[]=1,这时候结果为1.对145连续求根整数, 次之后结果为1. 二十二、解答题 22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片. (1)请帮小丽设计一种可行的裁剪方案; (2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由. 二十三、解答题 23.已知:ABCD.点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,∠GFB=∠CEH. (1)如图1,求证:GFEH; (2)如图2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,试问∠M与α之间有怎样的数量关系(用含α的式子表示∠M)?请写出你的猜想,并加以证明. 二十四、解答题 24.已知,如图①,∠BAD=50°,点C为射线AD上一点(不与A重合),连接BC. (1)[问题提出]如图②,AB∥CE,∠BCD=73 °,则:∠B= . (2)[类比探究]在图①中,探究∠BAD、∠B和∠BCD之间有怎样的数量关系?并用平行线的性质说明理由. (3)[拓展延伸]如图③,在射线BC上取一点O,过O点作直线MN使MN∥AD,BE平分∠ABC交AD于E点,OF平分∠BON交AD于F点,交AD于G点,当C点沿着射线AD方向运动时,∠FOG的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值. 二十五、解答题 25.如图,在中,是高,是角平分线,,. ()求、和的度数. ()若图形发生了变化,已知的两个角度数改为:当,,则__________. 当,时,则__________. 当,时,则__________. 当,时,则__________. ()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可. 【详解】 解:选项A、B、D中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角; 选项C中,∠1与∠2的两条边都不在同一条直线上,不是同位角. 故选:C. 【点睛】 本题考查了同位角的应用,注意:两条直线被第三条直线所截,如果有两个角在第三条直线的同旁,并且在两条直线的同侧,那么这两个角叫同位角. 2.C 【分析】 根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案. 【详解】 解:根据平移的概念,观察图形可知图案B通过平移后可以得到 解析:C 【分析】 根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案. 【详解】 解:根据平移的概念,观察图形可知图案B通过平移后可以得到. 故选C. 【点睛】 本题考查生活中的平移现象,仔细观察各选项图形是解题的关键. 3.D 【分析】 先根据第二象限内点的横坐标是负数,纵坐标是正数判断出m、n的正负情况,再根据各象限内点的坐标特征求解. 【详解】 解:∵点P(m,n)在第二象限, ∴m<0,n>0, ∴-m>0,m-n<0, ∴点Q(-m,m-n)在第四象限. 故选D. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.D 【分析】 根据等角的补角,平行线的性质,对顶角的性质,进行判断. 【详解】 A. 等角的补角相等,是真命题,不符合题意; B. 平行于同一条直线的两条直线平行,是真命题,不符合题意; C. 对顶角相等,是真命题,不符合题意; D. 两直线平行,同位角相等,原命题是假命题,符合题意; 故选D. 【点睛】 本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及补角的定义等知识. 5.D 【分析】 分点D在线段AB上及点D在线段AB的延长线上两种情况考虑:当点D在线段AB上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE+∠CDE可求出∠ADC的度数;当点D在线段AB的延长线上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE-∠CDE可求出∠ADC的度数.综上,此题得解. 【详解】 解:当点D在线段AB上时,如图1所示. ∵DE∥BC, ∴∠ADE=∠ABC=84°, ∴∠ADC=∠ADE+∠CDE=84°+20°=104°; 当点D在线段AB的延长线上时,如图2所示. ∵DE∥BC, ∴∠ADE=∠ABC=84°, ∴∠ADC=∠ADE-∠CDE=84°-20°=64°. 综上所述:∠ADC=104°或64°. 故选:D. 【点睛】 本题考查了平行线的性质,分点D在线段AB上及点D在线段AB的延长线上两种情况,求出∠ADC的度数是解题的关键. 6.A 【分析】 根据算术平方根以及立方根的概念逐一进行凑数即可得. 【详解】 A.0的立方根是0,正确,符合题意; B.0.25的算术平方根是0.5,故B选项错误,不符合题意; C.-1000的立方根是-10,故C选项错误,不符合题意; D.的算术平方根是,故D选项错误,不符合题意, 故选A. 【点睛】 本题考查了算术平方根、立方根,熟练掌握相关概念以及求解方法是解题的关键. 7.D 【分析】 直接利用平行线性质解题即可 【详解】 解:∵直尺的两边互相平行, ∴∠1=∠2,∠3=∠4, ∵三角板的直角顶点在直尺上, ∴∠2+∠4=90°, ∴A,B,C正确. 故选D. 【点睛】 本题考查平行线的基本性质,基础知识扎实是解题关键 8.A 【分析】 横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数. 【详 解析:A 【分析】 横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数. 【详解】 解:把第一个点作为第一列,和作为第二列, 依此类推,则第一列有一个数,第二列有2个数, 第列有个数.则列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上. 因为,则第20个数一定在第6列,由下到上是第4个数. 因而第20个点的坐标是. 故选:A. 【点睛】 本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目. 九、填空题 9.4 【分析】 首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值. 【详解】 解: 解析:4 【分析】 首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值. 【详解】 解:由题意可得a≥3, ∴2a-4>0, 已知等式整理得:|b+2|+=0, ∴a=3,b=-2, ∴2a+b=2×3-2=4. 故答案为4. 【点睛】 本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0,熟练掌握非负数的性质是解题的关键. 十、填空题 10.【分析】 关于y轴对称的点,纵坐标相同,横坐标互为相反数. 【详解】 ∵关于y轴对称的点,纵坐标相同,横坐标互为相反数 ∴点关于y轴的对称点的坐标为. 故答案为: 【点睛】 考核知识点:轴对称与点 解析: 【分析】 关于y轴对称的点,纵坐标相同,横坐标互为相反数. 【详解】 ∵关于y轴对称的点,纵坐标相同,横坐标互为相反数 ∴点关于y轴的对称点的坐标为. 故答案为: 【点睛】 考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键. 十一、填空题 11.6 【分析】 根据角平分线的性质计算即可; 【详解】 作, ∵CD是角平分线,DE⊥AC, ∴, 又∵BC=6cm, ∴; 故答案是6. 【点睛】 本题主要考查了角平分线的性质,准确计算是解题的关 解析:6 【分析】 根据角平分线的性质计算即可; 【详解】 作, ∵CD是角平分线,DE⊥AC, ∴, 又∵BC=6cm, ∴; 故答案是6. 【点睛】 本题主要考查了角平分线的性质,准确计算是解题的关键. 十二、填空题 12.50 【分析】 由两直线平行,内错角、同位角分别相等可得出∠2=∠DBC,∠3=∠ABC=∠1+∠DBC,又由BD平分∠ABC得出∠DBC=∠1=25°,利用等价替换法分别求出∠2和∠3即可 解析:50 【分析】 由两直线平行,内错角、同位角分别相等可得出∠2=∠DBC,∠3=∠ABC=∠1+∠DBC,又由BD平分∠ABC得出∠DBC=∠1=25°,利用等价替换法分别求出∠2和∠3即可. 【详解】 解:∵BD平分∠ABC, ∴∠DBC=∠1=25°; 又∵ED∥BC, ∴∠2=∠DBC=25°,∠3=∠ABC=∠1+∠DBC=50°. 故答案为:25、50. 【点睛】 本题考查了平行线的性质:两直线平行,内错角相等,同位角相等,解题过程中采用了等量代换的方法. 十三、填空题 13.11 【分析】 由外角的性质和平行线的性质求出的度数,即可求出的度数,进而求出的度数,求得的度数,即可求出的度数. 【详解】 解:如图, , , , , 折叠, , , , , 故答案为:11. 解析:11 【分析】 由外角的性质和平行线的性质求出的度数,即可求出的度数,进而求出的度数,求得的度数,即可求出的度数. 【详解】 解:如图, , , , , 折叠, , , , , 故答案为:11. 【点睛】 本题考查了角之间的计算,解题的关键是理解折叠就是轴对称,利用轴对称的性质求解. 十四、填空题 14.3 【分析】 根据无理数的估算、结合数轴求解即可 【详解】 解: ∴ ∴ ∴在到4.1之间由2,3,4这三个整数 故答案为:3. 【点睛】 本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是 解析:3 【分析】 根据无理数的估算、结合数轴求解即可 【详解】 解: ∴ ∴ ∴在到4.1之间由2,3,4这三个整数 故答案为:3. 【点睛】 本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解题关键. 十五、填空题 15.5 【分析】 先根据在轴上,计算出m的值,根据纵坐标的绝对值即是线段长度可得到答案. 【详解】 ∵在轴上, ∴横坐标为0,即, 解得:, 故, ∴线段长度为, 故答案为:5. 【点睛】 本题只要考查 解析:5 【分析】 先根据在轴上,计算出m的值,根据纵坐标的绝对值即是线段长度可得到答案. 【详解】 ∵在轴上, ∴横坐标为0,即, 解得:, 故, ∴线段长度为, 故答案为:5. 【点睛】 本题只要考查了再y轴的点的特征(横坐标为零),在计算线段的长度时,注意线段长度不为负数. 十六、填空题 16.(10,44) 【分析】 该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4 解析:(10,44) 【分析】 该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4=20,…, 【详解】 解:由题意,粒子运动到点(3,0)时经过了15秒, 设粒子运动到A1,A2,…,An时所用的间分别为a1,a2,…,an, 则a1=2,a2=6,a3=12,a4=20,…, a2-a1=2×2, a3-a2=2×3, a4-a3=2×4, …, an-an-1=2n, 各式相加得: an-a1=2(2+3+4+…+n)=n2+n-2, ∴an=n(n+1). ∵44×45=1980,故运动了1980秒时它到点A44(44,44); 又由运动规律知:A1,A2,…,An中,奇数点处向下运动,偶数点处向左运动. 故达到A44(44,44)时向左运动34秒到达点(10,44), 即运动了2014秒.所求点应为(10,44). 故答案为:(10,44). 故答案为:15,(10,44). 【点睛】 本题考查了平面直角坐标系内点的运动规律,分析粒子在第一象限的运动规律得到递推关系式an-an-1=2n是本题的突破口,本题对运动规律的探索可知知:A1,A2,…An中,奇数点处向下运动,偶数点处向左运动,找到这个规律是解题的关键. 十七、解答题 17.(1)-3;(2)-11. 【分析】 (1)分别计算乘方,立方根,绝对值,再合并即可得到答案; (2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案. 【详解】 (1)解:原式= (2)解 解析:(1)-3;(2)-11. 【分析】 (1)分别计算乘方,立方根,绝对值,再合并即可得到答案; (2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案. 【详解】 (1)解:原式= (2)解:原式 = =. 【点睛】 本题考查的是乘法的分配律的应用,乘方运算,求一个数的立方根,求一个数的绝对值,掌握以上知识是解题的关键. 十八、解答题 18.(1);(2) 【分析】 (1)先移项,再根据平方根的性质开平方即可得; (2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得. 【详解】 解:(1) ∴ 即 (2) 解得, 解析:(1);(2) 【分析】 (1)先移项,再根据平方根的性质开平方即可得; (2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得. 【详解】 解:(1) ∴ 即 (2) 解得, 【点睛】 本题考查了立方根,平方根,解题的关键是熟练掌握平方根与立方根的性质. 十九、解答题 19.两直线平行,同位角相等;;两直线平行,同旁内角互补. 【分析】 要证明与互补,需证明,可通过同位角与(或与相等来实现. 【详解】 证明:因为(已知), 所以 两直线平行,同位角相等). 又因为(已知 解析:两直线平行,同位角相等;;两直线平行,同旁内角互补. 【分析】 要证明与互补,需证明,可通过同位角与(或与相等来实现. 【详解】 证明:因为(已知), 所以 两直线平行,同位角相等). 又因为(已知), 所以, 即, 所以(同位角相等,两直线平行), 所以(两直线平行,同旁内角互补. 故答案为:两直线平行,同位角相等;;两直线平行,同旁内角互补. 【点睛】 本题考查了平行线的性质和判定,解题的关键是掌握平行线的性质和判定. 二十、解答题 20.(1)3;(2)B2(3,0),画图见解析 【分析】 (1)先求出AC,BC的长,然后根据三角形面积公式求解即可; (2)先根据A和A2的坐标,确定平移方式,然后求出B2,C2的坐标,然后描点,顺次 解析:(1)3;(2)B2(3,0),画图见解析 【分析】 (1)先求出AC,BC的长,然后根据三角形面积公式求解即可; (2)先根据A和A2的坐标,确定平移方式,然后求出B2,C2的坐标,然后描点,顺次连接即可得到答案 【详解】 解:(1)∵在平面直角坐标系中,的三个顶点的坐标分别是,,, ∴AC=3,BC=2, ∴; (2)∵A(-3,2),A2(0,-2), ∴A2是由A向右平移3个单位得到的,向下平移4个单位长度得到的, ∴B2,C2的坐标分别为(3,0),(3,-2), 如图所示,即为所求. 【点睛】 本题主要考查了坐标与图形,三角形面积,根据点的坐标确定平移方式,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解. 二十一、解答题 21.(1)4;4;(2)1,2,3;(3)3 【解析】 【分析】 根据题中的新定义计算即可求出值. 【详解】 解:(1)仿照以上方法计算:[16]=4;[24]=4; (2)若[x]=1,写出满足题意的 解析:(1)4;4;(2)1,2,3;(3)3 【解析】 【分析】 根据题中的新定义计算即可求出值. 【详解】 解:(1)仿照以上方法计算:; (2)若[]=1,写出满足题意的x的整数值1,2,3; (3)对145连续求根整数,第1次之后结果为12,第2次之后结果为3,第3次之后结果为1. 故答案为:(1)4;4;(2)1,2,3;(3)3 【点睛】 考查了估算无理数的大小,以及实数的运算,弄清题中的新定义是解本题的关键. 二十二、解答题 22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析. 【解析】 (1)解:设面积为400cm2的正方形纸片的边长为a cm ∴ 解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析. 【解析】 (1)解:设面积为400cm2的正方形纸片的边长为a cm ∴a2=400 又∵a>0 ∴a=20 又∵要裁出的长方形面积为300cm2 ∴若以原正方形纸片的边长为长方形的长, 则长方形的宽为:300÷20=15(cm) ∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形 (2)∵长方形纸片的长宽之比为3:2 ∴设长方形纸片的长为3xcm,则宽为2xcm ∴6x 2=300 ∴x 2=50 又∵x>0 ∴x = ∴长方形纸片的长为 又∵>202 即:>20 ∴小丽不能用这块纸片裁出符合要求的纸片 二十三、解答题 23.(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详 解析:(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详解】 (1)证明:, , , , ; (2)解:,理由如下: 如图2,过点作,过点作, , , ,, , 同理,, 平分,平分, ,, , 由(1)知,, , , , , . 【点睛】 此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键. 二十四、解答题 24.(1);(2),见解析;(3)不变, 【分析】 (1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数; (2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用 解析:(1);(2),见解析;(3)不变, 【分析】 (1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数; (2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用(2)的结论和平行线的性质、角平分线的性质,可求出的度数,可得结论. 【详解】 (1)因为∥, 所以, 因为∠BCD=73 °, 所以, 故答案为: (2), 如图②,过点作∥, 则,. 因为, 所以, (3)不变, 设, 因为平分, 所以. 由(2)的结论可知,且, 则:. 因为∥, 所以, 因为平分, 所以. 因为∥, 所以, 所以. 【点睛】 本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系. 二十五、解答题 25.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,. 【分析】 (1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数; 解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,. 【分析】 (1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数; (2)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,则前三问利用即可得出答案,第4问利用即可得出答案; (3)按照(2)的方法,将相应的数换成字母即可得出答案. 【详解】 (1)∵,, ∴ . ∵平分, ∴. ∵是高, , , , . (2)当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , ; 当,时, ∵,, ∴. ∵平分, ∴. ∵是高, , , . (3)当 时,即时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 当 时,即时, ∵,, ∴ . ∵平分, ∴. ∵是高, , , ; 综上所述,当时,;当时,. 【点睛】 本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七 年级 下册 数学 期末 学业 水平 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文