八年级下册数学期末试卷(培优篇)(Word版含解析)(1).doc
《八年级下册数学期末试卷(培优篇)(Word版含解析)(1).doc》由会员分享,可在线阅读,更多相关《八年级下册数学期末试卷(培优篇)(Word版含解析)(1).doc(26页珍藏版)》请在咨信网上搜索。
八年级下册数学期末试卷(培优篇)(Word版含解析)(1) 一、选择题 1.若在实数范围内有意义,则a可以是( ) A.﹣22 B.﹣1 C. D.0 2.下列几组数中,能作为直角三角形三边长度的是( ) A.2,3,4 B.4,5,6 C.6,8,11 D.5,12,13 3.下列命题:①对角线互相垂直且平分的四边形是菱形;②对角线相等的平行四边形是矩形;③有一组对边平行,另一组对边相等的四边形是平行四边形;④有一组对边相等且有一组对角相等的四边形是平行四边形.其中真命题的个数是( ) A.1 B.2 C.3 D.4 4.期间,红星中学门卫对周末提前返校的5名学生进行体温检测,记录如下:36.1℃,36.5℃,36.9℃,36.5℃,36.6℃,则这5名学生体温的众数是( ) A.36.1℃ B.36.6℃ C.36.5℃ D.36.9℃ 5.下列命题中:①两条对角线互相平分且相等的四边形是正方形;②菱形的一条对角线平分一组对角;③顺次连接四边形各边中点所得的四边形是平行四边形;④两条对角线互相平分的四边形是矩形;⑤平行四边形对角线相等.假命题的个数是( ) A.1 B.2 C.3 D.4 6.如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处.若∠1=129°,则∠2的度数为( ) A.49° B.50° C.51° D.52° 7.如图,平行四边形OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D.将△ODA绕点O顺时针旋转得到△OD'A',当点D的对应点D'落在OA上时,D'A'的延长线恰好经过点C,则点B的坐标为( ) A.(2,2) B.(2,2) C.(21,2) D.(21,2) 8.已知:如图1,点G是BC的中点,点H在AF上,动点P以每秒2cm的速度沿图1的边线运动,运动路径为:G→C→D→E→F→H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图2,若AB=6cm,则下列四个结论中正确的个数有( ) ①图1中的BC长是8cm, ②图2中的M点表示第4秒时y的值为24cm2, ③图1中的CD长是4cm, ④图2中的N点表示第12秒时y的值为18cm2. A.1个 B.2个 C.3个 D.4个 二、填空题 9.函数中,自变量的取值范围是 . 10.如图,菱形ABCD的对角线AC、BD的长分别为3cm和4cm,则其面积是____cm2. 11.在中,,,,则长为______. 12.如图,在菱形中,对角线与相交于点O,E为的中点,连接.若,则的长为________. 13.若正比例函数y=kx的图象经过点(2,﹣4),则k的值为_____. 14.如图,在△ABC中,AD,CD分别平分∠BAC和∠ACB,AE∥CD,CE∥AD.若从三个条件:①AB=AC;②AB=BC;③AC=BC中,选择一个作为已知条件,则能使四边形为菱形的是__(填序号). 15.如图,已知点,,,的坐标分别为,,,.线段、、组成的图形为图形,点沿移动,设点移动的距离为,直线:过点,且在点移动过程中,直线随运动而运动,当过点时,的值为__________;若直线与图形有一个交点,直接写出的取值范围是__________. 16.如图,矩形ABCD中,AD=5,AB=6,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D对应点D'刚好落在线段AB的垂直平分线上时,DE的长为_______. 三、解答题 17.计算: (1); (2); (3); (4). 18.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千静止的时候,踏板离地高一尺(尺),将它往前推进两步(尺),此时踏板升高离地五尺(尺),求秋千绳索(或)的长度. 19.如图,在4×4的网格直角坐标系中(图中小正方形的边长代表一个单位长),已知点A(﹣1,﹣1),B(2,2). (1)线段AB的长为 ; (2)在小正方形的顶点上找一点C,连接AC,BC,使得S△ABC=. ①用直尺画出一个满足条件的△ABC; ②写出所有符合条件的点C的坐标. 20.在△ABC中,∠ACB=90°,∠BAC=30°,D为AB的中点,四边形BCED为平行四边形,DE,AC相交于F.连接DC,AE. (1)试确定四边形ADCE的形状,并说明理由. (2)若AB=16,AC=12,求四边形ADCE的面积. (3)当△ABC满足什么条件时,四边形ADCE为正方形?请给予证明. 21.观察下列等式: ① ② ③ ······ 回答下列问题: (1)利用你观察到的规律,化简: . (2) .(n为正整数) (3)利用上面所揭示的规律计算: 22.甲、乙两个探测气球分别从海拔高度5m和15m处同时出发,甲探测气球以1m/min的速度上升,乙探测气球以0.5m/min的速度上升,两个气球都上升了60min.下图是甲、乙两个探测气球所在位置的海拔高度(单位:m)与气球上升时间(单位:min)的函数图象. (1)分别写出表示两个气球所在位置的海拔高度(单位:m)关于上升时间(单位:min)的函数关系. (2)当甲、乙两气球的海拔高度相差15米时,上升时间是多少? 23.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF. (1)求证:四边形BFEP为菱形; (2)当E在AD边上移动时,折痕的端点P、Q也随着移动. ①当点Q与点C重合时, (如图2),求菱形BFEP的边长; ②如果限定P、Q分别在线段BA、BC上移动,直接写出菱形BFEP面积的变化范围. 24.如图,在平面直角坐标系中,直线分别交x、y轴于点A、B,将正比例函数的图像沿y轴向下平移3个单位长度得到直线l,直线l分别交x、y轴于点C、D,交直线于点E. (1)直线l对应的函数表达式是__________,点E的坐标是__________; (2)在直线上存在点F(不与点E重合),使,求点F的坐标; (3)在x轴上是否存在点P,使?若存在,求点P的坐标;若不存在,请说明理由. 25.(1)问题探究:如图①,在四边形ABCD中,AB∥CD,E是BC的中点,AE是∠BAD的平分线,则线段AB,AD,DC之间的等量关系为 ; (2)方法迁移:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,E是BC的中点,AE是∠BAF的平分线,试探究线段AB,AF,CF之间的等量关系,并证明你的结论; (3)联想拓展:如图③,AB∥CF,E是BC的中点,点D在线段AE上,∠EDF=∠BAE,试探究线段AB,DF,CF之间的数量关系,并证明你的结论. 【参考答案】 一、选择题 1.D 解析:D 【分析】 二次根式有意义的条件为二次根式中的被开方数是非负数. 【详解】 解:若在实数范围内有意义,则a≥0, ∴a的值可以是0,不可以是﹣22,﹣1或, ∴A,B,C选项不合题意. 故选:D. 【点睛】 本题考查了二次根式有意义的条件,解题的关键是利用二次根式中的被开方数是非负数. 2.D 解析:D 【分析】 利用勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可. 【详解】 解:A、22+32≠42,故不是直角三角形,故错误; B、42+52≠62,故不是直角三角形,故错误; C、62+82≠112,故不是直角三角形,故错误; D、52+122=132,故是直角三角形,故正确. 故选D. 【点睛】 本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断. 3.B 解析:B 【解析】 【分析】 根据菱形的判定、矩形的判定、平行四边形的判定进行判断即可. 【详解】 解:①对角线互相垂直且平分的四边形是菱形,是真命题; ②对角线相等的平行四边形是矩形,是真命题; ③有一组对边平行且相等的四边形是平行四边形,原命题是假命题; ④有一组对边相等且有一组对角相等的四边形不一定是平行四边形,原命题是假命题; 故选B. 【点睛】 本题主要考查了菱形的判定、矩形的判定、平行四边形的判定,解题的关键在于能够熟练掌握相关四边形的判定条件. 4.C 解析:C 【解析】 【分析】 根据众数的定义:一组数据中出现次数最多的数据,进行求解即可. 【详解】 解:∵36.5℃出现了两次,出现的次数最多, ∴这组数据的众数为36.5℃, 故选C. 【点睛】 本题主要考查了众数的定义,解题的关键在于能够熟知众数的定义. 5.C 解析:C 【分析】 根据正方形的判定,平行四边形和矩形的判定和性质,菱形的性质逐项判断即可. 【详解】 解:①两条对角线互相平分且相等的四边形是矩形,故原命题错误,是假命题; ②菱形的一条对角线平分一组对角,正确,为真命题; ③顺次连接四边形各边中点所得的四边形是平行四边形,正确,为真命题; ④两条对角线互相平分的四边形是平行四边形,故原命题错误,为假命题; ⑤平行四边形对角线不相等,故原命题错误,为假命题, 假命题的个数有3个, 故选:. 【点睛】 本题主要考查了正方形的判定,平行四边形和矩形的判定和性质,菱形的性质,熟练掌握相关知识点是解题的关键. 6.C 解析:C 【解析】 【分析】 根据翻折的性质可知,∠DOE=∠A,∠HOG=∠B,∠EOF=∠C,又∠A+∠B+∠C=180°,可知∠1+∠2=180°,又∠1=129°,继而即可求出答案. 【详解】 解:根据翻折的性质可知,∠DOE=∠A,∠HOG=∠B,∠EOF=∠C, 又∵∠A+∠B+∠C=180°, ∴∠DOE+∠HOG+∠EOF=180°, ∴∠1+∠2=180°, 又∵∠1=129°, ∴∠2=51°. 故选:C. 【点睛】 本题考查翻折变换的知识,解答此题的关键是三角形折叠以后的图形和原图形全等,对应的角相等,同时注意三角形内角和定理的灵活运用. 7.D 解析:D 【解析】 【分析】 连接,由题意可证明,利用相似三角形线段成比例即可求得OC的长,再由平行线的性质即可得点的坐标. 【详解】 解:如图,连接,轴,绕点顺时针旋转得到, ∴,, , , ∵, , , , , ,, , ∴, ∴, ∴点B的坐标为:, 故选:D. 【点睛】 本题考查了旋转的性质,勾股定理,相似三角形的判定与性质,平行线的性质,利用相似三角形的性质得到线段的比例是解题关键. 8.D 解析:D 【分析】 ①根据题意得:动点P在GC上运动的时间是2秒,又由动点的速度,可得GC和BC的长; ②由(1)可得BC的长,又由AB=6cm,可以计算出△ABP的面积,计算可得y的值; ③动点P在DC上运动的时间是2秒,又由动点的速度,可得CD的长; ④根据图2中的N点表示第12秒时,表示点P到达H点,即可得出△ABP的面积; 【详解】 解:①根据函数图象可以知:从0到2,y随x的增大而增大,经过了2秒,P运动了4cm,因而CG=4cm,BC=8cm; ②第4秒时P到达D点.P在CD段时,底边AB不变,高不变,因而面积不变,面积y=×6×8=24cm2; ③第4秒时P到达D点.由图象可知CD=22=4cm ④图2中的N点表示第12秒时,表示点P到达H点.AF=BC+DE=8+23=14,所以AH=AF-FH=14-24=6.△ABP的面积=66=18cm2. 则四个结论正确; 故选D 【点睛】 此题考查了动点问题的函数图象,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论. 二、填空题 9.. 【解析】 【分析】 求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数. 【详解】 依题意,得x-3≥0, 解得:x≥3. 【点睛】 本题考查的知识点为:二次根式的被开方数是非负数. 10.A 解析:6 【解析】 【分析】 直接根据菱形的面积等于其对角线积的一半,即可求得面积. 【详解】 解:∵菱形ABCD的对角线AC、BD的长分别为3cm和4cm ∴(cm) 故答案为:6. 【点睛】 此题主要考查菱形的性质,熟练掌握性质是解题关键. 11.A 解析: 【解析】 【分析】 直接利用勾股定理求出AB的长进而得出答案. 【详解】 解:如图所示:∵∠ACB=90°,,, ∴AB的长为:=, 故答案为:. 【点睛】 此题主要考查了勾股定理,熟练应用勾股定理是解题关键. 12.A 解析:5 【分析】 根据直角三角形斜边上的中线等于斜边的一半计算即可; 【详解】 ∵四边形ABCD时菱形, ∴, ∴, ∵E为的中点,, ∴; 故答案是5. 【点睛】 本题主要考查了菱形的性质和直角三角形的性质,准确分析计算是解题的关键. 13.-2 【分析】 因为正比例函数y=kx的图象经过点(2,﹣4),代入解析式,解之即可求得k. 【详解】 解:∵正比例函数y=kx的图象经过点(2,﹣4), ∴﹣4=2k, 解得:k=﹣2. 故答案为:﹣2. 【点睛】 此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题. 14.A 解析:② 【解析】 【分析】 根据②作条件,先证明四边形ADCE是平行四边形,再利用邻边相等,得到四边形ADCE是菱形. 【详解】 解:当BA=BC时,四边形ADCE是菱形. 理由:∵AE∥CD,CE∥AD, ∴四边形ADCE是平行四边形, ∵BA=BC, ∴∠BAC=∠BCA, ∵AD,CD分别平分∠BAC和∠ACB, ∴∠DAC=∠DCA, ∴DA=DC, ∴四边形ADCE是菱形. 【点睛】 本题考查的知识点是菱形的证明,解题关键是熟记菱形的性质. 15.1或11 或 【分析】 l过点C、点P的位置有两种情况:①点P位于点E时,S=1;②点P位于点C时,S=11;求出l过临界点D、E、B即求出直线与图形有一个交点时b的取值范围. 【详解 解析:1或11 或 【分析】 l过点C、点P的位置有两种情况:①点P位于点E时,S=1;②点P位于点C时,S=11;求出l过临界点D、E、B即求出直线与图形有一个交点时b的取值范围. 【详解】 解:∵点A、B、C、D的坐标分别为(-2,2),(-2,1),(3,1),(3,2) ∴AD=BC=5,AB=1 当直线l过点C(3,1)时,1=-3+b,即b=4 ∴直线的解析式为y=-x+4. ∴,解得,即直线1与AD的交点E为(2,2) ∴DE=1. ∴如图:当l过点C时,点P位于点E或点C ①当l过点C时,点P位于点E时,S=DE=1; ②当l过点C时,点P位于点C时,S=AD+AB+BC=5+1+5=11.. ∴当1过点C时,S的值为1或11; 当直线l过点D时,b=5; 当直线1过点C时,b=4; 当直线1过点B时,将B(-2,1)代入y=-x+b得1=2+b,即b=-1 ∴当或时,直线与图形有一个交点. 故填1或11,或. 【点睛】 本题主要考查了一次函数图象与系数的关系、一次函数图象上点的坐标特征,根据题意求出临界值成为解答本题的关键. 16.15或 【分析】 分两种情况讨论,由折叠的性质可得,由勾股定理可求得,再由勾股定理可求得DE的长. 【详解】 如图,若点E在线段CD上时,过点作, 四边形ADNM是矩形, 把△ADE沿直线AE折 解析:15或 【分析】 分两种情况讨论,由折叠的性质可得,由勾股定理可求得,再由勾股定理可求得DE的长. 【详解】 如图,若点E在线段CD上时,过点作, 四边形ADNM是矩形, 把△ADE沿直线AE折叠,当点D对应点D'刚好落在线段AB的垂直平分线上时, ; 如图,点E在线段DC的延长线上,过点作, 同理可求,, 综上所述,DE的长为15或, 故答案为:15或 【点睛】 本题考查翻折变、矩形的性质、勾股定理、线段垂直平分线的性质等知识,利用分类讨论思想解决问题是解题关键. 三、解答题 17.(1);(2);(3);(4). 【分析】 (1)根据负整数幂、零指数幂、立方根和绝对值的性质求解即可; (2)先化成最简二次根式,再合并即可; (3)先化成最简二次根式,再计算乘法即可; (4)根 解析:(1);(2);(3);(4). 【分析】 (1)根据负整数幂、零指数幂、立方根和绝对值的性质求解即可; (2)先化成最简二次根式,再合并即可; (3)先化成最简二次根式,再计算乘法即可; (4)根据完全平方公式展开,再合并即可. 【详解】 解:(1) ; (2) ; (3) ; (4) . 【点睛】 本题考查二次根式的混合运算、零指数幂、负整数指数幂,解题的关键是明确各自的计算方法,仔细认真化简,会合并同类项. 18.秋千绳索的长度为尺. 【分析】 设OA=OB=x尺,表示出OE的长,在中,利用勾股定理列出关于x的方程求解即可. 【详解】 解:设尺, 由题可知:尺,尺, ∴(尺),尺, 在中,尺,尺,尺, 由勾股 解析:秋千绳索的长度为尺. 【分析】 设OA=OB=x尺,表示出OE的长,在中,利用勾股定理列出关于x的方程求解即可. 【详解】 解:设尺, 由题可知:尺,尺, ∴(尺),尺, 在中,尺,尺,尺, 由勾股定理得:, 解得:, 则秋千绳索的长度为尺. 【点睛】 本题考查了勾股定理的应用,熟练掌握勾股定理,学会利用方程解决问题是解题的关键. 19.(1)3;(2)①见解析;②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2). 【解析】 【分析】 (1)直接利用勾股定理求出AB的长度即可; (2)①根据三角形ABC的面积画 解析:(1)3;(2)①见解析;②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2). 【解析】 【分析】 (1)直接利用勾股定理求出AB的长度即可; (2)①根据三角形ABC的面积画出对应的三角形即可; ②根据点C的位置,写出点C的坐标即可. 【详解】 解:(1)如图所示 在Rt△ACB中,∠P=90°,AP=3,BP=3 ∴ (2)①如图所示 Rt△ACB中,∠C=90°,AC=3,BC=3 ∴ ②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2). 满足条件的三角形如图所示. C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2). 【点睛】 本题主要考查了勾股定理,三角形的面积,点的坐标,解题的关键在于能够熟练掌握相关知识点进行求解. 20.(1)四边形ADCE是菱形,见解析;(2);(3)当AC=BC时,四边形ADCE为正方形,见解析. 【分析】 (1)先证明四边形ADCE为平行四边形,进而证明AC⊥DE,即可证明四边形ADCE为菱形 解析:(1)四边形ADCE是菱形,见解析;(2);(3)当AC=BC时,四边形ADCE为正方形,见解析. 【分析】 (1)先证明四边形ADCE为平行四边形,进而证明AC⊥DE,即可证明四边形ADCE为菱形; (2)勾股定理求得BC=4,根据已知条件可得BC=DE,进而根据菱形的面积等于对角线乘积的一半进行求解即可; (3)根据∠ADC=90°,D为AB的中点,即可得AC=BC. 【详解】 解:(1)四边形ADCE是菱形 理由:∵四边形BCED为平行四边形, ∴CE//BD,CE=BD,BC//DE, ∵D为AB的中点, ∴AD=BD ∴CE=AD 又∵CE//AD, ∴四边形ADCE为平行四边形 ∵BC//DF, ∴∠AFD=∠ACB=90°, 即AC⊥DE, ∴四边形ADCE为菱形. (2)在Rt△ABC中, ∵AB=16,AC=12, ∴BC=4 ∵四边形BCED为平行四边形, ∴BC=DE, ∴DE=4 ∴四边形ADCE的面积=AC·DE= (3)当AC=BC时,四边形ADCE为正方形 证明:∵AC=BC,D为AB的中点, ∴CD⊥AB,即∠ADC=90°, ∴四边形ADCE为矩形 又∵BCED为平行四边形, ∴BC=DE ∴DE=AC ∴四边形ADCE为正方形. 【点睛】 本题考查了平行四边形的性质,菱形的判定,正方形的性质与判定,勾股定理,掌握以上四边形的性质与判定是解题的关键. 21.(1);(2);(3) 【解析】 【分析】 (1)根据平方差公式分母有理化即可; (2)根据平方差公式分母有理化即可; (3)对每一个式子分母有理化,再进行合并计算即可; 【详解】 (1); 故答案 解析:(1);(2);(3) 【解析】 【分析】 (1)根据平方差公式分母有理化即可; (2)根据平方差公式分母有理化即可; (3)对每一个式子分母有理化,再进行合并计算即可; 【详解】 (1); 故答案是:; (2); 故答案是:; (3), , ; 【点睛】 本题主要考查了二次根式分母有理化,平方差公式,准确计算是解题的关键. 22.(1),;(2)当甲、乙两气球的海拔高度相差15米时,上升时间是50min. 【分析】 (1)分别设甲,乙气球在上升过程中的函数解析式,将(0,5),(20,25)和(0,15),(20,25)分别 解析:(1),;(2)当甲、乙两气球的海拔高度相差15米时,上升时间是50min. 【分析】 (1)分别设甲,乙气球在上升过程中的函数解析式,将(0,5),(20,25)和(0,15),(20,25)分别代入其解析式中,即可得; (2)根据初始位置及题图可知,当大于20时,甲、乙两气球的海拔高度相差15米,列式即可得. 【详解】 解:(1)设甲气球在上升过程中的函数解析式为:,将(0,5)和(20,25)代入得, , 解得:, ∴甲气球在上升过程中的函数解析式为:, 设乙气球在上升过程中的函数解析式为:,将(0,15)和(20,25)代入得, , 解得:, ∴乙气球在上升过程中的函数解析式为:, ∴综上:,; (2)由初始位置及题图可知, 当大于20时,甲、乙两气球的海拔高度相差15米时, ∴, 解得, ∴当甲、乙两气球的海拔高度相差15米时,上升时间是50min. 【点睛】 本题考查了一次函数的应用,解题的关键是设出解析式并根据题中变量之间的对应关系进行解答. 23.(1)证明过程见解析;(2)①边长为cm,②. 【分析】 (1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=E 解析:(1)证明过程见解析;(2)①边长为cm,②. 【分析】 (1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论; (2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD-DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=cm即可; ②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案. 【详解】 解:(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ, ∴点B与点E关于PQ对称, ∴PB=PE,BF=EF,∠BPF=∠EPF, 又∵EF∥AB, ∴∠BPF=∠EFP, ∴∠EPF=∠EFP, ∴EP=EF, ∴BP=BF=EF=EP, ∴四边形BFEP为菱形; (2)①∵四边形ABCD是矩形, ∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°, ∵点B与点E关于PQ对称, ∴CE=BC=5cm, 在Rt△CDE中,DE==4cm, ∴AE=AD﹣DE=5cm-4cm=1cm; 在Rt△APE中,AE=1,AP=3-PB=3﹣PE, ∴,解得:EP=cm, ∴菱形BFEP的边长为cm; ②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm,BP=cm, , 当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm, , ∴菱形的面积范围:. 【点睛】 本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识,求出PE是本题的关键. 24.(1),;(2)存在,;(3)或 【解析】 【分析】 (1)根据一次函数平移的方法求出直线l对应的函数表达式,再联立两个直线解析式求出交点坐标; (2)作轴于M,轴于N,利用,得到F点的横坐标,再代 解析:(1),;(2)存在,;(3)或 【解析】 【分析】 (1)根据一次函数平移的方法求出直线l对应的函数表达式,再联立两个直线解析式求出交点坐标; (2)作轴于M,轴于N,利用,得到F点的横坐标,再代入解析式求出F点纵坐标即可; (3)在y轴正半轴上取一点Q,使,利用等腰三角形的性质得,即可求出,再由勾股定理求出OP的长,得到点P坐标. 【详解】 解:(1)正比例函数的图像沿y轴向下平移3个单位长度, 得, 联立两个直线解析式,得,解得, ∴, 故答案是:,; (2)如图,作轴于M,轴于N, ∴,, ∵,, ∴, ∴, 在中,当时,, ∴; (3)易知,, ∴,, 如图,在y轴正半轴上取一点Q,使, ∵,, ∴, ∴, ∵, ∴, ∴, ∴由勾股定理得:, ∴或. 【点睛】 本题考查一次函数综合,解题的关键是掌握一次函数解析式的求法,以及利用数形结合思想解决一次函数与几何综合问题. 25.(1)AD=AB+DC;(2)AB=AF+CF,证明详见解析;(3)AB=DF+CF,证明详见解析. 【分析】 (1)结论:AD=AB+DC.延长AE,DC交于点F,证明△ABE≌△FEC(AAS) 解析:(1)AD=AB+DC;(2)AB=AF+CF,证明详见解析;(3)AB=DF+CF,证明详见解析. 【分析】 (1)结论:AD=AB+DC.延长AE,DC交于点F,证明△ABE≌△FEC(AAS),即可推出AB=CF,再证明DA=DF,即可解决问题. (2)结论:AB=AF+CF,如图②,延长AE交DF的延长线于点G,证明方法类似(1). (3)结论;AB=DF+CF.如图③,延长AE交CF的延长线于点G,证明方法类似(1). 【详解】 解:(1)探究问题:结论:AD=AB+DC. 理由:如图①中,延长AE,DC交于点F, ∵AB∥CD, ∴∠BAF=∠F, 在△ABE和△FCE中, CE=BE,∠BAF=∠F,∠AEB=∠FEC, ∴△ABE≌△FEC(AAS), ∴CF=AB, ∵AE是∠BAD的平分线, ∴∠BAF=∠FAD, ∴∠FAD=∠F, ∴AD=DF, ∵DC+CF=DF, ∴DC+AB=AD. 故答案为AD=AB+DC. (2)方法迁移:结论:AB=AF+CF. 证明:如图②,延长AE交DF的延长线于点G, ∵E是BC的中点, ∴CE=BE, ∵AB∥DC, ∴∠BAE=∠G.且BE=CE,∠AEB=∠GEC ∴△AEB≌△GEC(AAS) ∴AB=GC ∵AE是∠BAF的平分线 ∴∠BAG=∠FAG, ∵∠BAG∠G, ∴∠FAG=∠G, ∴FA=FG, ∵CG=CF+FG, ∴AB=AF+CF. (3)联想拓展:结论;AB=DF+CF. 证明:如图③,延长AE交CF的延长线于点G, ∵E是BC的中点, ∴CE=BE, ∵AB∥CF, ∴∠BAE=∠G, 在△AEB和△GEC中, , ∴△AEB≌△GEC, ∴AB=GC, ∵∠EDF=∠BAE, ∴∠FDG=∠G, ∴FD=FG, ∴AB=DF+CF. 【点睛】 本题是四边形的综合问题,考查了全等三角形的判定与性质、等腰三角形的判定与性质、角平分线的性质、三角形三边关系等知识点,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 数学 期末试卷 培优篇 Word 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文