2024年人教版中学七7年级下册数学期末测试题(含答案).doc
《2024年人教版中学七7年级下册数学期末测试题(含答案).doc》由会员分享,可在线阅读,更多相关《2024年人教版中学七7年级下册数学期末测试题(含答案).doc(24页珍藏版)》请在咨信网上搜索。
2024年人教版中学七7年级下册数学期末测试题(含答案) 一、选择题 1.的平方根是() A.- B. C. D. 2.下列图中的“笑脸”,是由上面教师寄语中的图像平移得到的是( ) A. B. C. D. 3.在平面直角坐标系中,下列各点在第二象限的是( ) A. B. C. D. 4.在以下三个命题中,正确的命题有( ) ①a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c相交 ②a,b,c是三条不同的直线,若a∥b,b∥c,则a∥c ③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ互补 A.② B.①② C.②③ D.①②③ 5.如图,直线,点,分别是,上的动点,点在上,,和的角平分线交于点,若,则的值为( ). A.70 B.74 C.76 D.80 6.下列计算正确的是( ) A. B. C. D. 7.如图,直线a∥b,直角三角板ABC的直角顶点C在直线b上,若∠1=54°,则∠2的度数为( ) A.36° B.44° C.46° D.54° 8.如图,在平面直角坐标系中,,,,,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点处,并按的规律绕在四边形的边上,则细线另--端所在位置的点的坐标是( ) A. B. C. D. 九、填空题 9.计算_______________. 十、填空题 10.在平面直角坐标系中,点P(-3,2)关于x轴对称的点P1的坐标是______________. 十一、填空题 11.如图,BE是△ABC的角平分线,AD是△ABC的高,∠ABC=60°,则 ∠AOE=_____. 十二、填空题 12.如图,已知a//b,∠1=50°,∠2=115°,则∠3=______. 十三、填空题 13.如图,在长方形纸片ABCD中,点E、F分别在AD、BC上,将长方形纸片沿直线EF折叠后,点D、C分别落在点D1、C1的位置,如果∠=40°,那么∠EFB的度数是_____度. 十四、填空题 14.[x)表示小于x的最大整数,如[2.3)=2,[4)=5,则下列判断:①[)=;②[x)x有最大值是0;③[x)x有最小值是1;④x[x)x,其中正确的是__________ (填编号). 十五、填空题 15.平面直角坐标系中,已知点A(2,0),B(0,3),点P(m,n)为第三象限内一点,若△PAB的面积为18,则m,n满足的数量关系式为________. 十六、填空题 16.如图,在平面直角坐标系上有点A(1,0),第一次点A跳动至点A1(﹣1,1),第二次点A1跳动至点A2(2,1),第三次点A2跳动至点A3(﹣2,2),第四次点A3跳动至点A4(3,2),…依此规律跳动下去,则点A2021与点A2022之间的距离是_______. 十七、解答题 17.计算:(1);(2) 十八、解答题 18.求下列各式中x的值. (1)4x2=64; (2)3(x﹣1)3+24=0. 十九、解答题 19.完成下面的证明: 已知:如图, , 和相交于点, 平分,和相交于点,. 求证:. 证明:(已知), (______________), ________(两直线平行,同位角相等). 又(已知), ______(________) (等量代换) . 平分(已知) , _______(角平分线的定义). (_________). 二十、解答题 20.在下图的直角坐标系中,将平移后得到,它们的各顶点坐标如下表所示: (1)观察表中各对应点坐标的变化,并填空:向________平移________个单位长度,再向_______平移________个单位长度可以得到; (2)在坐标系中画出及平移后的; (3)求出的面积. 二十一、解答题 21.已知某正数的两个平方根分别是和的立方根是是的整数部分. (1)求的值; (2)求的算术平方根. 二十二、解答题 22.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3) 二十三、解答题 23.如图,直线AB∥直线CD,线段EF∥CD,连接BF、CF. (1)求证:∠ABF+∠DCF=∠BFC; (2)连接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求证:CE平分∠BCD; (3)在(2)的条件下,G为EF上一点,连接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度数. 二十四、解答题 24.(感知)如图①,,求的度数.小明想到了以下方法: 解:如图①,过点作, (两直线平行,内错角相等) (已知), (平行于同一条直线的两直线平行), (两直线平行,同旁内角互补). (已知), (等式的性质). (等式的性质). 即(等量代换). (探究)如图②,,,求的度数. (应用)如图③所示,在(探究)的条件下,的平分线和的平分线交于点,则的度数是_______________. 二十五、解答题 25.如图,直线,、是、上的两点,直线与、分别交于点、,点是直线上的一个动点(不与点、重合),连接、. (1)当点与点、在一直线上时,,,则_____. (2)若点与点、不在一直线上,试探索、、之间的关系,并证明你的结论. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据平方根的定义(如果一个数的平方等于,那么这个数叫做的平方根)即可得. 【详解】 解:因为, 所以的平方根是, 故选:C. 【点睛】 本题考查了平方根,熟练掌握平方根的定义是解题关键. 2.D 【分析】 根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等. 【详解】 解:A、B、C都不是由平移得到的,D是由平移得到的. 故选:D. 【点睛】 解析:D 【分析】 根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等. 【详解】 解:A、B、C都不是由平移得到的,D是由平移得到的. 故选:D. 【点睛】 本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等. 3.D 【分析】 根据在第二象限的点的特征进行判断,即可得到答案. 【详解】 解:∵第二象限的点特征是横坐标小于零,纵坐标大于零, ∴点(-3,7)在第二象限, 故选D. 【点睛】 本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.A 【分析】 根据直线与直线的位置关系、平行线的判定定理和同角的补角相等逐一判断即可. 【详解】 解:①a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c不一定相交,如下图所示,故①错误; ②a,b,c是三条不同的直线,若a∥b,b∥c,则a∥c,故②正确; ③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ相等,故③错误 综上:正确的命题是②. 故选A. 【点睛】 此题考查的是直线的位置关系的判断和补角的性质,掌握直线与直线的位置关系、平行线的判定定理和同角的补角相等是解决此题的关键. 5.C 【分析】 先由平行线的性质得到∠ACB=∠5+∠1+∠2,再由三角形内角和定理和角平分线的定义求出m即可. 【详解】 解:过C作CH∥MN, ∴∠6=∠5,∠7=∠1+∠2, ∵∠ACB=∠6+∠7, ∴∠ACB=∠5+∠1+∠2, ∵∠D=52°, ∴∠1+∠5+∠3=180°−52°=128°, 由题意可得GD为∠AGB的角平分线,BD为∠CBN的角平分线, ∴∠1=∠2,∠3=∠4, ∴m°=∠1+∠2+∠5=2∠1+∠5,∠4=∠1+∠D=∠1+52°, ∴∠3=∠4=∠1+52°, ∴∠1+∠5+∠3=∠1+∠5+∠1+52°=2∠1+∠5+52°=m°+52°, ∴m°+52°=128°, ∴m°=76°. 故选:C. 【点睛】 本题主要考查平行线的性质和角平分线的定义,关键是对知识的掌握和灵活运用. 6.D 【分析】 分别根据算术平方根的定义以及立方根的定义逐一判断即可. 【详解】 解:A、,故本选项不合题意; B、,故本选项不合题意; C、,故本选项不合题意; D、,故本选项符合题意; 故选:D. 【点睛】 本题主要考查算术平方根及立方根,熟练掌握求一个数的算术平方根及立方根是解题的关键. 7.A 【分析】 根据直角三角形可求出∠3的度数,再根据平行线的性质∠2=∠3即可得出答案. 【详解】 解:如图所示: ∵直角三角形ABC,∠C=90°,∠1=54°, ∴∠3=90°-∠1=36°, ∵a∥b, ∴∠2=∠3=36°. 故选:A. 【点睛】 本题考查了平行线的性质,熟练掌握平行线的性质,求出∠3的度数是解题的关键. 8.B 【分析】 先求出四边形ABCD的周长为10,得到2021÷10的余数为1,由此即可解决问题. 【详解】 解:∵A(1,1),B(-1,1),C(-1,-2),D(1,-2), ∴四边形ABCD的 解析:B 【分析】 先求出四边形ABCD的周长为10,得到2021÷10的余数为1,由此即可解决问题. 【详解】 解:∵A(1,1),B(-1,1),C(-1,-2),D(1,-2), ∴四边形ABCD的周长为10, 2021÷10的余数为1, 又∵AB=2, ∴细线另一端所在位置的点在A处左面1个单位的位置,坐标为(0,1). 故选:B. 【点睛】 本题考查规律型:点的坐标,解题的关键是理解题意,求出四边形ABCD的周长,属于中考常考题型. 九、填空题 9.11 【分析】 直接利用算术平方根的定义以及有理数的乘方运算法则分别化简得出答案. 【详解】 解:原式=2+9 =11. 故答案为:11. 【点睛】 此题主要考查了算术平方根以及有理数的乘方运算,正 解析:11 【分析】 直接利用算术平方根的定义以及有理数的乘方运算法则分别化简得出答案. 【详解】 解:原式=2+9 =11. 故答案为:11. 【点睛】 此题主要考查了算术平方根以及有理数的乘方运算,正确化简各数是解题关键. 十、填空题 10.(-3,-2) 【分析】 根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案. 【详解】 点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2). 故答案为:(﹣3,﹣2). 【点 解析:(-3,-2) 【分析】 根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案. 【详解】 点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2). 故答案为:(﹣3,﹣2). 【点睛】 本题考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律. 十一、填空题 11.60° 【分析】 先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论. 【详解】 ∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠A 解析:60° 【分析】 先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论. 【详解】 ∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠ABC=×60°=30°,∵AD是△ABC的高,∴∠ADC=90°,∵∠ADC是△OBD的外角,∴∠BOD=∠ADC-∠OBD=90°-30°=60°,∴∠AOE=∠BOD=60°,故答案为60°. 【点睛】 本题考查的是三角形外角的性质,即三角形的一个外角等于和它不相邻的两个内角的和. 十二、填空题 12.65° 【分析】 根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解. 【详解】 解:如图: ∵a//b,∠1=50°, ∴∠4=∠1=50°, ∵∠2=115°,∠2=∠3+∠4, 解析:65° 【分析】 根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解. 【详解】 解:如图: ∵a//b,∠1=50°, ∴∠4=∠1=50°, ∵∠2=115°,∠2=∠3+∠4, ∴∠3=∠2﹣∠4=115°﹣50°=65°. 故答案为:65°. 【点睛】 此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键. 十三、填空题 13.70 【分析】 先利用折叠的性质得出∠DEF=∠D1EF,再由利用平角的应用求出∠DEF,最后长方形的性质即可得出结论. 【详解】 解:如图,由折叠可得∠DEF=∠D1EF, ∵∠AED1=40° 解析:70 【分析】 先利用折叠的性质得出∠DEF=∠D1EF,再由利用平角的应用求出∠DEF,最后长方形的性质即可得出结论. 【详解】 解:如图,由折叠可得∠DEF=∠D1EF, ∵∠AED1=40°, ∴∠DEF==70°, ∵四边形ABCD是长方形, ∴AD∥BC, ∴∠EFB=∠DEF=70°. 故答案为:70. 【点睛】 考查了长方形的性质,折叠的性质,关键是利用折叠的性质得出∠DEF=∠D1EF解答. 十四、填空题 14.③,④ 【分析】 ①[x) 示小于x的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可, ②由定义得[x)x变形可以直接判断, ③由定义得x≤[x)+1,变式即可判断, ④由定义 解析:③,④ 【分析】 ①[x) 示小于x的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可, ②由定义得[x)x变形可以直接判断, ③由定义得x≤[x)+1,变式即可判断, ④由定义知[x)x≤[x)+1,由x≤[x)+1变形的x-1≤[x),又[x)x联立即可判断. 【详解】 由定义知[x)x≤[x)+1, ①[)=-9①不正确, ②[x)表示小于x的最大整数,[x)x,[x) -x0没有最大值,②不正确 ③x≤[x)+1,[x)-x≥-1,[x)x有最小值是1,③正确, ④由定义知[x)x≤[x)+1, 由x≤[x)+1变形的x-1≤[x), ∵[x)x, ∴x[x)x, ④正确. 故答案为:③④. 【点睛】 本题考查实数数的新规定的运算 ,阅读题给的定义,理解其含义,掌握性质[x)x≤[x)+1,利用性质解决问题是关键. 十五、填空题 15.【分析】 连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答. 【详解】 解:连接OP,如图: ∵A(2,0),B(0,3), ∴OA=2,OB=3, 解析: 【分析】 连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答. 【详解】 解:连接OP,如图: ∵A(2,0),B(0,3), ∴OA=2,OB=3, ∵∠AOB=90°, ∴, ∵点P(m,n)为第三象限内一点, , , , , 整理可得:; 故答案为:. 【点睛】 本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形. 十六、填空题 16.2023 【分析】 根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2 解析:2023 【分析】 根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2022的坐标,进而可求出点A2021与点A2022之间的距离. 【详解】 解:观察发现,第2次跳动至点的坐标是(2,1), 第4次跳动至点的坐标是(3,2), 第6次跳动至点的坐标是(4,3), 第8次跳动至点的坐标是(5,4), … 第2n次跳动至点的坐标是(n+1,n), 则第2022次跳动至点的坐标是(1012,1011), 第2021次跳动至点的坐标是(-1011,1011). ∵点A2021与点A2022的纵坐标相等, ∴点A2021与点A2022之间的距离=1012-(-1011)=2023, 故答案为:2023. 【点睛】 本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键. 十七、解答题 17.(1)0 ;(2)2 【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可; 试题解析: ①原式=2+2-4=0 解析:(1)0 ;(2) 【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可; 试题解析: ①原式=2+2-4=0 ②原式== 十八、解答题 18.(1)x=±4;(2)x=-1 【分析】 (1)根据平方根的定义解方程即可; (2)根据立方根的定义解方程即可. 【详解】 解:(1)4x2=64, ∴x2=16, ∴x=±4; (2)3(x-1) 解析:(1)x=±4;(2)x=-1 【分析】 (1)根据平方根的定义解方程即可; (2)根据立方根的定义解方程即可. 【详解】 解:(1)4x2=64, ∴x2=16, ∴x=±4; (2)3(x-1)3+24=0, ∴3(x-1)3=-24, ∴(x-1)3=-8, ∴x-1=-2, ∴x=-1. 【点睛】 本题主要考查了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解. 十九、解答题 19.内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换. 【分析】 由可判定,即得出,再根据得出,等量代换得到,再根据角平分线的定义等量代换即可得解. 【详解】 证明:(已知), (内 解析:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换. 【分析】 由可判定,即得出,再根据得出,等量代换得到,再根据角平分线的定义等量代换即可得解. 【详解】 证明:(已知), (内错角相等,两直线平行), (两直线平行,同位角相等). 又(已知), (两直线平行,同位角相等), (等量代换). 平分(已知), (角平分线的定义). (等量代换). 故答案为:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换. 【点睛】 本题考查了平行线的判定与性质,解题的关键是熟记“内错角相等,两直线平行”、“两直线平行,同位角相等”. 二十、解答题 20.(1)上,2,右,4 ;(2)见解析;(3)7.5 【分析】 (1)利用根据A,B两点的坐标变化:A(a,0),A′(4,2);B(3,0),B′(7,b),即可得出A,B向上平移2个单位长度,再 解析:(1)上,2,右,4 ;(2)见解析;(3)7.5 【分析】 (1)利用根据A,B两点的坐标变化:A(a,0),A′(4,2);B(3,0),B′(7,b),即可得出A,B向上平移2个单位长度,再向右平移4 个单位长度,即可得出图形. (2)根据(1)中图象变化,得出△A′B′C′; (3)利用S△ABC=S△A′B′C′=AB×yc得出即可. 【详解】 解:(1)根据A,B两点的坐标变化:A(a,0),A′(4,2);B(3,0),B′(7,b); △ABC向上平移2个单位长度,再向右平移4 个单位长度可以得到△A′B′C′; (2)如图所示: (3)S△ABC=S△A′B′C′=AB×yc=×3×5=7.5. 【点睛】 此题主要考查了图形的平移变换的性质与作法以及三角形面积求法,根据A,B两点坐标变化得出图象平移变化位置是解题关键. 二十一、解答题 21.(1),,c=4;(2)4 【分析】 (1)由题意可得出,得出a的值,代入中得出b的值,再根据即可得出c的值; (2)代入a、b、c的值求出代数式的值,再求算术平方根即可. 【详解】 解:(1)∵某 解析:(1),,c=4;(2)4 【分析】 (1)由题意可得出,得出a的值,代入中得出b的值,再根据即可得出c的值; (2)代入a、b、c的值求出代数式的值,再求算术平方根即可. 【详解】 解:(1)∵某正数的两个平方根分别是和 ∴ ∴ 又∵的立方根是3 ∴ ∴ 又∵,c是的整数部分 ∴ (2) 故的算术平方根是4. 【点睛】 本题考查的知识点是平方根、算术平方根、立方根、估算无理数的大小,属于基础题目,解此题的难点在于c值的确定,学会用“逼近法”求无理数的整数部分是解此题的关键. 二十二、解答题 22.选择建成圆形草坪的方案,理由详见解析 【分析】 根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答 解析:选择建成圆形草坪的方案,理由详见解析 【分析】 根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案. 【详解】 解:选择建成圆形草坪的方案,理由如下: 设建成正方形时的边长为x米, 由题意得:x2=81, 解得:x=±9, ∵x>0, ∴x=9, ∴正方形的周长为4×9=36, 设建成圆形时圆的半径为r米, 由题意得:πr2=81. 解得:, ∵r>0. ∴, ∴圆的周长=, ∵, ∴, ∴建成圆形草坪时所花的费用较少, 故选择建成圆形草坪的方案. 【点睛】 本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键. 二十三、解答题 23.(1)证明见解析;(2)证明见解析;(3)∠FBE=35°. 【分析】 (1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可; (2)由(1)的结论和垂直的定义解答即可; 解析:(1)证明见解析;(2)证明见解析;(3)∠FBE=35°. 【分析】 (1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可; (2)由(1)的结论和垂直的定义解答即可; (3)由(1)的结论和三角形的角的关系解答即可. 【详解】 证明:(1)∵AB∥CD,EF∥CD, ∴AB∥EF, ∴∠ABF=∠BFE, ∵EF∥CD, ∴∠DCF=∠EFC, ∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF; (2)∵BE⊥EC, ∴∠BEC=90°, ∴∠EBC+∠BCE=90°, 由(1)可得:∠BFC=∠ABE+∠ECD=90°, ∴∠ABE+∠ECD=∠EBC+∠BCE, ∵BE平分∠ABC, ∴∠ABE=∠EBC, ∴∠ECD=∠BCE, ∴CE平分∠BCD; (3)设∠BCE=β,∠ECF=γ, ∵CE平分∠BCD, ∴∠DCE=∠BCE=β, ∴∠DCF=∠DCE﹣∠ECF=β﹣γ, ∴∠EFC=β﹣γ, ∵∠BFC=∠BCF, ∴∠BFC=∠BCE+∠ECF=γ+β, ∴∠ABF=∠BFE=2γ, ∵∠FBG=2∠ECF, ∴∠FBG=2γ, ∴∠ABE+∠DCE=∠BEC=90°, ∴∠ABE=90°﹣β, ∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ, ∵BE平分∠ABC, ∴∠CBE=∠ABE=90°﹣β, ∴∠CBG=∠CBE+∠GBE, ∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ, 整理得:2γ+β=55°, ∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°. 【点睛】 本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答. 二十四、解答题 24.[探究] 70°;[应用] 35 【分析】 [探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数. [应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线 解析:[探究] 70°;[应用] 35 【分析】 [探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数. [应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数. 【详解】 解:[探究]如图②,过点P作PM∥AB, ∴∠MPE=∠AEP=50°(两直线平行,内错角相等) ∵AB∥CD(已知), ∴PM∥CD(平行于同一条直线的两直线平行), ∴∠PFC=∠MPF=120°(两直线平行,内错角相等). ∴∠EPF=∠MPF-MPE=120°50°=70°(等式的性质). 答:∠EPF的度数为70°; [应用]如图③所示, ∵EG是∠PEA的平分线,PG是∠PFC的平分线, ∴∠AEG=∠AEP=25°,∠GCF=∠PFC=60°, 过点G作GM∥AB, ∴∠MGE=∠AEG=25°(两直线平行,内错角相等) ∵AB∥CD(已知), ∴GM∥CD(平行于同一条直线的两直线平行), ∴∠GFC=∠MGF=60°(两直线平行,内错角相等). ∴∠G=∠MGF-MGE=60°-25°=35°. 答:∠G的度数是35°. 故答案为:35. 【点睛】 本题考查了平行线的判定与性质、平行公理及推论,解决本题的关键是掌握平行线的判定与性质. 二十五、解答题 25.(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解. 【分析】 (1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出 解析:(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解. 【分析】 (1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出=60°,计算∠PFD即可; (2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;②当点P在AB上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可. 【详解】 (1)当点与点、在一直线上时,作图如下, ∵AB∥CD,∠FHP=60°,, ∴=∠FHP=60°, ∴∠EFD=180°-∠GEP=180°-60°=120°, ∴∠PFD=120°, 故答案为:120°; (2)满足关系式为∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP. 证明:根据点P是动点,分三种情况讨论: ①当点P在AB与CD之间时, 过点P作PQ∥AB,如下图, ∵AB∥CD, ∴PQ∥AB∥CD, ∴∠AEP=∠EPQ,∠CFP=∠FPQ, ∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP, 即∠EPF =∠AEP+∠CFP; ②当点P在AB上方时,如下图所示, ∵∠AEP=∠EPF+∠EQP, ∵AB∥CD, ∴∠CFP=∠EQP, ∴∠AEP=∠EPF+∠CFP; ③当点P在CD下方时, ∵AB∥CD, ∴∠AEP=∠EQF, ∴∠EQF=∠EPF+∠CFP, ∴∠AEP=∠EPF+∠CFP, 综上所述,∠AEP、∠EPF、∠CFP之间满足的关系式为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP, 故答案为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP. 【点睛】 本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 年人教版 中学 年级 下册 数学 期末 测试 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文