八年级下册数学阜阳数学期末试卷复习练习(Word版含答案).doc
《八年级下册数学阜阳数学期末试卷复习练习(Word版含答案).doc》由会员分享,可在线阅读,更多相关《八年级下册数学阜阳数学期末试卷复习练习(Word版含答案).doc(30页珍藏版)》请在咨信网上搜索。
八年级下册数学阜阳数学期末试卷复习练习(Word版含答案) 一、选择题 1.若式子在实数范围内有意义,则的取值范围是( ) A. B. C. D. 2.下列线段,,能组成直角三角形的是( ) A.,, B.,, C.,, D.,, 3.已知四边形ABCD中,AB∥CD,添加下列条件仍不能判断四边形ABCD是平行四边形的是( ) A.AB=CD B.AD=BC C.AD∥BC D.∠A+∠B=180° 4.某校男子足球队的年龄分布如图条形图所示,则这些队员年龄的众数是( ) A.8 B.13 C.14 D.15 5.三角形三边长分别是6,10,8,则它的最长边上的高为( ) A.6 B.10 C.8 D.4.8 6.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图)则∠EAF等于( ) A.75° B.45° C.60° D.30° 7.如图,作,,;以A为圆心,以AC长为半径画弧,交斜边AB与点D;以B为圆心,以BD长为半径画弧,交BC与点E.若,则( ) A. B. C. D. 8.如图,若正比例函数y=kx图象与四条直线x=1,x=2,y=1,y=2相交围成的正方形有公共点,则k的取值范围是( ) A.k≤2 B.k≥ C.0<k< D.≤k≤2 二、填空题 9.已知,则____________. 10.如图,菱形ABCD的对角线AC=3cm,BD=4cm,则菱形ABCD的面积是_____. 11.如图 ,在△ ABC 中,∠C=90°,∠ABC 的平分线 BD 交 AC 于点 D.若 BD=10cm,BC=8cm,则点 D 到直线 AB 的距离= ________. 12.如图,在矩形ABCD中,E是AB上一点,F是AD上一点,EF⊥FC,且EF=FC,已知DF=5cm,则AE的长为________cm. 13.若直线y=2x+1平移后过点(-1,2),则平移后直线的解析式为___________________. 14.如图,在△ABC中,AD⊥BC于点D,点E,F分别是A4B.AC边的中点,请你在△ABC中添加一个条件:_______________使得四边形AEDF是菱形. 15.甲、乙两车从A地出发,匀速驶向B地.甲车以的速度行驶1小时后,乙车才沿相同路线行驶乙车先到达B地并停留1小时后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离与乙车行驶时间之间的函数关系如图所示下列说法:①乙车的速度是;②;③点H的坐标是;④.其中错误的是_______.(只填序号) 16.如图,在平面直角坐标系中,点A的坐标为,点B在x轴上,,作点O关于AB的对称点C,连接AC,BC,则点C的坐标为__________. 三、解答题 17.计算: (1); (2) 18.由于大风,山坡上的一颗甲树从A点处被拦腰折断,其顶点恰好落在一棵树乙的底部C处,如图所示,已知AB=4米,BC=13米,两棵树的水平距离是12米,求甲树原来的高度. 19.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画图形. (1)在图1中,画一个等腰三角形(不含直角),使它的面积为8; (2)在图2中,画一个直角三角形,使它的三边长都是有理数; (3)在图3中,画一个正方形,使它的面积为10. 20.如图,在正方形中,点,在上,且. 求证:(1). (2)四边形是菱形. 21.阅读下列材料,然后解答下列问题: 在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简: (一) ; (二) ; (三) . 以上这种化简的方法叫分母有理化. (1)请用不同的方法化简: ①参照(二)式化简=__________. ②参照(三)式化简=_____________ (2)化简:. 22.我国传统的计重工具﹣﹣秤的应用,方便了人们的生活,如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤).如表中为若干次称重时所记录的一些数据. x(厘米) 1 2 4 8 y(斤) 0.75 1.00 1.50 2.5 (1)在图2中将表x,y的数据通过描点的方法表示,观察判断x,y的函数关系,并求秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少斤? (2)已知秤砣到秤纽的最大水平距离为50厘米,这杆秤的可称物重范围是多少斤? 23.如图1,在中,为的中点,连结.过点作射线为射线上一动点. (1)求的长和的面积; (2)如图2,连结,在点的运动过程中,若为等腰三角形,求所有满足条件的的长; (3)如图3,连结交于点,连结,作点关于的对称点,当点恰好落在的边上时,连结,请直接写出的面积. 24.矩形ABCO中,O(0,0),C(0,3),A(a,0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO得到矩形AFED. (1)如图1,当点D落在边BC上时,求BD的长(用a的式子表示); (2)如图2,当a=3时,矩形AFED的对角线AE交矩形ABCO的边BC于点G,连结CE,若△CGE是等腰三角形,求直线BE的解析式; (3)如图3,矩形ABCO的对称中心为点P,当P,B关于AD对称时,求出a的值,此时在x轴、y轴上是否分别存在M,N使得四边形EFMN为平行四边形,若存在直接写出M,N坐标,不存在说明理由. 25.等腰Rt△ABC,CA=CB,D在AB上,CD=CE,CD⊥CE. (1)如图1,连接BE,求证:AD=BE. (2)如图2,连接AE,CF⊥AE交AB于F,T为垂足, ①求证:FD=FB; ②如图3,若AE交BC于N,O为AB中点,连接OC,交AN于M,连FM、FN,当,求OF2+BF2的最小值. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据二次根式有意义的条件列出不等式,解不等式得到答案. 【详解】 由题意得,, 解得,, 故选:C. 【点睛】 本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键. 2.C 解析:C 【分析】 根据如果三角形的三边长,,满足,那么这个三角形就是直角三角形进行分析即可. 【详解】 解:、,不能组成直角三角形,故此选项错误; 、,不能组成直角三角形,故此选项错误; 、,能组成直角三角形,故此选项正确; 、,不能组成直角三角形,故此选项错误. 故选:C. 【点睛】 此题主要考查了勾股定理逆定理,关键是掌握判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断. 3.B 解析:B 【解析】 【分析】 平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形. 【详解】 解:根据平行四边形的判定,A、C、D均符合是平行四边形的条件,B则不能判定是平行四边形. 故选B. 【点睛】 此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形. 4.C 解析:C 【解析】 【分析】 根据众数的定义:一组数据中出现次数最多的那个数,称为这组数据的众数,据此结合条形图可得答案. 【详解】 解:由条形统计图知14岁出现的次数最多, 所以这些队员年龄的众数为14岁, 故选C. 【点睛】 本题考查了众数的定义及条形统计图的知识,解题的关键是能够读懂条形统计图及了解众数的定义. 5.D 解析:D 【分析】 先判断三角形的形状,再依据三角形的面积公式求出这个三角形的面积,且依据同一个三角形的面积不变求出斜边上的高. 【详解】 解:∵三角形三边长分别是6,10,8 ∴62+82=102 ∴该三角形为直角三角形 ∴该三角形的面积:6×8÷2=24 斜边上的高:24×2÷10=4.8 ∴这个三角形最长边上的高是4.8. 故选:D. 【点睛】 本题考查了勾股定理逆定理以及面积不变原则,解答此题的关键是:先确定出计算三角形的面积需要的线段的长度,再据同一个三角形的面积不变,求出斜边上的高. 6.C 解析:C 【解析】 【分析】 首先连接AC,由四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,易得△ABC与△ACD是等边三角形,即可求得∠B=∠D=60°,继而求得∠BAD,∠BAE,∠DAF的度数,则可求得∠EAF的度数. 【详解】 解:连接AC, ∵AE⊥BC,AF⊥CD,且E、F分别为BC、CD的中点, ∴AB=AC,AD=AC, ∵四边形ABCD是菱形, ∴AB=BC=CD=AD, ∴AB=BC=AC,AC=CD=AD, ∴∠B=∠D=60°, ∴∠BAE=∠DAF=30°,∠BAD=180°﹣∠B=120°, ∴∠EAF=∠BAD﹣∠BAE﹣∠DAF=60°. 故选C. 【点睛】 此题考查了菱形的性质、线段垂直平分线的性质以及等边三角形的判定与性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用. 7.A 解析:A 【解析】 【分析】 根据勾股定理求出AB,再根据圆的定义可求得AD=AC,BE=BD即可求解. 【详解】 解:∵,, ∴AC=3, 在中,,由勾股定理得: , 由题意,AD=AC=3,BE=BD=AB-AD=-3, ∴CE=BC-BE=6-(-3)=9-, 故选:A. 【点睛】 本题考查圆的定义、勾股定理,熟练掌握勾股定理是解答的关键. 8.D 解析:D 【分析】 如图,可知当直线在过点和点两点之间的时候满足条件,把、两点分别代入可求得的最小值和最大值,可求得答案. 【详解】 解: 直线与正方形有公共点, 直线在过点和点两直线之间之间, 如图,可知,, 当直线过点时,代入可得,解得, 当直线过点时,代入可得,解得, 的取值范围为:, 故选. 【点睛】 本题主要考查一次函数图象点的坐标,由条件得出直线在过和两点间的直线是解题的关键,注意数形结合思想的应用. 二、填空题 9.-8 【解析】 【分析】 根据二次根式的被开方数大于等于0可求出x的值,进而求得结果. 【详解】 解:根据二次根式有意义的条件,得 x=3, ∴y=-2, ∴, 故答案为:-8. 【点睛】 本题考查了二次根式有意义的条件,被开方数大于等于0. 10.A 解析:12cm2 【解析】 【分析】 利用菱形的面积公式可求解. 【详解】 解:因为菱形的对角线互相垂直平分, ∵AC=cm,BD=cm, 则菱形ABCD的面积是cm2. 故答案为12cm2. 【点睛】 此题主要考查菱形的面积计算,关键是掌握菱形的面积计算方法. 11.D 解析:6cm 【解析】 【分析】 过点D作DE⊥AB于E,利用勾股定理列式求出CD,再根据角平分线上的点到角的两边距离相等可得DE=CD即可求解. 【详解】 如图,过点D作DE⊥AB于E, ∵∠C=90°,BD=10cm,BC=8cm, ∴CD=cm, ∵∠C=90°,BD是∠ABC的平分线, ∴DE=CD=6cm, 即点D到直线AB的距离是6cm. 故答案为:6cm. 【点睛】 本题考查了勾股定理、角平分线的性质、点到直线的距离等知识,在解题时要能灵活应用各个知识点是本题的关键. 12.E 解析:5 【分析】 只需要证明△EAF≌FDC即可得到答案. 【详解】 解:∵四边形ABCD是矩形, ∴∠A=∠D=90°, ∴∠AFE+∠AEF=90°, ∵EF⊥EC, ∴∠EFC=90°, ∴∠AFE+∠CFD=90°, ∴∠AEF=∠DFC, ∵EF=CF, ∴△EAF≌FDC(AAS), ∴AE=FD=5, 故答案为:5. 【点睛】 本题主要考查了矩形的性质,垂直的定义,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 13. 【分析】 由平移的性质可设平移后的解析式为:,再利用待定系数法求解即可得到答案. 【详解】 解:设平移后的解析式为:, 把代入得: 所以平移后的解析式为: 故答案为: 【点睛】 本题考查的是一次函数的图像的平移,及利用待定系数法求解函数解析式,掌握一次函数的平移的特点是解题的关键. 14.A 解析:AB=AC(或∠B=∠C,或BD=DC) 【分析】 可根据三角形的中位线定理、等腰三角形的性质、菱形的判定,分析得出当△ABC满足条件AB=AC或∠B=∠C时,四边形AEDF是菱形. 【详解】 解:要使四边形AEDF是菱形,则应有DE=DF=AE=AF, ∵E,F分别为AC,BC的中点 ∴AE=BE,AF=FC, 应有DE=BE,DF=CF,则应有△BDE≌△CDF,应有BD=CD, ∴当点D应是BC的中点,而AD⊥BC, ∴△ABC应是等腰三角形, ∴应添加条件:AB=AC或∠B=∠C. 则当△ABC满足条件AB=AC或∠B=∠C时,四边形AEDF是菱形. 故答案为:AB=AC(或∠B=∠C,或BD=DC). 【点睛】 本题考查了菱形的判定,解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论. 15.④ 【分析】 根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量. 【详解】 解:由图象可知,乙出发时,甲乙相距80km,2小时 解析:④ 【分析】 根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量. 【详解】 解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确; 由图象第2-6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确; 当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确; 乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误. 故答案为:④. 【点睛】 本题考查函数的应用,主要是以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态. 16.【分析】 先根据题意确定点B的坐标,然后再确定直线AB的解析式,然后设点C的坐标为(x,y),然后求出OC的中点坐标,然后将中点坐标代入解析式即可. 【详解】 解:∵点A的坐标为 ∴OA=1 ∵, 解析: 【分析】 先根据题意确定点B的坐标,然后再确定直线AB的解析式,然后设点C的坐标为(x,y),然后求出OC的中点坐标,然后将中点坐标代入解析式即可. 【详解】 解:∵点A的坐标为 ∴OA=1 ∵,即∠OBA=30° ∴AB=2 ∴OB= ∴点A的坐标为 设直线AB的解析式为y=kx+b 则有 ,即 ∴y=x+1 ∵作点O关于AB的对称点C ∴直线OC的解析式为y=x+1 设点C的坐标为(x,y),则OC的中点坐标为() ∴ ,解得:. ∴点C的坐标为. 故答案为. 【点睛】 本题考查了轴对称变换、一次函数解析式以及相互垂直直线的特点,掌握相互垂直直线的特点和轴对称的对应点的坐标特点是解答本题的关键. 三、解答题 17.(1);(2)−7+3 【分析】 (1)先把各二次根式化为最特意二次根式,再合并即可得到答案; (2)分别根据平方差公式、负整数指数幂的运算法则,绝对值的代数意义,零指数幂的运算法则以及二次根式的性 解析:(1);(2)−7+3 【分析】 (1)先把各二次根式化为最特意二次根式,再合并即可得到答案; (2)分别根据平方差公式、负整数指数幂的运算法则,绝对值的代数意义,零指数幂的运算法则以及二次根式的性质代简各项后再合并即可得到答案. 【详解】 解:(1) = =; (2) = = 【点睛】 本题主要考查了二次根式的加减以及实数的混合运算,熟练掌握运算法则是解答本题的关键. 18.19米 【分析】 如图所示,过点C作CD⊥AB交AB延长线于D,则根据题意可以得到CD=12米,根据勾股定理即可求出BD的长,再利用勾股定理求出AC的长即可得到AC+AB的长. 【详解】 解:如图所 解析:19米 【分析】 如图所示,过点C作CD⊥AB交AB延长线于D,则根据题意可以得到CD=12米,根据勾股定理即可求出BD的长,再利用勾股定理求出AC的长即可得到AC+AB的长. 【详解】 解:如图所示,过点C作CD⊥AB交AB延长线于D 由题意得:CD=12,AB=4米,BC=13米 在Rt△BCD中米 ∴米 在Rt△ACD中米 ∴米 ∴甲树原来的高度是19米. 【点睛】 本题主要考查了勾股定理的应用,解题的关键在于能够熟练掌握勾股定理. 19.(1)作图见详解;(2)作图见详解;(3)作图见详解. 【解析】 【分析】 (1)根据题意找出三角形底为4,高为4的三角形即可; (2)根据题意可画出直角边分别为3,4的直角三角形,斜边通过勾股定理 解析:(1)作图见详解;(2)作图见详解;(3)作图见详解. 【解析】 【分析】 (1)根据题意找出三角形底为4,高为4的三角形即可; (2)根据题意可画出直角边分别为3,4的直角三角形,斜边通过勾股定理计算为5,符合题意; (3)根据题意及正方形面积的特点即可画出边长为的正方形. 【详解】 (1)如图所示,三角形底为4,高为4,面积为8,符合题意,即为所求; (2)如图所示,三角形为所求,直角边分别为3,4,根据勾股定理,斜边为5,符合题意; (3)如图所示,正方形为所求,正方形变长为, 面积为:,符合题意. 【点睛】 此题主要考查网格与图形,解题的关键是熟练运用勾股定理. 20.(1)见解析;(2)见解析 【分析】 (1)根据边角边证明全等即可得出结论; (2)同理可得,然后证明,即可得出,结论可得. 【详解】 解:(1)∵四边形是正方形, ∴, , 在和中, , ∴, ∴ 解析:(1)见解析;(2)见解析 【分析】 (1)根据边角边证明全等即可得出结论; (2)同理可得,然后证明,即可得出,结论可得. 【详解】 解:(1)∵四边形是正方形, ∴, , 在和中, , ∴, ∴. (2)同理可得, 可得, ∵, ∴,即, 在和中, , ∴, ∴, ∴, ∴四边形是菱形. 【点睛】 本题考查了正方形的性质,全等三角形的判定与性质,菱形的判定等知识点,熟练掌握全等三角形的判定定理是解本题的关键. 21.见解析. 【解析】 【分析】 (1)原式各项仿照题目中的分母有理化的方法计算即可得到结果; (2)原式各项分母有理化,计算即可. 【详解】 解:(1)①; ②; (2)原式 故答案为:(1)①; 解析:见解析. 【解析】 【分析】 (1)原式各项仿照题目中的分母有理化的方法计算即可得到结果; (2)原式各项分母有理化,计算即可. 【详解】 解:(1)①; ②; (2)原式 故答案为:(1)①;② 【点睛】 此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题. 22.(1)y=x+,杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤;(2)0≤y≤13 【分析】 (1)画出各点,根据图象判断是一次函数,利用待定系数法求解析式,代入数值计算即可; (2) 解析:(1)y=x+,杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤;(2)0≤y≤13 【分析】 (1)画出各点,根据图象判断是一次函数,利用待定系数法求解析式,代入数值计算即可; (2)把把x=50代入解析式,求出最大物重即可确定范围. 【详解】 解:(1)描点如图所示,这些点在一条直线上,故x,y的函数关系是一次函数, 设x,y的函数关系式:y=kx+b, ∵当x=2时,y=1;x=4时,y=1.5; ∴, 解得k=,b=, ∴x,y的函数关系式:y=x+, 把x=16代入:y=x+, 得y=4.5, ∴杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤; (2)把x=50代入y=x+, 得y=13, ∴0≤y≤13, ∴这杆秤的可称物重范围是0≤y≤13. 【点睛】 本题考查了一次函数的应用,掌握一次函数解析式的求法是解题关键. 23.(1)20,150;(2)7或;(3)或42. 【分析】 (1)根据等腰三角形的性质可得BD=AB=15,CD⊥AB,根据勾股定理即可求得的长,从而可得的面积; (2)分三种情况进行讨论;当CD=C 解析:(1)20,150;(2)7或;(3)或42. 【分析】 (1)根据等腰三角形的性质可得BD=AB=15,CD⊥AB,根据勾股定理即可求得的长,从而可得的面积; (2)分三种情况进行讨论;当CD=CP时,作CE⊥AP于E,根据S△ABC=ABCD=BCCE可得CE的长,CE>CP,而根据直角三角形斜边大于直角边可得该情况不成立;当CD=DP时,作DF⊥AP于F,延长FD交BC于G,根据全等三角形的判定可得△AFD≌△BGD,从而得到DF=DG,根据S△CDB=CDBD=DGBC,可得DF=DG=12,根据勾股定理可得AF和PF的长,即可得到AP的长;当PD=PC时,作CE⊥AP于E,作DF⊥AP于F,延长FD交BC于G,设AP=x,可得PE=x-7,根据勾股定理可得,,列式即可求得AP的值. (3)分三种情况进行讨论:①当A´落在CD上时,作GE⊥CD于点E,根据等腰三角形的性质可得CD⊥AB,可得sin∠DAC=,cos∠DAC=,根据题意可知DG是AA´的垂直平分线,从而得到△ADG≌△A´DG(SAS),A´C=5,即可得到sin∠GA´E= sin∠GAE=,cos∠GA´E=cos∠GAE=,设A´G=x,则CG=25-x,GE=x,A´E=x,可得CE=x+5,利用勾股定理可得GE的长,根据S△A´CG=A´CEG即可得解;②当A´落在BC上时,作GE⊥BC于点E,A´A与DG的交点为F,可得DF为中位线,所以DF∥BA´,且DF=BA´,根据等腰三角形性质及中位线性质可得sin∠ABA´=,cos∠ABA´=,从而求得BA´的长,BA´的长,根据矩形的判定可得四边形FA´EG为矩形,从而得到GE的长,根据S△A´CG=A´CEG即可得解;③当A´落在BD上时,会得到A´与B点重合,所以该情况不存在. 【详解】 解:(1)∵,,D为的中点, ∴BD=AB=15,CD⊥AB, ∴∠CDB=90°, ∴CD=, ∴S△ACD=CDAD=×20×15=150; (2)当CD=CP时,如图,作CE⊥AP于E, ∴S△ABC=ABCD=BCCE, ∴×30×20=×25CE, 解得 CE=24, ∵CE>CD, 即CE>CP, ∴CD=CP不成立, 当CD=DP时,作DF⊥AP于F,延长FD交BC于G, ∵AF∥BC, ∴∠FAD=∠B, ∵∠AFD=∠BGD=90°,AD=BD, ∴△AFD≌△BGD(AAS), ∴DF=DG, ∵S△CDB=CDBD=DGBC, ∴×20×15=×25DG ∴DF=DG=12, ∴AF=, 在Rt△DFP中,PF=, ∴AP=PF-AF=16-9=7, 当PD=PC时,作CE⊥AP于E,作DF⊥AP于F,延长FD交BC于G, 由上述过程可得 AF=9, ∴CG=BC-BG=25-9=16, 设AP=x, ∴PE=PF-FE=AF+AP-FE=9+x-16=x-7, 当PD=PC时,在Rt△PDF中, , 在Rt△PCE中,, ∴=, 解得x=, ∴AP=, 综上所述,AP=7或. (3)①当A´落在CD上时,作GE⊥CD于点E, 则S△A´CG=A´CEG, ∵AC=BC,D为AB中点, ∴CD⊥AB, ∵AC=BC=25,AB=30, ∴BD=AD=15,CD=20, sin∠DAC=,cos∠DAC=, 由题知A,A´关于DG对称, ∴DG是AA´的垂直平分线, ∵DG=DG,∠ADG=∠A´DG,AD=A´D=15, ∴△ADG≌△A´DG(SAS),A´C=5, ∴sin∠GA´E= sin∠GAE=,cos∠GA´E=cos∠GAE=, 设A´G=x,则CG=25-x, ∴GE=x,A´E=x, ∴CE=x+5, ∵△CGE为直角三角形, ∴, 解得x=, ∴GE=, ∴S△A´CG=A´CEG=×5×=; ②当A´落在BC上时,作GE⊥BC于点E,A´A与DG的交点为F, 则S△A´CG=A´CEG, ∵A,A´关于DG对称, ∴点F为AA´的中点, ∵D为AB的中点, 则在△ABA´中,DF为中位线, ∴DF∥BA´,且DF=BA´, ∵∠AFD=90°, ∴∠AA´B=90°, ∵CD=20,BC=25,AB=30 ∴sin∠ABA´=,cos∠ABA´=, ∴BA´=30×=24, ∴A´C=25-18=7, ∵AA´⊥BC,GE⊥BC, ∴GE∥AA´, ∵DF∥BA´, ∴FG∥A´E, ∵∠AA´C=90°, ∴四边形FA´EG为矩形, ∴GE=FA´=AA´=×24=12, ∴S△A´CG=A´CEG=×7×12=42. ③当A´落在BD上时,此时DA=DA´=15, ∴A´与B点重合, ∵AP∥ BC, ∴该情况不存在, 综上所述,的面积为或42. 【点睛】 本题考查了等腰三角形的性质,勾股定理,全等三角形的判定与性质,矩形的判定与性质等知识点.解题的关键是运用分类讨论思想进行解题. 24.(1)BD=;(2)y=﹣x+6;(3)M(,0),N(0,) 【解析】 【分析】 (1)如图1,当点D落在边BC上时,BD2=AD2-AB2,即可求解; (2)分CG=EG、CE=GE、CE=CG 解析:(1)BD=;(2)y=﹣x+6;(3)M(,0),N(0,) 【解析】 【分析】 (1)如图1,当点D落在边BC上时,BD2=AD2-AB2,即可求解; (2)分CG=EG、CE=GE、CE=CG三种情况分别求解; (3)①由点P为矩形ABCO的对称中心,得到求得直线PB的解析式为,得到直线AD的解析式为:,解方程即可得到结论;②根据①中的结论得到直线AD 的解析式为,求得∠DAB=30°,连接AE,推出A,B,E三点共线,求得,设M(m,0),N(0,n),解方程组即可得到结论. 【详解】 (1)如图1, 在矩形ABCO中,∠B=90° 当点D落在边BC上时,BD2=AD2﹣AB2, ∵C(0,3),A(a,0) ∴AB=OC=3,AD=AO=a, ∴BD=; (2)如图2,连结AC, ∵a=3,∴OA=OC=3, ∴矩形ABCO是正方形,∴∠BCA=45°, 设∠ECG的度数为x, ∴AE=AC,∴∠AEC=∠ACE=45°+x, ①当CG=EG时,x=45°+x, 解得x=0,不合题意,舍去; ②当CE=GE时,如图2, ∠ECG=∠EGC=x ∵∠ECG+∠EGC+∠CEG=180°, ∴x+x+(45°+x)=180°,解得x=45°, ∴∠AEC=∠ACE=90°,不合题意,舍去; ③当CE=CG时,∠CEG=∠CGE=45°+x, ∵∠ECG+∠EGC+∠CEG=180°, ∴x+(45°+x)+(45°+x)=180°,解得x=30°, ∴∠AEC=∠ACE=75°,∠CAE=30° 如图3,连结OB,交AC于点Q,过E作EH⊥AC于H,连结BE, ∴EH=AE=AC,BQ=AC, ∴EH=BQ,EH∥BQ且∠EHQ=90° ∴四边形EHQB是矩形 ∴BE∥AC, 设直线BE的解析式为y=﹣x+b, ∵点B(3,3)在直线上,则b=6, ∴直线BE的解析式为y=﹣x+6; (3)①∵点P为矩形ABCO的对称中心, ∴, ∵B(a,3), ∴PB的中点坐标为:, ∴直线PB的解析式为, ∵当P,B关于AD对称, ∴AD⊥PB, ∴直线AD的解析式为:, ∵直线AD过点,∴, 解得:a=±3, ∵a≥3, ∴a=3; ②存在M,N; 理由:∵a=3, ∴直线AD 的解析式为y=﹣x+9, ∴∴∠DAO=60°, ∴∠DAB=30°, 连接AE, ∵AD=OA=3,DE=OC=3, ∴∠EAD=30°, ∴A,B,E三点共线, ∴AE=2DE=6, ∴, 设M(m,0),N(0,n), ∵四边形EFMN是平行四边形, ∴, 解得:, ∴M(,0),N(0,). 【点睛】 本题考查的是一次函数综合运用,涉及到正方形和等腰三角形性质、圆的基本知识,其中(2),要注意分类求解,避免遗漏. 25.(1)见解析;(2)①见解析;② 【分析】 (1)利用SAS证明△ACD≌△BCE,从而利用全等三角形的性质即可得出结论; (2)①过点D作DH⊥CF于H,过点B作BG⊥CF,交CF的延长线于G,首 解析:(1)见解析;(2)①见解析;② 【分析】 (1)利用SAS证明△ACD≌△BCE,从而利用全等三角形的性质即可得出结论; (2)①过点D作DH⊥CF于H,过点B作BG⊥CF,交CF的延长线于G,首先证明△ACT≌△BCG及△DCH≌△ECT,得到CT=BG,CT=DH,通过等量代换得出DH=BG,再证明△DHF≌△BGF,则可证明结论; ②首先利用等腰三角形的性质和ASA证明△AOM≌△COF,则有OM=OF,然后利用等腰直角三角形的性质得出FK=BF,然后利用三角形的面积得出OF×BF=10,最后利用平方的非负性和完全平方公式求解即可. 【详解】 证明:(1)∵△ABC是等腰直角三角形,AC=BC, ∴∠ACB=90°, ∵CD⊥CE, ∴∠ACB=∠DCE=90°, ∴∠ACD+∠BCD=∠BCE+∠BCD,即∠ACD=∠BCE, 在△ACD和△BCE中, , ∴△ACD≌△BCE(SAS), ∴AD=BE; (2)①如图2,过点D作DH⊥CF于H,过点B作BG⊥CF,交CF的延长线于G, ∵CF⊥AE, ∴∠ATC=∠ATF=90°, ∴∠ACT+∠CAT=90°, 又∵∠ACT+∠BCG=90°, ∴∠CAT=∠BCG, 在△ACT和△CBG中, , ∴△ACT≌△CBG(AAS), ∴CT=BG, 同理可证△DCH≌△ECT, ∴CT=DH, ∴DH=BG, 在△DHF和△BGF中, , ∴△DHF≌△BGF(AAS), ∴DF=BF; ②如图3,过点F作FK⊥BC于K, ∵等腰Rt△ABC,CA=CB,点O是AB的中点, ∴AO=CO=BO,CO⊥AB,∠ABC=45°, ∴∠OCF+∠OFC=90°, ∵AT⊥CF, ∴∠ATF=90°, ∴∠OFC+∠FAT=90°, ∴∠FAT=∠OCF, 在△AOM和△COF中, , ∴△AOM≌△COF(ASA), ∴OM=OF, 又∵CO⊥AO, ∴∠OFM=∠OMF=45°,, ∴∠OFM=∠ABC,MF=OF, ∴MFBC, ∴∠MFK=∠BKF=90°, ∵∠ABC=45°,FK⊥BC, ∴∠ABC=∠BFK=45°, ∴FK=BK, ∵, ∴FK=BF, ∵S△FMN=5, ∴×MF×FK=5, ∴OF×BF=10, ∴OF×BF=10, ∵(BF﹣OF)2≥0, ∴BF2+OF2﹣2BF×OF≥0, ∴BF2+OF2≥2×10=20, ∴BF2+OF2的最小值为20. 【点睛】 本题主要考查全等三角形的判定及性质,等腰直角三角形的性质与判定,平行线的性质与判定,三角形面积,完全平方公式等等,掌握等腰直角三角形的性质与判定和全等三角形的判定方法及性质是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 数学 阜阳 期末试卷 复习 练习 Word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文