人教中学七年级下册数学期末试卷及答案.doc
《人教中学七年级下册数学期末试卷及答案.doc》由会员分享,可在线阅读,更多相关《人教中学七年级下册数学期末试卷及答案.doc(25页珍藏版)》请在咨信网上搜索。
人教中学七年级下册数学期末试卷及答案 一、选择题 1.如图,与是同旁内角,它们是由( ) A.直线,被直线所截形成的 B.直线,被直线所截形成的 C.直线,被直线所截形成的 D.直线,被直线所截形成的 2.下列图中的“笑脸”,是由上面教师寄语中的图像平移得到的是( ) A. B. C. D. 3.在平面直角坐标系中,点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中属假命题的是( ) A.两直线平行,内错角相等 B.a,b,c是直线,若a⊥b,b⊥c,则a⊥c C.a,b,c是直线,若ab,bc,则ac D.无限不循环小数是无理数,每一个无理数都可以用数轴上的一个点表示 5.如图,已知平分,平分,.下列结论正确的有( ) ①;②;③;④若,则. A.1个 B.2个 C.3个 D.4个 6.下列说法不正确的是( ) A.的平方根是± B.﹣9是81的平方根 C.0.4的算术平方根是0.2 D.=﹣3 7.如图,小明从A处出发沿北偏东方向行走至B处,又沿北偏西方向行走至C处,则的度数是( ) A. B. C. D. 8.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)……则点A2021的坐标为( ) A.(505,﹣504) B.(506,﹣505) C.(505,﹣505) D.(﹣506,506) 九、填空题 9.若则 ________. 十、填空题 10.已知点P(3,﹣1)关于x轴的对称点Q的坐标是(a+b,1﹣b),则a=___,b=___. 十一、填空题 11.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,若△ABC的面积为15,DE=3,AB=6,则AC的长是 _______ 十二、填空题 12.如图,,点在上,点在上,则的度数等于______. 十三、填空题 13.如图,折叠三角形纸片ABC,使点B与点C重合,折痕为DE;展平纸片,连接AD.若AB=6cm,AC=4cm,则△ABD与△ACD的周长之差为____________. 十四、填空题 14.规定运算:,其中为实数,则____ 十五、填空题 15.在平面直角坐标系中,已知点P(﹣2,3),PA∥y轴,PA=3,则点A的坐标为__. 十六、填空题 16.如图,在平面直角坐标系中,横坐标和纵坐标都为整数的点称为整点.观察图中每个正方形(实线)四条边上的整点的个数,假如按图规律继续画正方形(实线),请你猜测由里向外第15个正方形(实线)的四条边上的整点共有________个. 十七、解答题 17.计算题: (1); (2) 十八、解答题 18.求下列各式中的值: (1); (2); (3). 十九、解答题 19.如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC 证明:∵ ∠1+∠AFE=180° ∴ CD∥EF( , ) ∵∠A=∠2 ∴( ) ( , ) ∴ AB∥CD∥EF( , ) ∴ ∠A= ,∠C= , ( , ) ∵ ∠AFE =∠EFC+∠AFC ,∴ = . 二十、解答题 20.如图,在平面直角坐标系中,三角形ABC经过平移得到三角形A1B1C1,结合图形,完成下列问题: (1)三角形ABC先向左平移 个单位,再向 平移 个单位得到三角形A1B1C1. (2)三角形ABC内有一点P(,),则在三角形A1B1C1内部的对应点P1的坐标是 . (3)三角形ABC的面积是 . 二十一、解答题 21.阅读下面的文字,解答问题: 大家知道,是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗? 事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差是小数部分. 又例如,因为,即,所以的整数部分为2,小数部分为.请解答: (1)的整数部分为 ;小数部分为 ; (2)如果的整数部分为a,的小数部分为b,求的值. 二十二、解答题 22.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等. (1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号) (2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:,) 二十三、解答题 23.已知:AB∥CD,截线MN分别交AB、CD于点M、N. (1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数; (2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由; (3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为 (直接写出答案). 二十四、解答题 24.综合与探究(问题情境) 王老师组织同学们开展了探究三角之间数量关系的数学活动. (1)如图1,EF∥MN,点A、B分别为直线EF、MN上的一点,点P为平行线间一点,请直接写出∠PAF、∠PBN和∠APB之间的数量关系; (问题迁移) (2)如图2,射线OM与射线ON交于点O,直线m∥n,直线m分别交OM、ON于点A、D,直线n分别交OM、ON于点B、C,点P在射线OM上运动. ①当点P在A、B(不与A、B重合)两点之间运动时,设∠ADP=∠α,∠BCP=∠β.则∠CPD,∠α,∠β之间有何数量关系?请说明理由; ②若点P不在线段AB上运动时(点P与点A、B、O三点都不重合),请你画出满足条件的所有图形并直接写出∠CPD,∠α,∠β之间的数量关系. 二十五、解答题 25.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC. (1)求证:∠BED=90°; (2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小; (3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论: . 【参考答案】 一、选择题 1.A 解析:A 【分析】 根据两直线被第三条直线所截,根据角位于两直线的中间,截线的同一侧是同旁内角,可得同旁内角. 【详解】 解:与是同旁内角,它们是由直线,被直线所截形成的 故选A. 【点睛】 本题考查了同旁内角的含义,熟练掌握含义是解题的关键. 2.D 【分析】 根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等. 【详解】 解:A、B、C都不是由平移得到的,D是由平移得到的. 故选:D. 【点睛】 解析:D 【分析】 根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等. 【详解】 解:A、B、C都不是由平移得到的,D是由平移得到的. 故选:D. 【点睛】 本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等. 3.D 【分析】 根据各象限内点的坐标特征解答. 【详解】 解:点(3,-2)所在象限是第四象限. 故选:D. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 根据平行线的性质对A、C进行判断;根据平行线的性质对B进行判断;根据无理数的定义和数轴上的点与实数一一对应对D进行判断. 【详解】 解:A、两直线平行,内错角相等,所以A选项为真命题; B、a,b,c是直线,若a⊥b,b⊥c,则a∥c,所以B选项为假命题; C、a,b,c是直线,若a∥b,b∥c,则a∥b,所以C选项为真命题; D、无限不循环小数是无理数,每一个无理数都可以用数轴上的一个点表示,所以D选项为真命题. 故选:B. 【点睛】 此题考查了平行线的性质和无理数及数轴表示实数,难度一般,认真理解判断即可. 5.C 【分析】 由三个已知条件可得AB∥CD,从而①正确;由①及平行线的性质则可推得②正确;由条件无法推出AC∥BD,可知③错误;由及平分,可得∠ACP=∠E,得AC∥BD,从而由平行线的性质易得,即④正确. 【详解】 ∵平分,平分 ∴∠ACD=2∠ACP=2∠2,∠CAB=2∠1=2∠CAP ∵ ∴∠ACD+∠CAB=2(∠1+∠2)=2×90゜=180゜ ∴ 故①正确 ∵ ∴∠ABE=∠CDB ∵∠CDB+∠CDF=180゜ ∴ 故②正确 由已知条件无法推出AC∥BD 故③错误 ∵,∠ACD=2∠ACP=2∠2 ∴∠ACP=∠E ∴AC∥BD ∴∠CAP=∠F ∵∠CAB=2∠1=2∠CAP ∴ 故④正确 故正确的序号为①②④ 故选:C. 【点睛】 本题考查了平行线的判定与性质,角平分线的定义,掌握这些知识是关键. 6.C 【分析】 根据立方根与平方根的定义即可求出答案. 【详解】 解:0.4的算术平方根为 ,故C错误, 故选C. 【点睛】 考查平方根与立方根,解题的关键是正确理解概念,本题属于基础题型. 7.A 【分析】 根据平行线性质求出∠ABF,再和∠CBF相减即可得出答案. 【详解】 解:由题意可得:∠A=60°,∠CBF=20°,, ∵, ∴∠A+∠ABF=180°, ∴∠ABF=180°﹣∠A =180°﹣60° =120°, ∴∠ABC=∠ABF﹣∠CBF =120°﹣20° =100°, 故选:A. 【点睛】 本题考查了平行线的性质的应用,注意:两直线平行,同旁内角互补,也考查了方位角,熟练掌握平行线的性质是解决本题的关键. 8.B 【分析】 求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第 解析:B 【分析】 求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第四象限,根据推导可得出结论; 【详解】 由题可知, 第一象限的点:,…角标除以4余数为2; 第二象限的点:,,…角标除以4余数为3; 第三象限的点:,,…角标除以4余数为0; 第四象限的点:,,…角标除以4余数为1; 由上规律可知:, ∴点在第四象限, 又∵,, 即横坐标为正数,数字为角标除以4的商加1;纵坐标为负数,数字为角标除以4的商, ∴. 故选:B. 【点睛】 本题主要考查了点的坐标规律,准确理解是解题的关键. 九、填空题 9.【分析】 根据平方与二次根式的非负性即可求解. 【详解】 依题意得2a+3=0.b-2=0, 解得a=-,b=2, ∴== 【点睛】 此题主要考查实数的性质,解题的关键是熟知实数的性质. 解析: 【分析】 根据平方与二次根式的非负性即可求解. 【详解】 依题意得2a+3=0.b-2=0, 解得a=-,b=2, ∴== 【点睛】 此题主要考查实数的性质,解题的关键是熟知实数的性质. 十、填空题 10.0 【分析】 根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案. 【详解】 解:∵点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b), ∴a+b=3,1-b=1, 解析:0 【分析】 根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案. 【详解】 解:∵点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b), ∴a+b=3,1-b=1, 解得:a=3,b=0, 故答案为:3,0. 【点睛】 此题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键. 十一、填空题 11.4 【分析】 过点D作DF⊥AC,则由AD是△ABC的角平分线,DF⊥AC, DE⊥AB,可以得到DE=DF,可由三角形的面积的,,进而解得AC的长. 【详解】 过点D作DF⊥AC ∵AD是△AB 解析:4 【分析】 过点D作DF⊥AC,则由AD是△ABC的角平分线,DF⊥AC, DE⊥AB,可以得到DE=DF,可由三角形的面积的,,进而解得AC的长. 【详解】 过点D作DF⊥AC ∵AD是△ABC的角平分线,DF⊥AC, DE⊥AB, ∴DE=DF, 又三角形的面积的, 即, 解得AC=4 【点睛】 主要考查了角平分线的性质,三角形的面积,掌握角平分线的性质及三角形的面积是解题的关键. 十二、填空题 12.180° 【分析】 根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案 【详解】 解:∵AB∥ 解析:180° 【分析】 根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案 【详解】 解:∵AB∥CD, ∴∠1=∠AFD, ∵∠EFC=180°-∠EFD,∠ECF=180°-∠3,∠2+∠ECF+∠EFC=180°, ∴∠2+360°-∠1-∠3=180°, ∴∠1+∠3-∠2=180°, 故答案为:180° 【点睛】 本题主要考查了三角形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解 十三、填空题 13.2cm 【分析】 由折叠的性质可得BD=CD,即可求解. 【详解】 解:∵折叠三角形纸片ABC,使点B与点C重合, ∴BD=CD, ∵△ABD的周长=AB+BD+AD=6+BD+AD,△ACD的周长 解析:2cm 【分析】 由折叠的性质可得BD=CD,即可求解. 【详解】 解:∵折叠三角形纸片ABC,使点B与点C重合, ∴BD=CD, ∵△ABD的周长=AB+BD+AD=6+BD+AD,△ACD的周长=AC+AD+CD=4+CD+AD, ∴△ABD与△ACD的周长之差=6-4=2cm, 故答案为:2cm. 【点睛】 本题考查了翻折变换,掌握折叠的性质是本题关键. 十四、填空题 14.4 【分析】 根据题意将原式展开,然后化简绝对值,求解即可. 【详解】 = = =4 故答案为4. 【点睛】 本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键 解析:4 【分析】 根据题意将原式展开,然后化简绝对值,求解即可. 【详解】 = = =4 故答案为4. 【点睛】 本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键. 十五、填空题 15.(-2,6)或(-2,0). 【分析】 根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案. 【详解】 解:由点P(-2,3),PA∥y轴,PA=3,得 在P点 解析:(-2,6)或(-2,0). 【分析】 根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案. 【详解】 解:由点P(-2,3),PA∥y轴,PA=3,得 在P点上方的A点坐标(-2,6), 在P点下方的A点坐标(-2,0), 故答案为:(-2,6)或(-2,0). 【点睛】 本题考查了点的坐标,掌握平行于y轴的直线上点的横坐标相等是解题关键,注意到一点距离相等的点有两个,以防遗漏. 十六、填空题 16.60 【分析】 运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点. 【详解】 解:①第1个正方形,对于其中1条边,除去该边的一 解析:60 【分析】 运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点. 【详解】 解:①第1个正方形,对于其中1条边,除去该边的一个端点,这条边有1个整点.根据正方形是中心对称图形,则四条边共有41=4个整点, ②第2个正方形,对于其中1条边,除去该边的一个端点,这条边有2个整点.根据正方形是中心对称图形,则四条边共有42=8个整点, ③第3个正方形,对于其中1条边,除去该边的一个端点,这条边共有3个整点.根据正方形是中心对称图形,则四条边共有43=12个整点, ④第4个正方形,对于其中1条边,除去该边的一个端点,这条边共有4个整点.根据正方形是中心对称图形,则四条边共有44=16个整点, ⑤第5个正方形,对于其中1条边,除去该边的一个端点,这条边共有5个整点.根据正方形是中心对称图形,则四条边共有45=20个整点, ... 以此类推,第15个正方形,四条边上的整点共有415=60个. 故答案为:60. 【点睛】 本题主要考查了坐标与图形的性质,图形中的数字的变化规律.准确找出每一个正方形(实线)四条边上的整点的个数与正方形序号的关系是解题的关键. 十七、解答题 17.(1);(2) 【分析】 (1)先计算被开方数,再利用算术平方根的含义求解即可得到答案; (2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案. 【详解】 解 解析:(1);(2) 【分析】 (1)先计算被开方数,再利用算术平方根的含义求解即可得到答案; (2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案. 【详解】 解:(1), (2) 【点睛】 本题考查的是算术平方根的含义,含乘方的有理数的混合运算,掌握以上知识是解题的关键. 十八、解答题 18.(1)0.2;(2);(3)5 【分析】 (1)直接利用立方根的性质计算得出答案; (2)直接将-3移项,合并再利用立方根的性质计算得出答案; (3)直接利用立方根的性质计算得出x-1的值,进而得出 解析:(1)0.2;(2);(3)5 【分析】 (1)直接利用立方根的性质计算得出答案; (2)直接将-3移项,合并再利用立方根的性质计算得出答案; (3)直接利用立方根的性质计算得出x-1的值,进而得出x的值. 【详解】 解:(1)x3=0.008, 则x=0.2; (2)x3-3= 则x3=3+ 故x3= 解得:x=; (3)(x-1)3=64 则x-1=4, 解得:x=5. 【点睛】 此题主要考查了立方根,正确把握立方根的定义是解题关键. 十九、解答题 19.同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC . 【分析】 根据同旁 解析:同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC . 【分析】 根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE ,∠C=∠EFC,根据角的和可得 ∠AFE =∠EFC+∠AFC 即可. 【详解】 证明:∵ ∠1+∠AFE=180° ∴ CD∥EF(同旁内角互补,两直线平行), ∵∠A=∠2 , ∴( AB∥CD ) (同位角相等,两直线平行), ∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行) ∴ ∠A= ∠AFE ,∠C= ∠EFC,(两直线平行,内错角相等) ∵ ∠AFE =∠EFC+∠AFC , ∴ ∠A = ∠C+∠AFC . 故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC . 【点睛】 本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键. 二十、解答题 20.(1)5,下,4;(2)(,);(3)7. 【分析】 (1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可. 【详解】 解:(1)根据题图 解析:(1)5,下,4;(2)(,);(3)7. 【分析】 (1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可. 【详解】 解:(1)根据题图可知,三角形ABC先向左平移5个单位,再向下平移4个单位得到三角形A1B1C1; 故答案是:5,下,4; (2)由平移的性质:上加下减,左减右加可知,三角形ABC内有一点P(,),则在三角形A1B1C1内部的对应点P1的坐标是(,), 故答案是:(,); (3), 故答案是:7. 【点睛】 本题考查作图:平移变换,三角形的面积等知识,熟练掌握基本知识,学会用分割法求三角形的面积是解题的关键. 二十一、解答题 21.(1)9,;(2)15 【分析】 (1)根据题意求出所在整数范围,即可求解; (2)求出a,b然后代入代数式即可. 【详解】 解:(1)∵,即 ∴的整数部分为9,小数部分为 (2)∵,即 ∴的整数部 解析:(1)9,;(2)15 【分析】 (1)根据题意求出所在整数范围,即可求解; (2)求出a,b然后代入代数式即可. 【详解】 解:(1)∵,即 ∴的整数部分为9,小数部分为 (2)∵,即 ∴的整数部分为5,小数部分为 ∴, 【点睛】 此题主要考查了二次根式的大小,熟练掌握二次根式的有关性质是解题的关键. 二十二、解答题 22.(1);(2)不同意,理由见解析 【分析】 (1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值; (2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个 解析:(1);(2)不同意,理由见解析 【分析】 (1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值; (2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答. 【详解】 解:(1)设正方形边长为,则,由算术平方根的意义可知, 所以正方形的边长是. (2)不同意. 因为:两个小正方形的面积分别为和,则它们的边长分别为和.,即两个正方形边长的和约为, 所以,即两个正方形边长的和大于长方形的长, 所以不能在长方形纸片上截出两个完整的面积分别为和的正方形纸片. 【点睛】 本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念. 二十三、解答题 23.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3) 【分析】 (1)由非负性可求α,β的值,由平行线的性质和外角性质可求解; (2)过点E作直线EH∥AB,由角平分线的性质和平行 解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3) 【分析】 (1)由非负性可求α,β的值,由平行线的性质和外角性质可求解; (2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解; (3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解. 【详解】 解:(1)∵+(β﹣60)2=0, ∴α=30,β=60, ∵AB∥CD, ∴∠AMN=∠MND=60°, ∵∠AMN=∠B+∠BEM=60°, ∴∠BEM=60°﹣30°=30°; (2)∠DEF+2∠CDF=150°. 理由如下:过点E作直线EH∥AB, ∵DF平分∠CDE, ∴设∠CDF=∠EDF=x°; ∵EH∥AB, ∴∠DEH=∠EDC=2x°, ∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°; ∴∠DEF=150°﹣2∠CDF, 即∠DEF+2∠CDF=150°; (3)如图3,设MQ与CD交于点E, ∵MQ平分∠BMT,QC平分∠DCP, ∴∠BMT=2∠PMQ,∠DCP=2∠DCQ, ∵AB∥CD, ∴∠BME=∠MEC,∠BMP=∠PND, ∵∠MEC=∠Q+∠DCQ, ∴2∠MEC=2∠Q+2∠DCQ, ∴∠PMB=2∠Q+∠PCD, ∵∠PND=∠PCD+∠CPM=∠PMB, ∴∠CPM=2∠Q, ∴∠Q与∠CPM的比值为, 故答案为:. 【点睛】 本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键. 二十四、解答题 24.(1)∠PAF+∠PBN+∠APB=360°;(2)①,见解析;②或 【分析】 (1)作PC∥EF,如图1,由PC∥EF,EF∥MN得到PC∥MN,根据平行线的性质得∠PAF+∠APC=180°,∠ 解析:(1)∠PAF+∠PBN+∠APB=360°;(2)①,见解析;②或 【分析】 (1)作PC∥EF,如图1,由PC∥EF,EF∥MN得到PC∥MN,根据平行线的性质得∠PAF+∠APC=180°,∠PBN+∠CPB=180°,即有∠PAF+∠PBN+∠APB=360°; (2)①过P作PE∥AD交ON于E,根据平行线的性质,可得到,,于是; ②分两种情况:当P在OB之间时;当P在OA的延长线上时,仿照①的方法即可解答. 【详解】 解:(1)∠PAF+∠PBN+∠APB=360°,理由如下: 作PC∥EF,如图1, ∵PC∥EF,EF∥MN, ∴PC∥MN, ∴∠PAF+∠APC=180°,∠PBN+∠CPB=180°, ∴∠PAF+∠APC+∠PBN+∠CPB=360°, ∴∠PAF+∠PBN+∠APB=360°; (2)①, 理由如下:如答图,过P作PE∥AD交ON于E, ∵AD∥BC, ∴PE∥BC, ∴,, ∴ ②当P在OB之间时,,理由如下: 如备用图1,过P作PE∥AD交ON于E, ∵AD∥BC, ∴PE∥BC, ∴,, ∴; 当P在OA的延长线上时,,理由如下: 如备用图2,过P作PE∥AD交ON于E, ∵AD∥BC, ∴PE∥BC, ∴,, ∴; 综上所述,∠CPD,∠α,∠β之间的数量关系是或. 【点睛】 本题考查了平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.难点是分类讨论作平行辅助线. 二十五、解答题 25.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°. 【分析】 (1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180° 解析:(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°. 【分析】 (1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案; (2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°, 得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案; (3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),即可求解. 【详解】 解:(1)证明:∵BE平分∠ABD, ∴∠EBD=∠ABD, ∵DE平分∠BDC, ∴∠EDB=∠BDC, ∴∠EBD+∠EDB=(∠ABD+∠BDC), ∵AB∥CD, ∴∠ABD+∠BDC=180°, ∴∠EBD+∠EDB=90°, ∴∠BED=180°﹣(∠EBD+∠EDB)=90°. (2)解:如图2, 由(1)知:∠EBD+∠EDB=90°, 又∵∠ABD+∠BDC=180°, ∴∠ABE+∠EDC=90°, 即∠ABE+α+∠FDC=90°, ∵BG平分∠ABE,DG平分∠CDF, ∴∠ABE=2∠ABG,∠CDF=2∠CDG, ∴2∠ABG+2∠CDG=90°﹣α, 过点G作GP∥AB, ∵AB∥CD, ∴GP∥AB∥CD ∴∠ABG=∠BGP,∠PGD=∠CDG, ∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=; (3)如图,过点F、G分别作FN∥AB、GM∥AB, ∵AB∥CD, ∴AB∥GM∥FN∥CD, ∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM, ∴∠BFD=∠BFN+∠DFN=∠3+∠5, ∠BGD=∠BGM+∠DGM=∠4+∠6, ∵BG平分∠FBP,DG平分∠FDQ, ∴∠4=∠FBP=(180°﹣∠3), ∠6=∠FDQ=(180°﹣∠5), ∴∠BFD+∠BGD=∠3+∠5+∠4+∠6, =∠3+∠5+(180°﹣∠3)+(180°﹣∠5), =180°+(∠3+∠5), =180°+∠BFD, 整理得:2∠BGD+∠BFD=360°. 【点睛】 本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中学 年级 下册 数学 期末试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文