2023年人教版中学七7年级下册数学期末考试题含解析.doc
《2023年人教版中学七7年级下册数学期末考试题含解析.doc》由会员分享,可在线阅读,更多相关《2023年人教版中学七7年级下册数学期末考试题含解析.doc(24页珍藏版)》请在咨信网上搜索。
2023年人教版中学七7年级下册数学期末考试题含解析 一、选择题 1.如图,图中的内错角的对数是( ) A.3对 B.4对 C.5对 D.6对 2.为进一步扩大和提升浑源县旅游知名度和美誉度,彰显浑源的自然魅力和文化内涵,浑源县面向全社会公开征集浑源县旅游城市形象宣传语、宣传标识及主题歌曲,如图所示是其中一幅参赛标识,将此宣传标识进行平移,能得到的图形是( ) A. B. C. D. 3.在平面直角坐标系中,点P(-3,0)在( ) A.第二象限 B.第三象限 C.x轴上 D.y轴上 4.下列命题是假命题的是( ) A.两个锐角的和是钝角 B.两条直线相交成的角是直角,则两直线垂直 C.两点确定一条直线 D.三角形中至少有两个锐角 5.如图, ,若,,,则下列说法正确的是( ) A. B. C. D. 6.若,,则( ) A.632.9 B.293.8 C.2938 D.6329 7.已知:如图,AB∥EF,CD⊥EF,∠BAC=30°,则∠ACD=( ) A.100° B.110° C.120° D.130° 8.在平面直角坐标系中,一个智能机器人接到的指令是:从原点出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点,第二次移动到点……,第次移动到点,则点的坐标是( ) A. B. C. D. 九、填空题 9.已知=8,则x的值是________________. 十、填空题 10.已知点的坐标是,且点关于轴对称的点的坐标是,则__________. 十一、填空题 11.如图,直线与直线交于点,、是与的角平分线,则______度. 十二、填空题 12.如图,,点M为CD上一点,MF平分∠CME.若∠1=57°,则∠EMD的大小为_____度. 十三、填空题 13.将一条长方形纸带按如图方式折叠,若,则的度数为________°. 十四、填空题 14.定义一种新运算“”规则如下:对于两个有理数,,,若,则______ 十五、填空题 15.在平面直角坐标系中,已知点P(﹣2,3),PA∥y轴,PA=3,则点A的坐标为__. 十六、填空题 16.如图,在平面直角坐标系中:A(1,1),B(﹣1,1),C(﹣1,﹣3),D(1,﹣3),现把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A→……的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是________. 十七、解答题 17.计算: (1)|﹣2|+(﹣3)2﹣; (2); (3). 十八、解答题 18.已知:,,,求下列各式的值: (1)的值; (2)的值. 十九、解答题 19.已知一个角的两边与另一个角的两边分别平行,结合图1,探索这两个角之间的关系. (1)如图1,已知与中,,,与相交于点.问:与有何关系? ①请完成下面的推理过程. 理由:, . , . . ②结论:与关系是 . (2)如图2,已知,,则与有何关系?请直接写出你的结论. (3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么 . 二十、解答题 20.在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC的三个顶点都在格点(小方格的顶点)上, (1)请建立适当的平面直角坐标系,使点A,C的坐标分别为(﹣2,﹣1),(1,﹣1),并写出点B的坐标; (2)在(1)的条件下,将三角形ABC先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形A'B'C',请在图中画出平移后的三角形A'B'C',并分别写出点A',B',C'的坐标. 二十一、解答题 21.已知:a是的小数部分,b是的小数部分. (1)求a、b的值; (2)求4a+4b+5的平方根. 二十二、解答题 22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片. (1)请帮小丽设计一种可行的裁剪方案; (2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由. 二十三、解答题 23.已知:ABCD.点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,∠GFB=∠CEH. (1)如图1,求证:GFEH; (2)如图2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,试问∠M与α之间有怎样的数量关系(用含α的式子表示∠M)?请写出你的猜想,并加以证明. 二十四、解答题 24.已知AB∥CD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,∠AMP=∠PQN=α,PQ平分∠MPN. (1)如图①,求∠MPQ的度数(用含α的式子表示); (2)如图②,过点Q作QE∥PN交PM的延长线于点E,过E作EF平分∠PEQ交PQ于点F.请你判断EF与PQ的位置关系,并说明理由; (3)如图③,在(2)的条件下,连接EN,若NE平分∠PNQ,请你判断∠NEF与∠AMP的数量关系,并说明理由. 二十五、解答题 25.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC. (1)求证:∠BED=90°; (2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小; (3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论: . 【参考答案】 一、选择题 1.C 解析:C 【分析】 利用内错角的定义分析得出答案. 【详解】 解:如图所示:内错角有:∠FOP与∠OPE,∠GOP与∠OPD, ∠CPA与∠HOP,∠FOP与∠OPD,∠EPO与∠GOP都是内错角, 故内错角一共有5对. 故选:C. 【点睛】 此题主要考查了内错角的定义,正确把握内错角的定义是解题关键. 2.B 【分析】 根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化即可求解. 【详解】 解:A.选项是原图形旋转得到,不合题意; B.选项是原图形平移得到,符合题意; C.选项是原图形 解析:B 【分析】 根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化即可求解. 【详解】 解:A.选项是原图形旋转得到,不合题意; B.选项是原图形平移得到,符合题意; C.选项是原图形翻折得到,不合题意; D.选项是原图形旋转得到,不合题意. 故选:B 【点睛】 本题考查了平移的性质,理解平移的定义和性质是解题关键. 3.C 【分析】 根据点的坐标特点判断即可. 【详解】 解:在平面直角坐标系中,点P(-3,0)在x轴上, 故选C. 【点睛】 此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键. 4.A 【分析】 选出假命题只要举出反例即可,两个锐角的和是钝角,反例:两个锐角分别是有20°、30°,和是50°,还是锐角,因此是假命题. 【详解】 A.两个锐角的和是钝角是假命题,如两个锐角分别是20°、30°, 而它们的和是50°,还是锐角,不是钝角; B.两条直线相交成的角是直角则两直线垂直是真命题; C.两点确定一条直线是真命题; D.三角形中至少有两个锐角是真命题. 故选: A 【点睛】 本题通过判断真假命题来考查了解各类知识的概念和意义,熟练掌握各类知识是解题的关键. 5.D 【分析】 根据平行线的性质进行求解即可得到答案. 【详解】 解:∵BE∥CD ∴∠ 2+∠C=180°,∠ 3+∠D=180° ∵∠ 2=50°,∠ 3=120° ∴∠C=130°,∠D=60° 又∵BE∥AF,∠ 1=40° ∴∠A=180°-∠ 1=140°,∠F=∠ 3=120° 故选D. 【点睛】 本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键. 6.B 【分析】 把,再利用立方根的性质化简即可得到答案. 【详解】 解: , 故选: 【点睛】 本题考查的是立方根的含义,立方根的性质,熟练立方根的含义与性质是解题的关键. 7.C 【分析】 如图,过点C作,利用平行线的性质得到,,则易求∠ACD的度数. 【详解】 解:过点C作,则, , , , , , 故选:C. 【点睛】 本题考查了平行线的性质.该题通过作辅助线,将转化为(+90°)来求. 8.B 【分析】 根据题意可得 ,,,,,, , 由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,可求出点的纵坐标,然后根据,,,,可得:,即可求解. 【详解】 解:由题意得: ,,,, 解析:B 【分析】 根据题意可得 ,,,,,, , 由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,可求出点的纵坐标,然后根据,,,,可得:,即可求解. 【详解】 解:由题意得: ,,,,,, , 由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环, ∵ , ∴点的纵坐标为1, ∵,,,,由此得:, ∴. 故选:B 【点睛】 本题主要考查了平面直角坐标系中点的坐标规律题——坐标与旋转,解题的关键是理解题意找出规律解答问题. 九、填空题 9.65 【解析】 【分析】 根据算术平方根的定义确定x-1的值,解方程即可. 【详解】 ∵=8 ∴x-1=64 x=65 故答案为65 【点睛】 本题考查了算术平方根的定义,掌握算术平方根的定义是关键 解析:65 【解析】 【分析】 根据算术平方根的定义确定x-1的值,解方程即可. 【详解】 ∵=8 ∴x-1=64 x=65 故答案为65 【点睛】 本题考查了算术平方根的定义,掌握算术平方根的定义是关键. 十、填空题 10.-3 1 【分析】 平面内关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数. 【详解】 ∵已知点的坐标是,且点关于轴对称的点的坐标是, ∴m=−3;n=1, 故答案为−3;1 解析:-3 1 【分析】 平面内关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数. 【详解】 ∵已知点的坐标是,且点关于轴对称的点的坐标是, ∴m=−3;n=1, 故答案为−3;1. 【点睛】 解决本题的关键是掌握好对称点的坐标规律: (1)关于x轴对称的点,横坐标相同,纵坐标互为相反数; (2)关于y轴对称的点,纵坐标相同,横坐标互为相反数; (3)关于原点对称的点,横坐标与纵坐标都互为相反数. 十一、填空题 11.60 【分析】 由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数. 【详解】 ∵OE平分∠AOC, ∴∠AOE=∠EOC, ∵OC平分∠BOE, ∴ 解析:60 【分析】 由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数. 【详解】 ∵OE平分∠AOC, ∴∠AOE=∠EOC, ∵OC平分∠BOE, ∴∠EOC=∠COB ∴∠AOE=∠EOC=∠COB, ∵∠AOE+∠EOC+∠COB=180︒ ∴∠COB=60°, ∴∠AOD=∠COB=60°, 故答案为:60 【点睛】 本题主要考查了角平分线的应用以及对顶角相等的性质,熟练运用角平分线的定义是解题的关键. 十二、填空题 12.【分析】 根据AB∥CD,求得∠CMF=∠1=57°,利用MF平分∠CME,求得∠CME=2∠CMF=114°,根据∠EMD=180°-∠CME求出结果. 【详解】 ∵AB∥CD, ∴∠CMF=∠ 解析: 【分析】 根据AB∥CD,求得∠CMF=∠1=57°,利用MF平分∠CME,求得∠CME=2∠CMF=114°,根据∠EMD=180°-∠CME求出结果. 【详解】 ∵AB∥CD, ∴∠CMF=∠1=57°, ∵MF平分∠CME, ∴∠CME=2∠CMF=114°, ∴∠EMD=180°-∠CME=66°, 故答案为:66. 【点睛】 此题考查平行线的性质,角平分线的有关计算,理解图形中角之间的和差关系是解题的关键. 十三、填空题 13.36 【分析】 根据平行线的性质、折叠的性质即可解决. 【详解】 ∵AB∥CD,如图 ∴∠GEC=∠1=108゜ 由折叠的性质可得:∠2=∠FED ∵∠2+∠FED+∠GEC=180゜ ∴∠2= 解析:36 【分析】 根据平行线的性质、折叠的性质即可解决. 【详解】 ∵AB∥CD,如图 ∴∠GEC=∠1=108゜ 由折叠的性质可得:∠2=∠FED ∵∠2+∠FED+∠GEC=180゜ ∴∠2= 故答案为:36 【点睛】 本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质. 十四、填空题 14.【分析】 根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答. 【详解】 解:由题意得:(5x-x)⊙(−2)=−1, ∴-2(5x-x)-(-2)=-1,∴-8x+2=-1,解之得 解析: 【分析】 根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答. 【详解】 解:由题意得:(5x-x)⊙(−2)=−1, ∴-2(5x-x)-(-2)=-1,∴-8x+2=-1,解之得:, 故答案为. 【点睛】 本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 . 十五、填空题 15.(-2,6)或(-2,0). 【分析】 根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案. 【详解】 解:由点P(-2,3),PA∥y轴,PA=3,得 在P点 解析:(-2,6)或(-2,0). 【分析】 根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案. 【详解】 解:由点P(-2,3),PA∥y轴,PA=3,得 在P点上方的A点坐标(-2,6), 在P点下方的A点坐标(-2,0), 故答案为:(-2,6)或(-2,0). 【点睛】 本题考查了点的坐标,掌握平行于y轴的直线上点的横坐标相等是解题关键,注意到一点距离相等的点有两个,以防遗漏. 十六、填空题 16.【分析】 先求出四边形ABCD的周长为12,再计算,得到余数为5,由此解题. 【详解】 解:A(1,1),B(﹣1,1),C(﹣1,﹣3),D(1,﹣3), 四边形ABCD的周长为2+4+2+4= 解析: 【分析】 先求出四边形ABCD的周长为12,再计算,得到余数为5,由此解题. 【详解】 解:A(1,1),B(﹣1,1),C(﹣1,﹣3),D(1,﹣3), 四边形ABCD的周长为2+4+2+4=12, 细线另一端所在位置的点在B点的下方3个单位的位置,即点的坐标 故答案为:. 【点睛】 本题考查规律型:点的坐标,解题关键是理解题意,求出四边形的周长,属于中考常考题型. 十七、解答题 17.(1)9;(2)-;(3)-3. 【解析】 【分析】 根据运算法则和运算顺序,依次计算即可. 【详解】 解:(1)原式=2+9﹣2=9, (2)原式=(1+3﹣5) =﹣ , (3)原式=3﹣3﹣4 解析:(1)9;(2)-;(3)-3. 【解析】 【分析】 根据运算法则和运算顺序,依次计算即可. 【详解】 解:(1)原式=2+9﹣2=9, (2)原式=(1+3﹣5) =﹣ , (3)原式=3﹣3﹣4+1=﹣3. 【点睛】 本题考查了实数的运算,熟练掌握相关运算法则是解题关键. 十八、解答题 18.(1)±5;(2)13 【分析】 (1)将已知两式相减,再利用完全平方公式得到,可得结果; (2)根据完全平方公式可得=,代入计算即可 【详解】 解:(1)∵①,②, ①+②得:,即, ∴; (2) 解析:(1)±5;(2)13 【分析】 (1)将已知两式相减,再利用完全平方公式得到,可得结果; (2)根据完全平方公式可得=,代入计算即可 【详解】 解:(1)∵①,②, ①+②得:,即, ∴; (2)∵, ∴===13. 【点睛】 本题主要考查了完全平方公式的变式应用,熟练应用完全平方公式的变式进行计算是解决本题的关键. 十九、解答题 19.(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)(相等);(3)这两个角相等或互补. 【分析】 (1)如图1,根据,,即可得与的关系; (2)如图2,根据 解析:(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)(相等);(3)这两个角相等或互补. 【分析】 (1)如图1,根据,,即可得与的关系; (2)如图2,根据,,即可得与的关系; (3)由(1)(2)即可得出结论. 【详解】 解:(1)①理由:, (两直线平行,同旁内角互补), , (两直线平行,同位角相等), . ②结论:与关系是互补. 故答案为:①;两直线平行,同旁内角互补;两直线平行,同位角相等;;②相等. (2),理由如下: , , , , . (3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么这两个角互补或相等, 故答案为:这两个角互补或相等. 【点睛】 本题考查了平行线的性质,解题的关键是熟练掌握平行线的性质定理. 二十、解答题 20.(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1) 【分析】 (1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可. ( 解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1) 【分析】 (1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可. (2)分别作出A′,B′,C′即可解决问题. 【详解】 解:(1)平面直角坐标系如图所示:B(0,1). (2)△A′B′C′如图所示.A′(2,1),B′(4,3),C′(5,1). 【点睛】 本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 二十一、解答题 21.(1)a=﹣3,b=4﹣;(2)±3. 【分析】 (1)根据3<<4,即可求出a、b的值; (2)把a,b代入代数式计算求值,再求平方根即可. 【详解】 解:(1)∵3<<4, ∴11<8+<12, 解析:(1)a=﹣3,b=4﹣;(2)±3. 【分析】 (1)根据3<<4,即可求出a、b的值; (2)把a,b代入代数式计算求值,再求平方根即可. 【详解】 解:(1)∵3<<4, ∴11<8+<12,4<8﹣<5, ∵a是的小数部分,b是的小数部分, ∴a=8+﹣11=﹣3,b=8﹣﹣4=4﹣. (2), ∴4a+4b+5的平方根为:=±3. 【点睛】 本题考查了无理数的估算,求一个数的平方根等知识,能熟练估算的近似值,进而求出a、b的值是解题关键. 二十二、解答题 22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析. 【解析】 (1)解:设面积为400cm2的正方形纸片的边长为a cm ∴ 解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析. 【解析】 (1)解:设面积为400cm2的正方形纸片的边长为a cm ∴a2=400 又∵a>0 ∴a=20 又∵要裁出的长方形面积为300cm2 ∴若以原正方形纸片的边长为长方形的长, 则长方形的宽为:300÷20=15(cm) ∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形 (2)∵长方形纸片的长宽之比为3:2 ∴设长方形纸片的长为3xcm,则宽为2xcm ∴6x 2=300 ∴x 2=50 又∵x>0 ∴x = ∴长方形纸片的长为 又∵>202 即:>20 ∴小丽不能用这块纸片裁出符合要求的纸片 二十三、解答题 23.(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详 解析:(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详解】 (1)证明:, , , , ; (2)解:,理由如下: 如图2,过点作,过点作, , , ,, , 同理,, 平分,平分, ,, , 由(1)知,, , , , , . 【点睛】 此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键. 二十四、解答题 24.(1)2α;(2)EF⊥PQ,见解析;(3)∠NEF=∠AMP,见解析 【分析】 1)如图①,过点P作PR∥AB,可得AB∥CD∥PR,进而可得结论; (2)根据已知条件可得2∠EPQ+2∠PEF= 解析:(1)2α;(2)EF⊥PQ,见解析;(3)∠NEF=∠AMP,见解析 【分析】 1)如图①,过点P作PR∥AB,可得AB∥CD∥PR,进而可得结论; (2)根据已知条件可得2∠EPQ+2∠PEF=180°,进而可得EF与PQ的位置关系; (3)结合(2)和已知条件可得∠QNE=∠QEN,根据三角形内角和定理可得∠QNE=(180°﹣∠NQE)=(180°﹣3α),可得∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE,进而可得结论. 【详解】 解:(1)如图①,过点P作PR∥AB, ∵AB∥CD, ∴AB∥CD∥PR, ∴∠AMP=∠MPR=α,∠PQN=∠RPQ=α, ∴∠MPQ=∠MPR+∠RPQ=2α; (2)如图②,EF⊥PQ,理由如下: ∵PQ平分∠MPN. ∴∠MPQ=∠NPQ=2α, ∵QE∥PN, ∴∠EQP=∠NPQ=2α, ∴∠EPQ=∠EQP=2α, ∵EF平分∠PEQ, ∴∠PEQ=2∠PEF=2∠QEF, ∵∠EPQ+∠EQP+∠PEQ=180°, ∴2∠EPQ+2∠PEF=180°, ∴∠EPQ+∠PEF=90°, ∴∠PFE=180°﹣90°=90°, ∴EF⊥PQ; (3)如图③,∠NEF=∠AMP,理由如下: 由(2)可知:∠EQP=2α,∠EFQ=90°, ∴∠QEF=90°﹣2α, ∵∠PQN=α, ∴∠NQE=∠PQN+∠EQP=3α, ∵NE平分∠PNQ, ∴∠PNE=∠QNE, ∵QE∥PN, ∴∠QEN=∠PNE, ∴∠QNE=∠QEN, ∵∠NQE=3α, ∴∠QNE=(180°﹣∠NQE)=(180°﹣3α), ∴∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE =180°﹣(90°﹣2α)﹣3α﹣(180°﹣3α) =180°﹣90°+2α﹣3α﹣90°+α =α =∠AMP. ∴∠NEF=∠AMP. 【点睛】 本题考查了平行线的性质,角平分线的性质,熟悉相关性质是解题的关键. 二十五、解答题 25.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°. 【分析】 (1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180° 解析:(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°. 【分析】 (1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案; (2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°, 得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案; (3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),即可求解. 【详解】 解:(1)证明:∵BE平分∠ABD, ∴∠EBD=∠ABD, ∵DE平分∠BDC, ∴∠EDB=∠BDC, ∴∠EBD+∠EDB=(∠ABD+∠BDC), ∵AB∥CD, ∴∠ABD+∠BDC=180°, ∴∠EBD+∠EDB=90°, ∴∠BED=180°﹣(∠EBD+∠EDB)=90°. (2)解:如图2, 由(1)知:∠EBD+∠EDB=90°, 又∵∠ABD+∠BDC=180°, ∴∠ABE+∠EDC=90°, 即∠ABE+α+∠FDC=90°, ∵BG平分∠ABE,DG平分∠CDF, ∴∠ABE=2∠ABG,∠CDF=2∠CDG, ∴2∠ABG+2∠CDG=90°﹣α, 过点G作GP∥AB, ∵AB∥CD, ∴GP∥AB∥CD ∴∠ABG=∠BGP,∠PGD=∠CDG, ∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=; (3)如图,过点F、G分别作FN∥AB、GM∥AB, ∵AB∥CD, ∴AB∥GM∥FN∥CD, ∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM, ∴∠BFD=∠BFN+∠DFN=∠3+∠5, ∠BGD=∠BGM+∠DGM=∠4+∠6, ∵BG平分∠FBP,DG平分∠FDQ, ∴∠4=∠FBP=(180°﹣∠3), ∠6=∠FDQ=(180°﹣∠5), ∴∠BFD+∠BGD=∠3+∠5+∠4+∠6, =∠3+∠5+(180°﹣∠3)+(180°﹣∠5), =180°+(∠3+∠5), =180°+∠BFD, 整理得:2∠BGD+∠BFD=360°. 【点睛】 本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年人教版 中学 年级 下册 数学 期末 考试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文