八年级数学下册期末试卷(提升篇)(Word版含解析).doc
《八年级数学下册期末试卷(提升篇)(Word版含解析).doc》由会员分享,可在线阅读,更多相关《八年级数学下册期末试卷(提升篇)(Word版含解析).doc(28页珍藏版)》请在咨信网上搜索。
八年级数学下册期末试卷(提升篇)(Word版含解析) 一、选择题 1.要使有意义,则实数的取值范围是( ) A. B. C. D. 2.下列各组数中,不能构成直角三角形的是( ) A.9、12、15 B.12、18、22 C.8、15、17 D.5、12、13 3.在四边形ABCD中,对角线AC与BD交于点O,下列条件一定能判定四边形ABCD为平行四边形的是( ) A.AD∥BC,AB=CD B.AO=OC,BO=OD C.AD=CB,AB∥CD D.∠A=∠B,∠C=∠D 4.为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.关于这组数据,下列说法错误的是( ) A.众数是 B.中位数是 C.平均数是 D.方差是 5.若三角形的三边长分别是下列各组数,则能构成直角三角形的是( ) A.4,5,6 B.1,2, C.6,8,11 D.5,12,14 6.如图,四边形ABCD是菱形,点E、F分别在边BC、CD上,且BE=DF,AB=AE,若∠EAF=75°,则∠C的度数为( ) A.85° B.90° C.95° D.105° 7.如图1,为矩形的边上一点,点从点出发沿折线运动到点停止,点从点出发沿运动到点停止,它们的运动速度都是厘米/秒.现,两点同时出发,设运动时间为(秒),的面积为(cm2),若与的对应关系如图2所示,则矩形的面积是( ) A.cm2 B.72 cm2 C.84 cm2 D.56 cm2 8.如图,点C、B分别在两条直线y=﹣3x和y=kx上,点A、D是x轴上两点,若四边形ABCD是正方形,则k的值为( ) A.3 B.2 C. D. 二、填空题 9.二次根式有意义的条件是_______. 10.菱形的两条对角线分别为8、10,则菱形的面积为_____. 11.如图,则阴影小长方形的面积S=_____. 12.如图,在矩形中,对角线,交于点,若,,则的长为________. 13.一次函数图象过点日与直线平行,则一次函数解析式__________. 14.如图,在中,,,当________时,四边形是菱形. 15.甲从地出发以某一速度向地走去,同时乙从地出发以另一速度向地而行,如图中的线段、分别表示甲、乙离地的距离()与所用时间的关系.则、两地之间的距离为______,甲、乙两人相距时出发的时间为______. 16.在矩形ABCD中,,,将沿对角线BD对折得到,DE与BC交于F,则EF等于________. 三、解答题 17.计算: (1); (2); (3)解方程组; (4)解方程组. 18.有一架米长的梯子搭在墙上,刚好与墙 头对齐,此时梯脚与墙的距离是米 (1)求墙的高度? (2)若梯子的顶端下滑米,底端将水平动多少米? 19.如图,是规格为8×8的正方形的网格,请你在所给的网格中按下列要求操作: (1)请在网格中建立直角坐标系,使A点坐标为,B点坐标为; (2)在网格上,找一格点C,使点C与线段AB组成等腰三角形,这样的C点共有 个; (3)在(1)(2)的前提下,在第四象限中,当是以AB为底的等腰三角形,且腰长为无理数时,的周长是 ,面积是 . 20.如图,平行四边形的对角线、相较于点O,且,,.求证:四边形是矩形. 21.同学们,我们以前学过完全平方公式,a2±2ab+b2=(a±b)2,你一定熟练掌握了吧?现在我们又学习了平方根,那么所有的正数和0都可以看作是一个数的平方,比如:2=,3=,7=,02=0,那么我们利用这种思想方法计算下面的题: 例:求3的算术平方根 解:3=+1=+12= ∴3的算术平方根是 同学们,你看明白了吗?大胆试一试,相信你能做正确! (1) (2) (3). 22.某网校规定:普通网上学习费用每小时4元.暑假为了促销,新推出两种优惠卡: ①金卡售价120元/张,凭此卡账号登录学习不再收费; ②银卡售价30元张,凭此卡账号登录学习按每小时2元收费.设登录学习时数为x(时),所需总费用为y(元). (1)分别写出选择银卡登录、普通登录时,y与x之间的函数关系式; (2)在同一个坐标系中,三种登录方式对应的函数图象如图所示,请求出点A、B、C的坐标: . (3)请根据函数图象,直接写出选择哪种消费方式更合算. 23.问题发现: (1)如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于CB延长线上时,线段AC的长可取得最大值,则最大值为 (用含a,b的式子表示); 尝试应用: (2)如图2所示,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,M、N分别为AB、AD的中点,连接MN、CE.AD=5,AC=3. ①请写出MN与CE的数量关系,并说明理由. ②直接写出MN的最大值. (3)如图3所示,△ABC为等边三角形,DA=6,DB=10,∠ADB=60°,M、N分别为BC、BD的中点,求MN长. (4)若在第(3)中将“∠ADB=60°”这个条件删除,其他条件不变,请直接写出MN的取值范围. 24.如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,过点B的直线x轴于点C,且AB=BC. (1)求直线BC的表达式 (2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,PQ交x轴于点P,设点Q的横坐标为m,求的面积(用含m的代数式表示) (3)在(2)的条件下,点M在y轴的负半轴上,且MP=MQ,若求点P的坐标. 25.如图,已知平面直角坐标系中,、,现将线段绕点顺时针旋转得到点,连接. (1)求出直线的解析式; (2)若动点从点出发,沿线段以每分钟个单位的速度运动,过作交轴于,连接.设运动时间为分钟,当四边形为平行四边形时,求的值. (3)为直线上一点,在坐标平面内是否存在一点,使得以、、、为顶点的四边形为菱形,若存在,求出此时的坐标;若不存在,请说明理由. 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据二次根式有意义的条件进行解答即可. 【详解】 解:∵有意义, ∴, 解得:, 故选:B. 【点睛】 本题考查了二次根式有意义得条件,熟知根号下为非负数是解题的关键. 2.B 解析:B 【分析】 欲判断能否构成直角三角形,只需验证两小边的平方和是否等于最长边的平方. 【详解】 解:A、92+122=152,能构成直角三角形; B、122+182≠222,不能构成直角三角形; C、82+152=172,能构成直角三角形; D、52+122=132,能构成直角三角形. 故选:B. 【点睛】 本题考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断. 3.B 解析:B 【解析】 【分析】 由平行四边形的判定方法分别对各个选项进行判断即可. 【详解】 A、由AD∥BC,AB=CD,不能判定四边形ABCD为平行四边形,故选项A不符合题意; B、∵AO=OC,BO=OD, ∴四边形ABCD为平行四边形, 故选项B符合题意; C、由AD=CB,AB∥CD,不能判定四边形ABCD为平行四边形,故选项C不符合题意; D、由∠A=∠B,∠C=∠D,不能判定四边形ABCD为平行四边形,故选项D不符合题意; 故选:B. 【点睛】 本题考查了平行四边形的判定,关键是掌握平行四边形的各种判定方法. 4.D 解析:D 【解析】 【分析】 根据统计图得出10户家庭的用水量数据,求得众数,中位数,平均数,方差,进而逐项判断即可 【详解】 根据统计图可得这10户家庭的用水量分别为:5,5,6,6,6,6,6,6,7,7 其中6出现了6次,次数最多,故众数是6,故A选项正确,不符合题意; 这组数据的中位数为:6,故B选项正确,不符合题意; 这组数据的平均数为,故C选项正确,不符合题意; 这组数据的方差为:,故D选项不正确,符合题意. 故选D. 【点睛】 本题考查了求众数,中位数,平均数,方差,掌握方差的计算公式是解题的关键.方差的计算公式:. 5.B 解析:B 【分析】 根据勾股定理逆定理:三角形三边长a、b、c若满足,则该三角形为直角三角形,将各个选项逐一代数计算即可得出答案. 【详解】 解:A选项:∵,∴4、5、6三边长无法组成直角三角形,故该选项错误; B选项:∵,∴1、2、三边长可以组成直角三角形,故该选项正确; C选项:∵,∴6、8、11三边长无法组成直角三角形,故该选项错误; D选项:∵,∴5、12、14三边长无法组成直角三角形,故该选项错误, 故选:B. 【点睛】 本题主要考察了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断. 6.C 解析:C 【解析】 【分析】 由菱形的性质可得AB=AD,∠B=∠D,∠C=∠BAD,由“SAS”可证△ABE≌△ADF,可得∠DAF=∠BAE,由等腰三角形的性质和三角形内角和定理可求∠BAE=10°,即可求解. 【详解】 解:∵四边形ABCD是菱形, ∴AB=AD,∠B=∠D,∠C=∠BAD, 在△ABE和△ADF中, ∵, ∴△ABE≌△ADF(SAS), ∴∠DAF=∠BAE, 设∠BAE=∠DAF=x, ∴∠DAE=75°+x, ∵AD∥BC, ∴∠AEB=75°+x, ∵AB=AE, ∴∠B=∠AEB=75°+x, ∵∠BAE+∠ABE+∠AEB=180°, ∴x+75°+x+75°+x=180°, ∴x=10°, ∴∠BAD=95°, ∴∠C=95°, 故选:C. 【点睛】 本题考查了菱形的性质,等腰三角形的性质,全等三角形的判定和性质,证明△ABE≌△ADF是解题的关键. 7.B 解析:B 【解析】 【分析】 过点E作EH⊥BC,由三角形面积求得EH=AB=6,由图2知,当x=14时,点P与点D重合,则AD=12,从而可得答案. 【详解】 从函数的图象和运动过程知:当点P运动到点E时,x=10,y=30 即BE=BQ=10, 过点E作EH⊥BC于点H,如图 则 解得:EH=6 ∵四边形ABHE是矩形 ∴AB=EH=6 在Rt△ABE中,由勾股定理得: 由图2知,当x=14时,点P与点D重合 即BE+ED=14 ∴ED=14-BE=4 ∴AD=AE+ED=8+4=12 ∴矩形ABCD的面积为:12×6=72(厘米2) 故选:B. 【点睛】 本题考查了动点问题的函数图象,三角形的面积,勾股定理,矩形的判定与性质等知识,弄懂动点运动过程、数形结合是解答本题的关键. 8.D 解析:D 【分析】 设点C的横坐标为m,则点C的坐标为(m,﹣3m),点B的坐标为(﹣,﹣3m),根据正方形的性质,即可得出关于k的分式方程,解之经检验后即可得出结论. 【详解】 解:设点C的横坐标为m, ∵点C在直线y=-3x上,∴点C的坐标为(m,﹣3m), ∵四边形ABCD为正方形, ∴BC∥x轴,BC=AB, 又点B在直线y=kx上,且点B的纵坐标与点C的纵坐标相等, ∴点B的坐标为(﹣,﹣3m), ∴﹣﹣m=﹣3m, 解得:k=, 经检验,k=是原方程的解,且符合题意. 故选:D. 【点睛】 本题考查正方形的性质,正比例函数的图象与性质以及解分式方程等知识点,灵活运用性质是解题的关键. 二、填空题 9.x≥0且x≠9 【解析】 【分析】 根据二次根式有意义的条件:被开方数要大于等于0,以及分式有意义的条件:分母不为0,计算求解即可. 【详解】 解:∵二次根式有意义 ∴且 ∴且 故答案为:且. 【点睛】 本题主要考查了二次根式和分式有意义的条件,解题的关键在于能够熟练掌握相关知识点进行求解. 10.【解析】 【分析】 根据对角线的长度,利用面积公式即可求解. 【详解】 解:菱形的面积计算公式S=ab(a、b为菱形的对角线长) ∴菱形的面积S=×8×10=40, 故答案为: 40. 【点睛】 本题主要考查菱形的面积,掌握菱形的面积公式是解题的关键. 11.30 【解析】 【分析】 由勾股定理求出小长方形的长,再由长方形的面积公式进行计算. 【详解】 由勾股定理得:=10, ∴阴影小长方形的面积S=3×10=30; 故答案是:30. 【点睛】 考查了勾股定理;解题关键是利用勾股定理求出小长方形的长. 12.D 解析: 【分析】 由题意易得OD=OC,∠DOC=60°,进而可得△DOC是等边三角形,然后问题可求解. 【详解】 解:∵四边形ABCD是矩形,BD=12, ∴, ∵∠AOD=120°, ∴∠DOC=60°, ∴△DOC是等边三角形, ∴; 故答案为:6. 【点睛】 本题主要考查矩形的性质及等边三角形的性质与判定,熟练掌握矩形的性质及等边三角形的性质与判定是解题的关键. 13. 【解析】 【分析】 设一次函数解析式为y=kx+b,先把(0,-2)代入得b=-2,再利用两直线平行的问题得到k=-3,即可得到一次函数解析式. 【详解】 解:设一次函数解析式为y=kx+b, 把(0,-2)代入得b=-2, ∵直线y=kx+b与直线y=2-3x平行, ∴k=-3, ∴一次函数解析式为y=-3x-2. 故答案为:y=-3x-2. 【点睛】 本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同. 14.A 解析:16 【分析】 当四边形ABCD为菱形时,则有AC⊥BD,设AC、BD交于点O,结合平行四边形的性质可得AO=6,AB=10,利用勾股定理可求得BO,则可求得BD的长. 【详解】 解:如图,设AC、BD交于点O, 当四边形ABCD为菱形时,则AC⊥BD, ∵四边形ABCD为平行四边形, ∴AO=AC=6,且AB=10, ∴在Rt△AOB中,BO, ∴BD=2BO=16, 故答案为:16. 【点睛】 本题主要考查菱形的性质,掌握菱形的对角线互相垂直且平分是解题的关键. 15.2或3 【分析】 ①利用路程的函数图象解得的解析式,再求的值; ②根据题意列方程解答即可. 【详解】 解:①设=kx+b, ∵经过点P(2.5,7.5),(4,0). ∴ , 解得 , ∴= 解析:2或3 【分析】 ①利用路程的函数图象解得的解析式,再求的值; ②根据题意列方程解答即可. 【详解】 解:①设=kx+b, ∵经过点P(2.5,7.5),(4,0). ∴ , 解得 , ∴=−5x+20,当x=0时,=20. 答:AB两地之间的距离为20km. ②根据题意得:或, 解得:或. 即出发2小时或3小时,甲、乙两人相距 【点睛】 此题主要考查了根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.熟练掌握相遇问题的解答也很关键. 16.【分析】 根据折叠的性质和矩形的性质得到BF=DF,设BF=DF=x,在△CDF中,利用勾股定理列出方程,求出x值,得到DF,即可计算EF的值. 【详解】 解:由折叠可知: AB=BE=CD=3, 解析: 【分析】 根据折叠的性质和矩形的性质得到BF=DF,设BF=DF=x,在△CDF中,利用勾股定理列出方程,求出x值,得到DF,即可计算EF的值. 【详解】 解:由折叠可知: AB=BE=CD=3,∠E=∠A=90°,DE=AD=4,∠ADB=∠EDB, ∵四边形ABCD是矩形, ∴AD∥BC, ∴∠ADB=∠CBD, ∴∠CBD=∠EDB, ∴BF=DF,设BF=DF=x, 则CF=4-x,在△CDF中, ,即, 解得:x=,即DF=, ∴EF=DE-DF==, 故答案为:. 【点睛】 本题主要考查了矩形的性质,翻折的性质,勾股定理,等角对等边,解题的关键是利用折叠的性质得到相等线段,利用勾股定理列出方程. 三、解答题 17.(1);(2);(3);(4) 【分析】 (1)根据二次根式的性质化简各项,然后再合并同类项即可; (2)先结合平方差公式和完全平方公式计算,再去括号即可; (3)利用代入消元法求解即可; (4)利 解析:(1);(2);(3);(4) 【分析】 (1)根据二次根式的性质化简各项,然后再合并同类项即可; (2)先结合平方差公式和完全平方公式计算,再去括号即可; (3)利用代入消元法求解即可; (4)利用加减消元法求解即可. 【详解】 解:(1)原式 ; (2)原式 ; (3) 由②可得:, 将代入①得:, 解得:, ∴, ∴原方程组解为:; (4) 由①×4-②×3可得:, 解得:, 将代入①可得:, 解得:, ∴原方程组解为:. 【点睛】 本题考查二次根式的混合运算,解二元一次方程组等,掌握基本解法,并熟练运用乘法公式是解题关键. 18.(1)4米;(2)1米 【分析】 (1)利用勾股定理可以得出梯子的顶端距离地面的高度. (2)由(1)可以得出梯子的初始高度,下滑4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的 解析:(1)4米;(2)1米 【分析】 (1)利用勾股定理可以得出梯子的顶端距离地面的高度. (2)由(1)可以得出梯子的初始高度,下滑4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为7米,可以得出,梯子底端水平方向上滑行的距离. 【详解】 解:(1)根据勾股定理: 墙的高度(米; (2)梯子下滑了1米,即梯子距离地面的高度(米. 根据勾股定理:(米 则(米,即底端将水平动1米. 答:(1)墙的高度是4米; (2)若梯子的顶端下滑1米,底端将水平动1米. 【点睛】 本题考查了勾股定理的应用,要求熟练掌握利用勾股定理求直角三角形边长. 19.(1)见解析;(2)10;(3),4. 【解析】 【分析】 (1)根据A点坐标为,B点坐标为特点,建立直角坐标系; (2)分三种情况讨论,若AB=AC或AB=BC,或BC=AC,此时的点C在线段AB 解析:(1)见解析;(2)10;(3),4. 【解析】 【分析】 (1)根据A点坐标为,B点坐标为特点,建立直角坐标系; (2)分三种情况讨论,若AB=AC或AB=BC,或BC=AC,此时的点C在线段AB的垂直平分线上,据此画图; (3)根据题意,符合条件的点是点,结合勾股定理解得,即可解得周长,再由解得其面积. 【详解】 解:(1)如图建立直角坐标系, (2)分三种情况讨论,如图,若AB=AC或AB=BC,或BC=AC,此时的点C在线段AB的垂直平分线上, 符合条件的点C共有10个, 故答案为:10; (3)在(1)(2)的前提下,在第四象限中,当是以AB为底的等腰三角形,且腰长为无理数时,符合条件的点是点 故答案为:,4. 【点睛】 本题考查网格与勾股定理、网格中画等腰三角形、等腰三角形的性质等知识,是重要考点,掌握相关知识是解题关键. 20.见解析 【分析】 先根据四边形是平行四边形且得到平行四边形是菱形,即可得到,再根据,,证明四边形是平行四边形,即可得到平行四边形是矩形. 【详解】 证明:∵四边形是平行四边形且 ∴平行四边形是菱形 解析:见解析 【分析】 先根据四边形是平行四边形且得到平行四边形是菱形,即可得到,再根据,,证明四边形是平行四边形,即可得到平行四边形是矩形. 【详解】 证明:∵四边形是平行四边形且 ∴平行四边形是菱形 ∴,即 又∵,. ∴四边形是平行四边形, ∴平行四边形是矩形. 【点睛】 本题主要考查了平行四边形的判定,矩形的判定,菱形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 21.(1)+1;(2)4+;(3)﹣1. 【解析】 【详解】 试题分析:根据完全平方公式的特点以及材料中所给的方法,通过仔细观察对所要求的式子中的数进行恰当拆分即可得. 试题解析:(1); (2)=4+ 解析:(1)+1;(2)4+;(3)﹣1. 【解析】 【详解】 试题分析:根据完全平方公式的特点以及材料中所给的方法,通过仔细观察对所要求的式子中的数进行恰当拆分即可得. 试题解析:(1); (2)=4+; (3) =++++ =﹣1+﹣+﹣+﹣+﹣ =﹣1. 22.(1)普通登录时,y与x之间的函数关系式为y=4x;银卡登录时,y与x之间的函数关系式为y=2x+30;(2)A(0,30);B(15,60);C(45,120);(3)见解析 【分析】 (1)弄清 解析:(1)普通登录时,y与x之间的函数关系式为y=4x;银卡登录时,y与x之间的函数关系式为y=2x+30;(2)A(0,30);B(15,60);C(45,120);(3)见解析 【分析】 (1)弄清题意,结合图象易知普通登录时为正比例函数图象,银卡为一次函数图象,依题意写出即可; (2)根据(1)的结论列方程组可得点B的坐标,根据银卡登录y与x之间的函数关系式可得点A、C的坐标; (3)先求出点D的坐标,再根据图象解答即可. 【详解】 解:(1)由题意可知,普通登录时,y与x之间的函数关系式为y=4x; 银卡登录时,y与x之间的函数关系式为y=2x+30; (2)由题意可知,点A 的坐标为(0,30); 解方程组,得, ∴点B的坐标为(15,60); 由2x+30=120,解得x=45, ∴点C的坐标为(45,120). 故答案为:A(0,30);B(15,60);C(45,120); (3)由4x=120,解得x=30, ∴点D的坐标为(30,120), 根据函数图象,可知: 当0<x<15时,选择购买普通票更合算; 当x=15时,选择购买银卡、普通票的总费用相同; 当15<x<45时,选择购买银卡更合算. 当x=45时,选择购买银卡和金卡更合算. 当x>45时,选择购买金卡更合算. 【点睛】 本题考查一次函数的应用,重点掌握一次函数的基本性质,能利用数形结合的思想方法是解题关键. 23.(1)a+b;(2)①EC=2MN,见解析;②MN的最大值为4;(3)MN=7;(4)2≤MN≤8 【分析】 (1)当点在的延长线上时,的值最大. (2)①结论:.连接,再利用全等三角形的性质证明, 解析:(1)a+b;(2)①EC=2MN,见解析;②MN的最大值为4;(3)MN=7;(4)2≤MN≤8 【分析】 (1)当点在的延长线上时,的值最大. (2)①结论:.连接,再利用全等三角形的性质证明,再利用三角形的中位线定理,可得结论.②根据,求出,,可得结论. (3)如图3中,以为边向左作等边,连接,,过点作交的延长线于.证明,,求出可得结论. (4)由(3)可知,,求出的取值范围,可得结论. 【详解】 解:(1),, , 的最大值为, 故答案为:. (2)①结论:. 理由:连接. , , 在和中, , , , ,, , . ②,, ,, , , , 的最大值为4. (3)如图3中,以为边向左作等边,连接,,过点作交的延长线于. ,都是等边三角形, ,,, , 在和中, , , , ,, , , , , , ,, , , . (4)由(3)可知,, , , . 【点睛】 本题属于三角形综合题,考查了等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 24.(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4) 【解析】 【分析】 (1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC的解析式; (2)过点P作PG 解析:(1)y=-2x+8;(2)S=16m-2m2;(3)(-2,4) 【解析】 【分析】 (1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求BC的解析式; (2)过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,由“AAS”可证△AGP≌△CHQ,可得AG=HC=m-4,PG=HQ=2m-8,由“AAS”可证△PEF≌△QCF,可得S△PEF=S△QCF,即可求解; (3)如图2,连接AM,CM,过点P作PE⊥AC,由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=4,可求m的值,可得点P的坐标. 【详解】 解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B, ∴点B(0,8),点A(-4,0) ∴AO=4,BO=8, ∵AB=BC,BO⊥AC, ∴AO=CO=4, ∴点C(4,0), 设直线BC解析式为:y=kx+b, 由题意可得:, 解得:, ∴直线BC解析式为:y=-2x+8; (2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC, 设△PBQ的面积为S, ∵AB=CB, ∴∠BAC=∠BCA, ∵点Q横坐标为m, ∴点Q(m,-2m+8) ∴HQ=2m-8,CH=m-4, ∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°, ∴△AGP≌△CHQ(AAS), ∴AG=HC=m-4,PG=HQ=2m-8, ∵PE∥BC, ∴∠PEA=∠ACB,∠EPF=∠CQF, ∴∠PEA=∠PAE, ∴AP=PE,且AP=CQ, ∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ, ∴△PEF≌△QCF(AAS) ∴S△PEF=S△QCF, ∴△PBQ的面积 =四边形BCFP的面积+△CFQ的面积 =四边形BCFP的面积+△PEF的面积 =四边形PECB的面积, ∴S=S△ABC-S△PAE=×8×8-×(2m-8)×(2m-8)=16m-2m2; (3)如图2,连接AM,CM,过点P作PE⊥AC, ∵AB=BC,BO⊥AC, ∴BO是AC的垂直平分线, ∴AM=CM,且AP=CQ,PM=MQ, ∴△APM≌△CQM(SSS) ∴∠PAM=∠MCQ,∠BQM=∠APM=45°, ∵AM=CM,AB=BC,BM=BM, ∴△ABM≌△CBM(SSS) ∴∠BAM=∠BCM, ∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°, ∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°, ∴∠APM=∠AMP=45°, ∴AP=AM, ∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°, ∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP, ∴△APE≌△MAO(AAS) ∴AE=OM,PE=AO=4, ∴2m-8=4, ∴m=6, ∴P(-2,4). 【点睛】 本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键. 25.(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或. 【分析】 (1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2 解析:(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或. 【分析】 (1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题. (2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题. (3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题. 【详解】 (1)如图1中,作BH⊥x轴于H. ∵A(1,0)、C(0,2), ∴OA=1,OC=2, ∵∠COA=∠CAB=∠AHB=90°, ∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°, ∴∠ACO=∠BAH, ∵AC=AB, ∴△COA≌△AHB(AAS), ∴BH=OA=1,AH=OC=2, ∴OH=3, ∴B(3,1), 设直线BC的解析式为y=kx+b,则有, 解得:, ∴; (2)如图2中, ∵四边形ABMN是平行四边形, ∴AN∥BM, ∴直线AN的解析式为:, ∴, ∴, ∵B(3,1),C(0,2), ∴BC=, ∴, ∴, ∴t=s时,四边形ABMN是平行四边形; (3)如图3中, 如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3, 连接OQ交BC于E, ∵OE⊥BC, ∴直线OE的解析式为y=3x, 由,解得:, ∴E(,), ∵OE=OQ, ∴Q(,), ∵OQ1∥BC, ∴直线OQ1的解析式为y=-x, ∵OQ1=OB=,设Q1(m,-), ∴m2+m2=10, ∴m=±3, 可得Q1(3,-1),Q3(-3,1), 当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上, 易知线段OB的垂直平分线的解析式为y=-3x+5, 由,解得:, ∴Q2(,). 综上所述,满足条件的点Q坐标为:或或或. 【点睛】 本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年 级数 下册 期末试卷 提升 Word 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文