人教版中学七7年级下册数学期末学业水平题附解析.doc
《人教版中学七7年级下册数学期末学业水平题附解析.doc》由会员分享,可在线阅读,更多相关《人教版中学七7年级下册数学期末学业水平题附解析.doc(25页珍藏版)》请在咨信网上搜索。
人教版中学七7年级下册数学期末学业水平题附解析 一、选择题 1.如图,的同位角是( ) A. B. C. D. 2.下列哪些图形是通过平移可以得到的( ) A. B. C. D. 3.若点在第四象限,则点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列四个命题:①是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有( )个 A.1 B.2 C.3 D.4 5.如图,直线,点,分别是,上的动点,点在上,,和的角平分线交于点,若,则的值为( ). A.70 B.74 C.76 D.80 6.下列说法错误的是( ) A.-8的立方根是-2 B. C.的相反数是 D.3的平方根是 7.如图,已知,平分,,则的度数是( ) A. B. C. D. 8.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则运动到第2021秒时,点P所处位置的坐标是( ) A.(2020,﹣1) B.(2021,0) C.(2021,1) D.(2022,0) 九、填空题 9.正方形木块的面积为,则它的周长为____________. 十、填空题 10.点A关于x轴的对称点的坐标为____________. 十一、填空题 11.如图,已知在四边形ABCD中,∠A=α,∠C=β,BF,DP为四边形ABCD的∠ABC、∠ADC相邻外角的角平分线.当α、β满足条件____________时,BF∥DP. 十二、填空题 12.如图,直线AB∥CD,OA⊥OB,若∠1=140°,则∠2=_____度. 十三、填空题 13.如图,将长方形纸片沿折叠,使得点落在边上的点处,点落在点处,若,则的度数为______. 十四、填空题 14.已知有理数,我们把称为的差倒数,如:2的差倒数是,的差倒数是,如果,是的差倒数,是的差倒数,是的差倒数…依此类推,那么的值是______. 十五、填空题 15.点P(2a,2﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为12,则点P的坐标是__. 十六、填空题 16.如图,在直角坐标系中,A(1,3),B(2,0),第一次将△AOB变换成△OA1B1,A1(2,3),B1(4,0);第二次将△OA1B1变换成△OA2B2,A2(4,3),B2(8,0),第三次将△OA2B2变换成△OA3B3,……,则B2021的横坐标为______. 十七、解答题 17.计算题: (1); (2) 十八、解答题 18.求下列各式中的 . (1) (2) 十九、解答题 19.如图所示,已知∠1+∠2=180°,∠B=∠3,请你判断DE和BC平行吗?说明理由.(请根据下面的解答过程,在横线上补全过程和理由) 解:DE∥BC.理由如下: ∵∠1+∠4=180°(平角的定义),∠1+∠2=180°( ), ∴∠2=∠4( ). ∴ ∥ ( ). ∴∠3= ( ). ∵∠3=∠B( ), ∴ = ( ). ∴DE∥BC( ). 二十、解答题 20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:A→B(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中 (1)A→C( , ),B→D( , ),C→ (+1, ); (2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置. 二十一、解答题 21.请回答下列问题: (1)介于连续的两个整数和之间,且,那么 , ; (2)是的小数部分,是的整数部分,求 , ; (3)求的平方根. 二十二、解答题 22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片. (1)请帮小丽设计一种可行的裁剪方案; (2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由. 二十三、解答题 23.已知,定点,分别在直线,上,在平行线,之间有一动点. (1)如图1所示时,试问,,满足怎样的数量关系?并说明理由. (2)除了(1)的结论外,试问,,还可能满足怎样的数量关系?请画图并证明 (3)当满足,且,分别平分和, ①若,则__________°. ②猜想与的数量关系.(直接写出结论) 二十四、解答题 24.已知射线射线CD,P为一动点,AE平分,CE平分,且AE与CE相交于点E.(注意:此题不允许使用三角形,四边形内角和进行解答) (1)在图1中,当点P运动到线段AC上时,.直接写出的度数; (2)当点P运动到图2的位置时,猜想与之间的关系,并加以说明; (3)当点P运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出与之间的关系,并加以证明. 二十五、解答题 25.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1. (1)当∠A为70°时, ∵∠ACD-∠ABD=∠______ ∴∠ACD-∠ABD=______° ∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线 ∴∠A1CD-∠A1BD=(∠ACD-∠ABD) ∴∠A1=______°; (2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出∠A与∠An的数量关系______; (3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______. (4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值. 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据同位角的定义即可求出答案. 【详解】 解:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角.即是的同位角. 故选:B. 【点睛】 本题考查同位角的定义,解题的关键是:熟练理解同位角的定义. 2.B 【分析】 根据平移、旋转、轴对称的定义逐项判断即可. 【详解】 A、通过旋转得到,故本选项错误 B、通过平移得到,故本选项正确 C、通过轴对称得到,故本选项错误 D、通过旋转得到,故本选项错误 解析:B 【分析】 根据平移、旋转、轴对称的定义逐项判断即可. 【详解】 A、通过旋转得到,故本选项错误 B、通过平移得到,故本选项正确 C、通过轴对称得到,故本选项错误 D、通过旋转得到,故本选项错误 故选:B. 【点睛】 本题考查了平移、旋转、轴对称的定义,熟记定义是解题关键. 3.A 【分析】 首先得出第四象限点的坐标性质,进而得出Q点的位置. 【详解】 解:∵点P(a,b)在第四象限, ∴a>0,b<0, ∴-b>0, ∴点Q(-b,a)在第一象限. 故选:A. 【点睛】 此题主要考查了点的坐标,正确把握各象限点的坐标特点是解题关键. 4.B 【分析】 根据立方根和算术平方根的定义、平行线的性质、点到直线的距离逐项判断即可. 【详解】 64的立方根是4,故①是假命题; 25的算数平方根是5,故②是真命题;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故③是真命题;与两坐标轴距离都是2的点有(2,2)、(2,-2)、(-2,2)、(-2,-2)共4点,故④是假命题. 故选:B. 【点睛】 本题考查命题真、假的判断.正确掌握相关定义、性质与判定是解题关键. 5.C 【分析】 先由平行线的性质得到∠ACB=∠5+∠1+∠2,再由三角形内角和定理和角平分线的定义求出m即可. 【详解】 解:过C作CH∥MN, ∴∠6=∠5,∠7=∠1+∠2, ∵∠ACB=∠6+∠7, ∴∠ACB=∠5+∠1+∠2, ∵∠D=52°, ∴∠1+∠5+∠3=180°−52°=128°, 由题意可得GD为∠AGB的角平分线,BD为∠CBN的角平分线, ∴∠1=∠2,∠3=∠4, ∴m°=∠1+∠2+∠5=2∠1+∠5,∠4=∠1+∠D=∠1+52°, ∴∠3=∠4=∠1+52°, ∴∠1+∠5+∠3=∠1+∠5+∠1+52°=2∠1+∠5+52°=m°+52°, ∴m°+52°=128°, ∴m°=76°. 故选:C. 【点睛】 本题主要考查平行线的性质和角平分线的定义,关键是对知识的掌握和灵活运用. 6.B 【分析】 根据平方根以及立方根的概念进行判断即可. 【详解】 A、-8的立方根为-2,这个说法正确; B、|1-|=-1,这个说法错误; C.-的相反数是,这个说法正确; D、3的平方根是±,这个说法正确; 故选B. 【点睛】 本题主要考查了平方根与立方根,一个数的立方根只有一个,一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根. 7.D 【分析】 由题意易得,则有,然后根据平行线的性质可求解. 【详解】 解:∵,, ∴, ∵平分, ∴, ∴, ∵, ∴; 故选D. 【点睛】 本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键. 8.C 【分析】 根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标. 【详解】 半径为1个单位长度的半圆的周长为:, ∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度 解析:C 【分析】 根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标. 【详解】 半径为1个单位长度的半圆的周长为:, ∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度, ∴点P1秒走个半圆, 当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1), 当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0), 当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,-1), 当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0), 当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1), 当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0), …, 可得移动4次图象完成一个循环, ∵2021÷4=505…1, ∴点P运动到2021秒时的坐标是(2021,1), 故选:C. 【点睛】 此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题. 九、填空题 9.【分析】 设正方形的边长为xm,则x2=5,根据平方根的定义求解可得. 【详解】 设正方形的边长为xm, 则x2=5, 所以x=或x=−(舍), 即正方形的边长为m, 所以周长为4cm 故答案为: 解析: 【分析】 设正方形的边长为xm,则x2=5,根据平方根的定义求解可得. 【详解】 设正方形的边长为xm, 则x2=5, 所以x=或x=−(舍), 即正方形的边长为m, 所以周长为4cm 故答案为:4. 【点睛】 本题主要考查算术平方根,解题的关键是掌握算术平方根的定义. 十、填空题 10.(2,4) 【分析】 直接利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案. 【详解】 解:点A(2,-4)关于x轴 解析:(2,4) 【分析】 直接利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案. 【详解】 解:点A(2,-4)关于x轴对称点A1的坐标为:(2,4). 故答案为:(2,4). 【点睛】 此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键. 十一、填空题 11.α=β 【详解】 试题解析: 当BF∥DP时, 即: 整理得: 故答案为 解析:α=β 【详解】 试题解析: 当BF∥DP时, 即: 整理得: 故答案为 十二、填空题 12.50 【分析】 先根据垂直的定义得出∠O=90°,再由三角形外角的性质得出∠3=∠1﹣∠O=50°,然后根据平行线的性质可求∠2. 【详解】 ∵OA⊥OB, ∴∠O=90°, ∵∠1=∠3+∠O=1 解析:50 【分析】 先根据垂直的定义得出∠O=90°,再由三角形外角的性质得出∠3=∠1﹣∠O=50°,然后根据平行线的性质可求∠2. 【详解】 ∵OA⊥OB, ∴∠O=90°, ∵∠1=∠3+∠O=140°, ∴∠3=∠1﹣∠O=140°﹣90°=50°, ∵AB∥CD, ∴∠2=∠3=50°, 故答案为:50. 【点睛】 此题主要考查三角形外角的性质以及平行线的性质,熟练掌握,即可解题. 十三、填空题 13.111° 【分析】 结合题意,根据轴对称和长方形的性质,得,,,,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案. 【详解】 根据题意,得,,, ∴, ∴ ∴ ∴ ∵ 解析:111° 【分析】 结合题意,根据轴对称和长方形的性质,得,,,,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案. 【详解】 根据题意,得,,, ∴, ∴ ∴ ∴ ∵ ∴ ∴ 故答案为:111°. 【点睛】 本题考查了轴对称、平行线、矩形、余角的知识;解题的关键是熟练掌握轴对称和平行线的性质,从而完成求解. 十四、填空题 14.. 【分析】 根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值. 【详解】 ∵, ∴,,,, …… ∴,每三个数一个循环, ∵, ∴, 则 +--3 -3-++ 解析:. 【分析】 根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值. 【详解】 ∵, ∴,,,, …… ∴,每三个数一个循环, ∵, ∴, 则 +--3 -3-++3 =-3-++3 . 故答案为:. 【点晴】 本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值. 十五、填空题 15.(-4,8) 【分析】 根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解. 【详解】 解:∵点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12, ∴-2a 解析:(-4,8) 【分析】 根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解. 【详解】 解:∵点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12, ∴-2a+2-3a=12, 解得a=-2, ∴2a=-4,2-3a=8, ∴点P的坐标为(-4,8). 故答案为:(-4,8). 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 十六、填空题 16.【分析】 根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解. 【详解】 解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可 解析: 【分析】 根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解. 【详解】 解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可得:, ∴B2021的横坐标为; 故答案为. 【点睛】 本题主要考查图形与坐标,解题的关键是根据题意得到点的坐标规律. 十七、解答题 17.(1);(2) 【分析】 (1)先计算被开方数,再利用算术平方根的含义求解即可得到答案; (2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案. 【详解】 解 解析:(1);(2) 【分析】 (1)先计算被开方数,再利用算术平方根的含义求解即可得到答案; (2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案. 【详解】 解:(1), (2) 【点睛】 本题考查的是算术平方根的含义,含乘方的有理数的混合运算,掌握以上知识是解题的关键. 十八、解答题 18.(1)或;(2). 【分析】 (1)先将方程进行变形,再利用平方根的定义进行求解即可; (2)先将方程进行变形,再利用立方根的定义进行求解即可. 【详解】 解:(1), ∴, ∴; (2), ∴, 解析:(1)或;(2). 【分析】 (1)先将方程进行变形,再利用平方根的定义进行求解即可; (2)先将方程进行变形,再利用立方根的定义进行求解即可. 【详解】 解:(1), ∴, ∴; (2), ∴, ∴. 【点睛】 本题考查了平方根与立方根,理解相关定义是解决本题的关键. 十九、解答题 19.已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行 【分析】 求出∠2=∠4,根据平行线的判定得出AB 解析:已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行 【分析】 求出∠2=∠4,根据平行线的判定得出AB∥EF,根据平行线的性质得出∠3=∠ADE,求出∠B=∠ADE,再根据平行线的判定推出即可. 【详解】 解:DE∥BC,理由如下: ∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知), ∴∠2=∠4(同角的补角相等), ∴AB∥EF(内错角相等,两直线平行), ∴∠3=∠ADE(两直线平行,内错角相等), ∵∠3=∠B(已知), ∴∠B=∠ADE(等量代换), ∴DE∥BC(同位角相等,两直线平行), 【点睛】 此题考查了平行线的判定与性质,熟练掌握平行线的性质定理及判定定理是解题的关键. 二十、解答题 20.(1)3,4,3,﹣2,D,﹣2;(2)见解析 【分析】 (1)根据向上向右走为正,向下向左走为负,可得答案; (2)根据向上向右走为正,向下向左走为负,可得答案. 【详解】 解:(1)A→C( 3 解析:(1)3,4,3,﹣2,D,﹣2;(2)见解析 【分析】 (1)根据向上向右走为正,向下向左走为负,可得答案; (2)根据向上向右走为正,向下向左走为负,可得答案. 【详解】 解:(1)A→C( 3,4),B→D(3﹣2),C→D(+1,﹣2); 故答案为3,4;3,﹣2;D,﹣2; (2)这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置,如图 【点睛】 本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键. 二十一、解答题 21.(1)4;b=(2)−4;3(3)±8 【分析】 ((1)由16<17<25,可以估计的近似值,然后就可以得出a,b的值; (2)根据(1)的结论即可确定x与y的值; (3)把(2)的结论代入计算即 解析:(1)4;b=(2)−4;3(3)±8 【分析】 ((1)由16<17<25,可以估计的近似值,然后就可以得出a,b的值; (2)根据(1)的结论即可确定x与y的值; (3)把(2)的结论代入计算即可. 【详解】 解:(1)∵16<17<25, ∴4<<5, ∴a=4,b=5, 故答案为:4;5; (2)∵4<<5, ∴6<+2<7, 由此整数部分为6,小数部分为−4, ∴x=−4, ∵4<<5, ∴3<-1<4, ∴y=3; 故答案为:−4;3 (3)当x=−4,y=3时, ==64, ∴64的平方根为±8. 【点睛】 此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“逐步逼近”是估算的一般方法,也是常用方法. 二十二、解答题 22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析. 【解析】 (1)解:设面积为400cm2的正方形纸片的边长为a cm ∴ 解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析. 【解析】 (1)解:设面积为400cm2的正方形纸片的边长为a cm ∴a2=400 又∵a>0 ∴a=20 又∵要裁出的长方形面积为300cm2 ∴若以原正方形纸片的边长为长方形的长, 则长方形的宽为:300÷20=15(cm) ∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形 (2)∵长方形纸片的长宽之比为3:2 ∴设长方形纸片的长为3xcm,则宽为2xcm ∴6x 2=300 ∴x 2=50 又∵x>0 ∴x = ∴长方形纸片的长为 又∵>202 即:>20 ∴小丽不能用这块纸片裁出符合要求的纸片 二十三、解答题 23.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF 【分析】 (1)由于点是平行线,之间 解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF 【分析】 (1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,,,满足数量关系为:; (2)当点在的右侧时,,,满足数量关系为:; (3)①若当点在的左侧时,;当点在的右侧时,可求得; ②结合①可得,由,得出;可得,由,得出. 【详解】 解:(1)如图1,过点作, , , , , , ; (2)如图2,当点在的右侧时,,,满足数量关系为:; 过点作, , , , , , ; (3)①如图3,若当点在的左侧时, , , ,分别平分和, ,, ; 如图4,当点在的右侧时, , , ; 故答案为:或30; ②由①可知:, ; , . 综合以上可得与的数量关系为:或. 【点睛】 本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键. 二十四、解答题 24.(1);(2),证明见解析;(3),证明见解析. 【分析】 (1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; 解析:(1);(2),证明见解析;(3),证明见解析. 【分析】 (1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; (2)过点作,过点作,先根据(1)可得,再根据(1)同样的方法可得,由此即可得出结论; (3)过点作,过点作,先根据(1)可得,再根据平行线的性质、平行公理推论可得,然后根据角的和差、等量代换即可得出结论. 【详解】 解:(1)如图,过点作, , , , , , 又,且点运动到线段上, , 平分,平分, , ; (2)猜想,证明如下: 如图,过点作,过点作, 由(1)已得:, 同理可得:, ; (3),证明如下: 如图,过点作,过点作, 由(1)已得:, 即, , ,即, , , ,即, , , , , 即. 【点睛】 本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键. 二十五、解答题 25.(1)∠A;70°;35°; (2)∠A=2n∠An (3)25° (4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°. 【分析】 (1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD 解析:(1)∠A;70°;35°; (2)∠A=2n∠An (3)25° (4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°. 【分析】 (1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解; (2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律; (3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论; (4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系. 【详解】 解:(1)当∠A为70°时, ∵∠ACD-∠ABD=∠A, ∴∠ACD-∠ABD=70°, ∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线, ∴∠A1CD-∠A1BD=(∠ACD-∠ABD) ∴∠A1=35°; 故答案为:A,70,35; (2)∵A1B、A1C分别平分∠ABC和∠ACD, ∴∠ACD=2∠A1CD,∠ABC=2∠A1BC, 而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC, ∴∠BAC=2∠A1=80°, ∴∠A1=40°, 同理可得∠A1=2∠A2, 即∠BAC=22∠A2=80°, ∴∠A2=20°, ∴∠A=2n∠An, 故答案为:∠A=2∠An. (3)∵∠ABC+∠DCB=360°-(∠A+∠D), ∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F, ∴360°-(α+β)=180°-2∠F, 2∠F=∠A+∠D-180°, ∴∠F=(∠A+∠D)-90°, ∵∠A+∠D=230°, ∴∠F=25°; 故答案为:25°. (4)①∠Q+∠A1的值为定值正确. ∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线 ∴∠A1=∠A1CD-∠A1BD= ∠BAC, ∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线, ∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC, ∴∠Q=180°-(∠QEC+∠QCE)=180°-∠BAC, ∴∠Q+∠A1=180°. 【点睛】 本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 中学 年级 下册 数学 期末 学业 水平 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文