部编版八年级下册数学期末试卷综合测试卷(word含答案).doc
《部编版八年级下册数学期末试卷综合测试卷(word含答案).doc》由会员分享,可在线阅读,更多相关《部编版八年级下册数学期末试卷综合测试卷(word含答案).doc(28页珍藏版)》请在咨信网上搜索。
部编版八年级下册数学期末试卷综合测试卷(word含答案) 一、选择题 1.若二次根式有意义,则x的值不可能是( ) A.3 B.﹣5 C.﹣4 D.0 2.下列线段,,能组成直角三角形的是( ) A.,, B.,, C.,, D.,, 3.四边形BCDE中,对角线BD、CE相交于点F,下列条件不能判定四边形BCDE是平行四边形的是( ) A.BC∥ED,BE=CD B.BF=DF,CF=EF C.BC∥ED,BE∥CD D.BC=ED.BE=CD 4.小君周一至周五的支出分别是(单位:元):,,,,则这组数据的平均数是( ) A. B. C. D. 5.如图,菱形的边长为2,,点是边的中点,点是对角线上一动点,则周长的最小值是( ) A. B. C. D. 6.如图,在平面直角坐标系上,直线y=x﹣3分别与x轴、y轴相交于A、B两点,将△AOB沿x轴翻折得到△AOC,使点B刚好落在y轴正半轴的点C处,过点C作CD⊥AB交AB于D,则CD的长为( ) A. B. C.4 D.5 7.如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,点H为AF与DG的交点.若AC=9,则DH为( ) A.1 B.2 C. D.3 8.如图,在平面直角坐标系中,已知A(5,0)点P为线段OA上任意一点.在直线y=x上取点E,使PO=PE,延长PE到点F,使PA=PF,分别取OE、AF中点M、N,连结MN,则MN的最小值是( ) A.2.5 B.2.4 C.2.8 D.3 二、填空题 9.若式子成立,则a的取值范围是________________ 10.菱形的周长是20,一条对角线的长为6,则它的面积为_____. 11.若一直角三角形的两直角边长为,1,则斜边长为_____. 12.如图,为的中位线,点在上,且为直角.若,,则的长为______. 13.若一次函数y=kx﹣1的图象经过点(﹣2,1),则k的值为_____. 14.如图,在矩形中,对角线与相交于点,,,则的长为________. 15.在平面直角坐标系中,Q是直线上的一个动点,将Q绕点顺时针旋转,得到点连接,则的最小值为__________. 16.在矩形ABCD中,,,将沿对角线BD对折得到,DE与BC交于F,则EF等于________. 三、解答题 17.计算: (1) (2) 18.如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,则梯子的底部向外滑多少米? 19.如图是由边长为1的小正方形构成6×6的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点都是格点,点E是边AD与网格线的交点.仅用无刻度尺的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题: (1)直接写出四边形ABCD的形状; (2)在BC边上画点F,连接EF,使得四边形AEFB的面积为5; (3)画出点E绕着B点逆时针旋转90°的对应点G; (4)在CD边(端点除外)上画点H,连接EH,使得EH=AE+CH. 20.如图,在矩形中,垂直平分对角线,交于,交于,交于,连接,. (1)求证:四边形是菱形; (2)若为的中点,,求的度数. 21.阅读下面的材料,解答后面提出的问题: 黑白双雄,纵横江湖;双剑合壁,天下无敌,这是武侠小说中的常见描述,其意思是指两个人合在一起,取长补短,威力无比,在二次根式中也有这种相辅相成的“对子”,如:(2+)(2-)=1,(+)(-)=3, 它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:==,==7+4.像这样通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化. 解决问题: (1)4+的有理化因式是 ,将分母有理化得 ; (2)已知x=,y=,则= ; (3)已知实数x,y满足(x+)(y+)-2017=0,则x= ,y= . 22.某种子站销售一种玉米种子,单价为5元千克,为惠民促销,推出以下销售方案:付款金额(元)与购买种子数量(千克)之间的函数关系如图所示. (1)当时,求与之间的的函数关系式: (2)徐大爷付款20元能购买这种玉米种子多少千克? 23.如图1,以平行四边形的顶点O为坐标原点,以所在直线为x轴,建立平面直角坐标系,,D是对角线的中点,点P从点A出发,以每秒1个单位的速度沿方向运动到点B,同时点Q从点O出发,以每秒3个单位的速度沿x轴正方向运动,当点P到达点B时,两个点同时停止运动. (1)求点A的坐标. (2)连结,,,当经过点D时,求四边形的面积. (3)在坐标系中找点F,使以Q、D、C、F为顶点的四边形是菱形,则点F的坐标为________.(直接写出答案) 24.如图①,在平面直角坐标系中,点A在直线y=﹣x上,且点A的横坐标为﹣6,直线AB分别交x轴、y轴于点B和点C.点B的坐标为(10,0). (1)求直线AB的解析式; (2)如图②,点D坐标为(4,8),连接AD、BD,动点P从点A出发,沿线段AD运动.过点P作x轴的垂线,交AB于点Q,连接DQ.设△BDQ的面积为S(S≠0),点P的横坐标为t,求S与t之间的函数关系式; (3)在(2)的条件下,连接PC,若∠CPD+∠OBD=90°,求t的值. 25.如图,已知平面直角坐标系中,、,现将线段绕点顺时针旋转得到点,连接. (1)求出直线的解析式; (2)若动点从点出发,沿线段以每分钟个单位的速度运动,过作交轴于,连接.设运动时间为分钟,当四边形为平行四边形时,求的值. (3)为直线上一点,在坐标平面内是否存在一点,使得以、、、为顶点的四边形为菱形,若存在,求出此时的坐标;若不存在,请说明理由. 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据二次根式有意义的条件求出x的范围,进而得出答案. 【详解】 解:根据二次根式有意义的条件得:x+4≥0, ∴x≥﹣4, 故选:B. 【点睛】 本题考查了二次根式有意义的条件,能根据二次根式中的被开方数是非负数来确定二次根式被开方数中字母的取值范围是解题的关键. 2.C 解析:C 【分析】 根据如果三角形的三边长,,满足,那么这个三角形就是直角三角形进行分析即可. 【详解】 解:、,不能组成直角三角形,故此选项错误; 、,不能组成直角三角形,故此选项错误; 、,能组成直角三角形,故此选项正确; 、,不能组成直角三角形,故此选项错误. 故选:C. 【点睛】 此题主要考查了勾股定理逆定理,关键是掌握判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断. 3.A 解析:A 【解析】 【分析】 根据平行四边形的判定定理分别进行分析即可. 【详解】 解:A、不能判定四边形ABCD是平行四边形,故此选项符合题意; B、根据对角线互相平分的四边形是平行四边形,可判定四边形ABCD为平行四边形,故此选项不合题意; C、根据两组对边分别平行的四边形是平行四边形,可判定四边形ABCD为平行四边形,故此选项不合题意; D、根据两组对边分别相等的四边形是平行四边形,可判定四边形ABCD为平行四边形,故此选项不合题意; 故选;A. 【点睛】 本题考查平行四边形的判定定理,熟知平行四边形的判定条件是解题的关键. 4.B 解析:B 【解析】 【分析】 用这组数据的和除以数据的个数就可计算出这组数据的平均数,据此解答即可. 【详解】 解:(7+10+14+7+12)÷5=50÷5=10(元), 故选:B. 【点睛】 此题主要考查的是平均数的含义及其计算方法,关键是要熟练掌握平均数的计算方法. 5.A 解析:A 【分析】 连接BQ,BD,当P,Q,B在同一直线上时,DQ+PQ的最小值等于线段BP的长,依据勾股定理求得BP的长,即可得出DQ+PQ的最小值,进而得出△DPQ周长的最小值. 【详解】 解:如图所示,连接BQ,BD, ∵点Q是菱形对角线AC上一动点, ∴BQ=DQ, ∴DQ+PQ=BQ+PQ, 当P,Q,B在同一直线上时,BQ+PQ的最小值等于线段BP的长, ∵四边形ABCD是菱形,∠BAD=60°, ∴△BAD是等边三角形, 又∵P是AD的中点, ∴BP⊥AD,AP=DP=1, ∴Rt△ABP中,∠ABP=30°, ∴AP=AB=1, ∴BP=, ∴DQ+PQ最小值为, 又∵DP=1, ∴△DPQ周长的最小值是, 故选:A. 【点睛】 本题主要考查了菱形的性质以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点. 6.B 解析:B 【解析】 【分析】 利用一次函数图象上点的坐标特征可求出点A,B的坐标,在Rt△AOB中,利用勾股定理可求出AB的长,由折叠的性质可得出OC=OB,进而可得出BC的长,再利用面积法,即可求出CD的长. 【详解】 解:当x=0时,y=×0﹣3=﹣3, ∴点B的坐标为(0,﹣3); 当y=0时,x﹣3=0,解得:x=4, ∴点A的坐标为(4,0). 在Rt△AOB中,∠AOB=90°,OA=4,OB=3, ∴ 由折叠可知:OC=OB=3, ∴BC=OB+OC=6. ∵S△ABC=BC•OA=AB•CD, ∴ 故选B. 【点睛】 本题主要考查了一次函数与坐标轴的交点问题,折叠的性质,三角形的面积公式,勾股定理等等,解题的关键在于能够熟练掌握相关知识进行求解. 7.C 解析:C 【解析】 【分析】 依据DH是△AEF的中位线,即可得出DH=EF,再根据△BEF∽△BAC,即可得到EF的长,进而得出DH的长. 【详解】 解:∵D、E为边AB的三等分点,EF∥DG∥AC, ∴BE=DE=AD,BF=GF=CG,AH=HF, ∴AB=3BE,DH是△AEF的中位线, ∴DH=EF, ∵EF∥AC, ∴△BEF∽△BAC, ∴,即 , 解得:EF=3, ∴DH=EF=×3=, 故选:C. 【点睛】 本题考查了相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键. 8.B 解析:B 【分析】 如图,连接PM,PN,设AF交EM于J,连接PJ.证明四边形PMJN是矩形,推出MN=PJ,求出PJ的最小值即可解决问题. 【详解】 解:如图,连接PM,PN,设AF交EM于J,连接PJ. ∵PO=PE,OM=ME, ∴PM⊥OE,∠OPM=∠EPM, ∵PF=PA,NF=NA, ∴PN⊥AF,∠APN=∠FPN, ∴∠MPN=∠EPM+∠FPN=(∠OPF+∠FPA)=90°,∠PMJ=∠PNJ=90°, ∴四边形PMJN是矩形, ∴MN=PJ, ∴当JP⊥OA时,PJ的值最小此时MN的值最小, ∵AF⊥OM,A(5,0),直线OM的解析式为y=x ∴设直线AF的解析式为y=x+b ∵直线AF过A(5,0), ∴=0, ∴b=, ∴y=, 由,解得 ∴ ∴PJ的最小值为=2.4 即MN的最小值为2.4 故选:B. 【点睛】 本题考查一次函数的应用,矩形的判定和性质,垂线段最短等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题. 二、填空题 9. 【解析】 【分析】 根据二次根式有意义的条件,分式有意义的条件,即可求得. 【详解】 或者 解得: 故答案为: 【点睛】 本题考查了二次根式的性质,分式的性质,理解被开方数为非负数是解题的关键. 10.D 解析:【解析】 【分析】 先画出图形,根据菱形的性质可得,DO=3,根据勾股定理可求得AO的长,从而得到AC的长,再根据菱形的面积公式即可求得结果. 【详解】 由题意得, ∵菱形ABCD ∴,AC⊥BD ∴ ∴ ∴ 考点:本题考查的是菱形的性质 【点睛】 解答本题的关键是熟练掌握菱形的对角线互相垂直且平分,菱形的四条边相等;同时熟记菱形的面积等于对角线乘积的一半. 11.2 【解析】 【分析】 根据勾股定理计算,得到答案. 【详解】 解:斜边长==2, 故答案为2. 【点睛】 本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2. 12.D 解析:5 【分析】 根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长. 【详解】 解:∵DE为△ABC的中位线, ∴DE=BC=×4=2, ∵∠AFB=90°,D是AB 的中点, ∴DF=AB= ×3=, ∴EF=DE-DF=0.5, 故答案为:0.5. 【点睛】 本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键. 13.-1 【分析】 一次函数y=kx-1的图象经过点(-2,1),将其代入即可得到k的值. 【详解】 解:一次函数y=kx﹣1的图象经过点(﹣2,1), 即当x=﹣2时,y=1,可得:1=-2k﹣1, 解得:k=﹣1. 则k的值为﹣1. 【点睛】 本题考查一次函数图像上点的坐标特征,要注意利用一次函数的特点以及已知条件列出方程,求出未知数. 14.A 解析: 【分析】 根据矩形的性质得出OA=OB=OC=OD,∠BAD=90°,求出△AOB是等边三角形,求出OB=AB=1,根据矩形的性质求出BD,根据勾股定理求出AD即可. 【详解】 ∵四边形ABCD是矩形, ∴OA=OB=OC=OD, ∠BAD=90°, ∵ ∴△AOB是等边三角形, ∴OB=AB=1, ∴BD=2BO=2, 在Rt△BAD中, 故答案为 【点睛】 考查矩形的性质,勾股定理等,掌握矩形的对角线相等是解题的关键. 15.【分析】 利用等腰直角三角形构造全等三角形,求出旋转后的坐标,进而可得点所在直线的函数关系式,然后根据勾股定理求解即可解决问题. 【详解】 解:作轴于点,轴于, , , , 在和△中, , △, 解析: 【分析】 利用等腰直角三角形构造全等三角形,求出旋转后的坐标,进而可得点所在直线的函数关系式,然后根据勾股定理求解即可解决问题. 【详解】 解:作轴于点,轴于, , , , 在和△中, , △, ,, 设, ,, , ,, 设点,, 则, 整理,得:, 则点,在直线上, 设直线与x轴,y轴的交点分别为E、F, 如图,当时,取得最小值, 令,则, 解得, ∴, 令,则, ∴, 在中,, 当时,则, ∴, 的最小值为, 故答案为:. 【点睛】 本题考查的是一次函数图象上点的坐标特征,一次函数的性质,三角形全等,坐标与图形的变换-旋转,勾股定理,表示出点的坐标以及点所在直线的函数关系式是解题的关键. 16.【分析】 根据折叠的性质和矩形的性质得到BF=DF,设BF=DF=x,在△CDF中,利用勾股定理列出方程,求出x值,得到DF,即可计算EF的值. 【详解】 解:由折叠可知: AB=BE=CD=3, 解析: 【分析】 根据折叠的性质和矩形的性质得到BF=DF,设BF=DF=x,在△CDF中,利用勾股定理列出方程,求出x值,得到DF,即可计算EF的值. 【详解】 解:由折叠可知: AB=BE=CD=3,∠E=∠A=90°,DE=AD=4,∠ADB=∠EDB, ∵四边形ABCD是矩形, ∴AD∥BC, ∴∠ADB=∠CBD, ∴∠CBD=∠EDB, ∴BF=DF,设BF=DF=x, 则CF=4-x,在△CDF中, ,即, 解得:x=,即DF=, ∴EF=DE-DF==, 故答案为:. 【点睛】 本题主要考查了矩形的性质,翻折的性质,勾股定理,等角对等边,解题的关键是利用折叠的性质得到相等线段,利用勾股定理列出方程. 三、解答题 17.(1)6;(2)-1 【分析】 (1)将二次根式的系数相乘,将二次根式相乘,再化简即可得到答案; (2)根据除法法则和乘法法则计算二次根式的乘除法,再将结果相加减即可. 【详解】 (1) (2). 解析:(1)6;(2)-1 【分析】 (1)将二次根式的系数相乘,将二次根式相乘,再化简即可得到答案; (2)根据除法法则和乘法法则计算二次根式的乘除法,再将结果相加减即可. 【详解】 (1) (2). 【点睛】 此题考查二次根式的计算,正确掌握二次根式的乘除法法则,二次根式混合运算法则,以及二次根式的性质化简二次根式是解题的关键. 18.## 【分析】 在直角三角形ABC中运用勾股定理求出BC的长,进而求得CE的长,再在直角三角形EDC中运用勾股定理求出DC的长,最后求得AD的长即可. 【详解】 解:∵在中, ∴ ∴ ∵在中 ∴ ∴ 解析:## 【分析】 在直角三角形ABC中运用勾股定理求出BC的长,进而求得CE的长,再在直角三角形EDC中运用勾股定理求出DC的长,最后求得AD的长即可. 【详解】 解:∵在中, ∴ ∴ ∵在中 ∴ ∴. 【点睛】 本题主要考查了勾股定理在实际生活中的应用,灵活利用勾股定理解直角三角形成为解答本题的关键. 19.(1)正方形;(2)见解析;(3)见解析;(4)见解析 【解析】 【分析】 (1)利用勾股定理和勾股定理的逆定理可证明四边形ABCD为正方形; (2)延长EO交BC于F,则根据正方形为中心对称图形得 解析:(1)正方形;(2)见解析;(3)见解析;(4)见解析 【解析】 【分析】 (1)利用勾股定理和勾股定理的逆定理可证明四边形ABCD为正方形; (2)延长EO交BC于F,则根据正方形为中心对称图形得到AE=CF,则可根据梯形的面积公式计算出四边形AEFB的面积为5; (3)延长DC交过B点的铅垂线于G点,通过证明△BAE≌△BCG得到BG=BE; (4)利用网格特点,作∠EBG的平分线交CD于H点,证明△BEH≌△BGH,则EH=HG,则AE=CG,则有EH=AE+CH. 【详解】 解:(1)∵AB=BC=CD=AD==, ∴四边形ABCD为菱形, ∵BD==2, ∴AD2+AB2=BD2, ∴∠BAD=90°, 所以四边形ABCD为正方形; (2)如图,点F为所作; (3)如图,点G为所作; (4)如图,H点为所作. 【点睛】 本题考查了作图—旋转变换,解题的关键是熟练掌握轴对称变换和旋转变换的定义,并据此得出变换后的对应点. 20.(1)见解析;(2)60° 【分析】 (1)根据垂直平分线的性质,可以得到,,,由矩形的性质,得到, 根据平行线的性质,利用证明从而得到,结合上步所求,由四边相等的四边形是菱形即可得出结论 (2)由 解析:(1)见解析;(2)60° 【分析】 (1)根据垂直平分线的性质,可以得到,,,由矩形的性质,得到, 根据平行线的性质,利用证明从而得到,结合上步所求,由四边相等的四边形是菱形即可得出结论 (2)由题意,可以得到垂直平分 从而得出 结合题意可得 的度数,进而求得的度数 【详解】 (1)证明:垂直平分, ,,, 四边形是矩形, , ,, , , , 四边形是菱形. (2)为中点,, 垂直平分, , , 为等边三角形, , , . 【点睛】 本题主要考查了矩形的性质,平行线的性质,全等三角形的判定,菱形的判定,等边三角形的判定和性质,熟练掌握这些性质及判定定理是解题关键. 21.(1),;(2)10 ;(3),. 【解析】 【详解】 (1) ∵,∴ 的有理化因式为 ; ∵,∴ 分母有理化得: . (2). ∵ , ∴ (3) ∵(x+)(y+)-2017=0 ∴, ∴ 解析:(1),;(2)10 ;(3),. 【解析】 【详解】 (1) ∵,∴ 的有理化因式为 ; ∵,∴ 分母有理化得: . (2). ∵ , ∴ (3) ∵(x+)(y+)-2017=0 ∴, ∴ ∴ ∴ , 整理得: ∴ ,x=y 将x=y代入可得:, .故答案为,. 点睛:此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解本题的关键. 22.(1);(2)4.5千克. 【分析】 (1)当x≥2时函数为一次函数,用待定系数法求函数解析式; (2)把y=20代入(1)中解析式求解即可. 【详解】 解:(1)当时,设与之间的的函数关系式为, 解析:(1);(2)4.5千克. 【分析】 (1)当x≥2时函数为一次函数,用待定系数法求函数解析式; (2)把y=20代入(1)中解析式求解即可. 【详解】 解:(1)当时,设与之间的的函数关系式为, 将点,带入解析式得 解得 ∴. (2)将时,带入中解得千克. 答:徐大爷付款20元能购买这种玉米种子4.5千克. 【点睛】 本题考查一次函数的应用,关键是用待定系数法求函数解析式. 23.(1);(2)21;(3)或或或 【分析】 (1)过点作轴于,求出AH和OH即可; (2)证明≌,表示出AP,CQ,根据OC=14求出t值,得到AP,CQ,再根据面积公式计算; (3)由Q、D、C、 解析:(1);(2)21;(3)或或或 【分析】 (1)过点作轴于,求出AH和OH即可; (2)证明≌,表示出AP,CQ,根据OC=14求出t值,得到AP,CQ,再根据面积公式计算; (3)由Q、D、C、F为顶点的四边形是菱形得到以,,为顶点的三角形是等腰三角形,求出CD,得到点Q坐标,再分情况讨论. 【详解】 解:(1)过点作轴于, ∵,,, ∴, ∴点坐标为. (2)∵, ∴点坐标为, ∵点是对角线AC的中点, ∴点的坐标为, ∵四边形ABCD是平行四边形, ∴, ∴, 当PQ经过点时,, 在和中, , ∴≌, ∴, ∵, ∴, ∴, ∴, ∴四边形APCQ的面积为, 即当PQ经过点时,四边形APCQ的面积为21. (3)∵是平面内一点,以,,,为顶点的四边形是菱形, 则以,,为顶点的三角形是等腰三角形, ∵,, ∴, ∴当时,点坐标为或, 当点坐标为时,点坐标为, 当点坐标为时,点坐标为, 当时,点与点关于轴对称, ∴点的坐标为, 当时,设点坐标为, ∴, 解得, ∴点坐标为, ∴点坐标为, ∴综上所述,以,,,为顶点的四边形是菱形,点的坐标为或或或. 【点睛】 本题考查了平行四边形的性质,全等三角形的判定和性质,菱形的性质,等腰直角三角形的判定和性质,综合性较强,解题的关键是根据菱形的性质进行分类讨论. 24.(1)y=﹣x+5;(2)S=﹣t+25;(3)t=﹣4 【解析】 【分析】 (1)因为A点在直线上,且横坐标为-6,可求得A点坐标,设直线AB的解析式为y=kx+b,将A、B两点的坐标代入,即可求 解析:(1)y=﹣x+5;(2)S=﹣t+25;(3)t=﹣4 【解析】 【分析】 (1)因为A点在直线上,且横坐标为-6,可求得A点坐标,设直线AB的解析式为y=kx+b,将A、B两点的坐标代入,即可求得直线AB的解析式; (2)根据已知条件得到四边形OADB是平行四边形,过A作x轴的垂线,垂足为E,过P作x轴的垂线,垂足为F,交AB与点Q,连接OQ,求得E(﹣6,0),推出四边形OADB是菱形,且可证≌,故=,求得Q(t,),根据三角形的面积公式即可得到结论; (3)设AD交y轴于F,连接CD,可证≌,根据全等三角形的性质得到∠AOC=∠ACD,求得∠CPD=∠ADC,再证≌,可得PF=DF,故t的值可得. 【详解】 解:(1)∵点A在直线,且点A的横坐标为-6,将x=-6代入,求得y=8, ∴A点坐标为(﹣6,8),且由题意可知B点坐标(10,0), 设直线AB的解析式为y=kx+b, ∴,解得:, ∴直线AB的解析式为:; (2)∵D(4,8),A(﹣6,8), ∴AD=10,且AD∥OB, 又∵B(10,0),O(0,0),故OB=10, ∴四边形OADB是平行四边形(对边平行且相等), 如图②,过A作x轴的垂线,垂足为E,过P作x轴的垂线,交AB与点Q,垂足为F,连接OQ, ∵A(-6,8),故E(-6,0), ∴AE=8,OE=6, ∴根据勾股定理,可得, ∴OA=AD, ∴四边形OADB是菱形(邻边相等的平行四边形是菱形),故BO=BD,菱形对角线平分每组对角,故∠QBD=∠QBF, 在和中, ∴≌(SAS), ∴=, ∵点P的横坐标为t,∴点Q的横坐标为t, ∵直线AB的解析式为; ∴Q(t,), ∴QF=, ∴===, ∴; (3)在(2)的条件下,四边形OADB是菱形,如图③,设AD交y轴于F,连接CD, 在和中, ∴≌(SAS), ∴∠AOC=∠ADC, ∵∠OAD+∠AOC=90°,∠OAD=∠OBD, ∴∠OBD+∠AOC=90°, ∵∠CPD+∠OBD=90°, ∴∠CPD=∠AOC, ∴∠CPD=∠ADC, 又∵AD⊥y轴, ∴∠CFP=∠CFD=90°, 在和中, ∴≌(AAS), ∴PF=DF, ∵D(4,8), ∴P(-4,8), ∴t=-4. 【点睛】 本题主要考察了求一次函数解析式、菱形的性质、勾股定理、全等三角形的证明及应用、动点问题与函数的结合,该题融合了较多知识点,解题的关键在于找出全等三角形,并应用全等的性质去计算. 25.(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或. 【分析】 (1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2 解析:(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或. 【分析】 (1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题. (2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题. (3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题. 【详解】 (1)如图1中,作BH⊥x轴于H. ∵A(1,0)、C(0,2), ∴OA=1,OC=2, ∵∠COA=∠CAB=∠AHB=90°, ∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°, ∴∠ACO=∠BAH, ∵AC=AB, ∴△COA≌△AHB(AAS), ∴BH=OA=1,AH=OC=2, ∴OH=3, ∴B(3,1), 设直线BC的解析式为y=kx+b,则有, 解得:, ∴; (2)如图2中, ∵四边形ABMN是平行四边形, ∴AN∥BM, ∴直线AN的解析式为:, ∴, ∴, ∵B(3,1),C(0,2), ∴BC=, ∴, ∴, ∴t=s时,四边形ABMN是平行四边形; (3)如图3中, 如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3, 连接OQ交BC于E, ∵OE⊥BC, ∴直线OE的解析式为y=3x, 由,解得:, ∴E(,), ∵OE=OQ, ∴Q(,), ∵OQ1∥BC, ∴直线OQ1的解析式为y=-x, ∵OQ1=OB=,设Q1(m,-), ∴m2+m2=10, ∴m=±3, 可得Q1(3,-1),Q3(-3,1), 当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上, 易知线段OB的垂直平分线的解析式为y=-3x+5, 由,解得:, ∴Q2(,). 综上所述,满足条件的点Q坐标为:或或或. 【点睛】 本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 部编版八 年级 下册 数学 期末试卷 综合测试 word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文