人教中学七年级下册数学期末解答题试题(含答案).doc
《人教中学七年级下册数学期末解答题试题(含答案).doc》由会员分享,可在线阅读,更多相关《人教中学七年级下册数学期末解答题试题(含答案).doc(37页珍藏版)》请在咨信网上搜索。
人教中学七年级下册数学期末解答题试题(含答案) 一、解答题 1.如图,用两个面积为的小正方形拼成一个大的正方形. (1)则大正方形的边长是 ; (2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为? 2.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图2的虚线将它剪开后,重新拼成一个大正方形. (1)基础巩固:拼成的大正方形的面积为______,边长为______; (2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的重合.以点B为圆心,边为半径画圆弧,交数轴于点E,则点E表示的数是______; (3)变式拓展: ①如图4,给定的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的正方形吗?若能,请在图中画出示意图; ②请你利用①中图形在数轴上用直尺和圆规表示面积为13的正方形边长所表示的数. 3.(1)如图,分别把两个边长为的小正方形沿一条对角线裁成个小三角形拼成一个大正方形,则大正方形的边长为_______; (2)若一个圆的面积与一个正方形的面积都是,设圆的周长为,正方形的周长为,则_____(填“”或“”或“”号); (3)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由? 4.如图,用两个边长为10的小正方形拼成一个大的正方形. (1)求大正方形的边长? (2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2? 5.小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么? 二、解答题 6.如图1,已AB∥CD,∠C=∠A. (1)求证:AD∥BC; (2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明. (3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°, ①直接写出∠AED与∠FDC的数量关系: . ②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,补全图形后,求∠EPD的度数 7.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,. (1)= ; (2)如图2,点C、D是、角平分线上的两点,且,求 的度数; (3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,,且,求n的值. 8.阅读下面材料: 小亮同学遇到这样一个问题: 已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到∠BED. 求证:∠BED=∠B+∠D. (1)小亮写出了该问题的证明,请你帮他把证明过程补充完整. 证明:过点E作EFAB, 则有∠BEF= . ∵ABCD, ∴ , ∴∠FED= . ∴∠BED=∠BEF+∠FED=∠B+∠D. (2)请你参考小亮思考问题的方法,解决问题:如图乙, 已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E. ①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数; ②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示). 9.已知,.点在上,点在 上. (1)如图1中,、、的数量关系为: ;(不需要证明);如图2中,、、的数量关系为: ;(不需要证明) (2)如图 3中,平分,平分,且,求的度数; (3)如图4中,,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数. 10.已知:AB∥CD,截线MN分别交AB、CD于点M、N. (1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数; (2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由; (3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为 (直接写出答案). 三、解答题 11.已知:三角形ABC和三角形DEF位于直线MN的两侧中,直线MN经过点C,且,其中,,,点E、F均落在直线MN上. (1)如图1,当点C与点E重合时,求证:;聪明的小丽过点C作,并利用这条辅助线解决了问题.请你根据小丽的思考,写出解决这一问题的过程. (2)将三角形DEF沿着NM的方向平移,如图2,求证:; (3)将三角形DEF沿着NM的方向平移,使得点E移动到点,画出平移后的三角形DEF,并回答问题,若,则________.(用含的代数式表示) 12.课题学习:平行线的“等角转化”功能. 阅读理解: 如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数. (1)阅读并补充下面推理过程 解:过点A作ED∥BC, ∴∠B=∠EAB,∠C= 又∵∠EAB+∠BAC+∠DAC=180° ∴∠B+∠BAC+∠C=180° 解题反思: 从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决. 方法运用: (2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB) 深化拓展: (3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°,点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数. 13.已知:和同一平面内的点. (1)如图1,点在边上,过作交于,交于.根据题意,在图1中补全图形,请写出与的数量关系,并说明理由; (2)如图2,点在的延长线上,,.请判断与的位置关系,并说明理由. (3)如图3,点是外部的一个动点.过作交直线于,交直线于,直接写出与的数量关系,并在图3中补全图形. 14.综合与探究 综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,,且,三角形是直角三角形,,, 操作发现: (1)如图1.,求的度数; (2)如图2.创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由. 实践探究: (3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由. 15.如图1,D是△ABC延长线上的一点,CEAB. (1)求证:∠ACD=∠A+∠B; (2)如图2,过点A作BC的平行线交CE于点H,CF平分∠ECD,FA平分∠HAD,若∠BAD=70°,求∠F的度数. (3)如图3,AHBD,G为CD上一点,Q为AC上一点,GR平分∠QGD交AH于R,QN平分∠AQG交AH于N,QMGR,猜想∠MQN与∠ACB的关系,说明理由. 四、解答题 16.己知:如图①,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且 (1)直接写出的面积 ; (2)如图②,若,作的平分线交于,交于,试说明; (3)如图③,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围. 17.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线, (1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小. (2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________, 如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________ (3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反向延长线交于E、F,则∠EAF= ;在△AEF中,如果有一个角是另一个角的倍,求∠ABO的度数. 18.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”. (1)如图1,在中,,是的角平分线,求证:是“准互余三角形”; (2)关于“准互余三角形”,有下列说法: ①在中,若,,,则是“准互余三角形”; ②若是“准互余三角形”,,,则; ③“准互余三角形”一定是钝角三角形. 其中正确的结论是___________(填写所有正确说法的序号); (3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数. 19.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°. (1)若DE//AB,则∠EAC= ; (2)如图1,过AC上一点O作OG⊥AC,分别交AB、AD、AE于点G、H、F. ①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长; ②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由. 20.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍. (1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________ (2)如图1,已知∠MON=60°,在射线OM上取一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“梦想三角形”,为什么? (3)如图2,点D在△ABC的边上,连接DC,作∠ADC的平分线交AC于点E,在DC上取一点F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“梦想三角形”,求∠B的度数. 【参考答案】 一、解答题 1.(1);(2)无法裁出这样的长方形. 【分析】 (1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解; (2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小 解析:(1);(2)无法裁出这样的长方形. 【分析】 (1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解; (2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小即可. 【详解】 解:(1)由题意得,大正方形的面积为200+200=400cm2, ∴边长为: ; 根据题意设长方形长为 cm,宽为 cm, 由题: 则 长为 无法裁出这样的长方形. 【点睛】 本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键. 2.(1)10,;(2);(3)见解析;(4)见解析 【分析】 (1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长; (2)根据大正方形的边长结合实 解析:(1)10,;(2);(3)见解析;(4)见解析 【分析】 (1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长; (2)根据大正方形的边长结合实数与数轴的关系可得结果; (3)以2×3的长方形的对角线为边长即可画出图形; (4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形. 【详解】 解:(1)∵图1中有10个小正方形, ∴面积为10,边长AD为; (2)∵BC=,点B表示的数为-1, ∴BE=, ∴点E表示的数为; (3)①如图所示: ②∵正方形面积为13, ∴边长为, 如图,点E表示面积为13的正方形边长. 【点睛】 本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键. 3.(1);(2);(3)不能裁剪出,详见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形 解析:(1);(2);(3)不能裁剪出,详见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可; (3)利用方程思想求出长方形的长边,与正方形边长比较大小即可; 【详解】 解:(1)∵小正方形的边长为1cm, ∴小正方形的面积为1cm2, ∴两个小正方形的面积之和为2cm2, 即所拼成的大正方形的面积为2 cm2, ∴大正方形的边长为cm, (2)∵, ∴, ∴, 设正方形的边长为a ∵, ∴, ∴, ∴ 故答案为:<; (3)解:不能裁剪出,理由如下: ∵长方形纸片的长和宽之比为, ∴设长方形纸片的长为,宽为, 则, 整理得:, ∴, ∵450>400, ∴, ∴, ∴长方形纸片的长大于正方形的边长, ∴不能裁出这样的长方形纸片. 【点睛】 本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查. 4.(1)大正方形的边长是;(2)不能 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 (1)大正方形的边长是 (2)设长方形纸 解析:(1)大正方形的边长是;(2)不能 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 (1)大正方形的边长是 (2)设长方形纸片的长为3xcm,宽为2xcm, 则3x•2x=480, 解得:x= 因为,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm2. 【点睛】 本题考查算术平方根,解题的关键是能根据题意列出算式. 5.不同意,理由见解析 【分析】 先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断. 【详解】 解:不同意, 因为正方形的面积为, 解析:不同意,理由见解析 【分析】 先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断. 【详解】 解:不同意, 因为正方形的面积为,故边长为 设长方形宽为,则长为 长方形面积 ∴, 解得(负值舍去) 长为 即长方形的长大于正方形的边长, 所以不能裁出符合要求的长方形纸片 【点睛】 本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键. 二、解答题 6.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50° 【分析】 (1)根据平行线的性质及判定可得结论; (2)过点E作EF∥AB,根 解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50° 【分析】 (1)根据平行线的性质及判定可得结论; (2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论; (3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系; ②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度数. 【详解】 解:(1)证明:AB∥CD, ∴∠A+∠D=180°, ∵∠C=∠A, ∴∠C+∠D=180°, ∴AD∥BC; (2)∠BAE+∠CDE=∠AED,理由如下: 如图2,过点E作EF∥AB, ∵AB∥CD ∴AB∥CD∥EF ∴∠BAE=∠AEF,∠CDE=∠DEF 即∠FEA+∠FED=∠CDE+∠BAE ∴∠BAE+∠CDE=∠AED; (3)①∠AED-∠FDC=45°; ∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°, ∴∠AEC=∠DEC+∠AEB, ∴∠AED=∠AEB, ∵DF平分∠EDC ∠DEC=2∠FDC ∴∠DEC=90°-2∠FDC, ∴2∠AED+(90°-2∠FDC)=180°, ∴∠AED-∠FDC=45°, 故答案为:∠AED-∠FDC=45°; ②如图3, ∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°, ∴∠F=45°, ∴∠DEP=2∠F=90°, ∵∠DEA-∠PEA=∠DEB=∠DEA, ∴∠PEA=∠AED, ∴∠DEP=∠PEA+∠AED=∠AED=90°, ∴∠AED=70°, ∵∠AED+∠AEC=180°, ∴∠DEC+2∠AED=180°, ∴∠DEC=40°, ∵AD∥BC, ∴∠ADE=∠DEC=40°, 在△PDE中,∠EPD=180°-∠DEP-∠AED=50°, 即∠EPD=50°. 【点睛】 本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键. 7.(1)100;(2)75°;(3)n=3. 【分析】 (1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB 解析:(1)100;(2)75°;(3)n=3. 【分析】 (1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB; (2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可; (3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n. 【详解】 解:(1)如图:过O作OP//MN, ∵MN//GHl ∴MN//OP//GH ∴∠NAO+∠POA=180°,∠POB+∠OBH=180° ∴∠NAO+∠AOB+∠OBH=360° ∵∠NAO=116°,∠OBH=144° ∴∠AOB=360°-116°-144°=100°; (2)分别延长AC、CD交GH于点E、F, ∵AC平分且, ∴, 又∵MN//GH, ∴; ∵, ∵BD平分, ∴, 又∵ ∴; ∴; (3)设FB交MN于K, ∵,则; ∴ ∵, ∴,, 在△FAK中,, ∴, ∴. 经检验:是原方程的根,且符合题意. 【点睛】 本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键. 8.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣ 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°, 解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣ 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数; ②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数. 【详解】 解:(1)过点E作EF∥AB, 则有∠BEF=∠B, ∵AB∥CD, ∴EF∥CD, ∴∠FED=∠D, ∴∠BED=∠BEF+∠FED=∠B+∠D; 故答案为:∠B;EF;CD;∠D; (2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA. ∵AB∥CD, ∴EF∥CD. ∴∠FED=∠EDC. ∴∠BEF+∠FED=∠EBA+∠EDC. 即∠BED=∠EBA+∠EDC, ∵BE平分∠ABC,DE平分∠ADC, ∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°, ∴∠BED=∠EBA+∠EDC=65°. 答:∠BED的度数为65°; ②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°. ∴∠BEF=180°﹣∠EBA, ∵AB∥CD, ∴EF∥CD. ∴∠FED=∠EDC. ∴∠BEF+∠FED=180°﹣∠EBA+∠EDC. 即∠BED=180°﹣∠EBA+∠EDC, ∵BE平分∠ABC,DE平分∠ADC, ∴∠EBA=∠ABC=,∠EDC=∠ADC=, ∴∠BED=180°﹣∠EBA+∠EDC=180°﹣. 答:∠BED的度数为180°﹣. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 9.(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°. 【分析】 (1)过E作EHAB,易得EHABCD,根据平行线的性质 解析:(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°. 【分析】 (1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解; (2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=180°,可求解∠BMF=60°,进而可求解; (3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解. 【详解】 解:(1)过E作EHAB,如图1, ∴∠BME=∠MEH, ∵ABCD, ∴HECD, ∴∠END=∠HEN, ∴∠MEN=∠MEH+∠HEN=∠BME+∠END, 即∠BME=∠MEN−∠END. 如图2,过F作FHAB, ∴∠BMF=∠MFK, ∵ABCD, ∴FHCD, ∴∠FND=∠KFN, ∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND, 即:∠BMF=∠MFN+∠FND. 故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND. (2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND. ∵NE平分∠FND,MB平分∠FME, ∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END, ∵2∠MEN+∠MFN=180°, ∴2(∠BME+∠END)+∠BMF−∠FND=180°, ∴2∠BME+2∠END+∠BMF−∠FND=180°, 即2∠BMF+∠FND+∠BMF−∠FND=180°, 解得∠BMF=60°, ∴∠FME=2∠BMF=120°; (3)∠FEQ的大小没发生变化,∠FEQ=30°. 由(1)知:∠MEN=∠BME+∠END, ∵EF平分∠MEN,NP平分∠END, ∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END, ∵EQNP, ∴∠NEQ=∠ENP, ∴∠FEQ=∠FEN−∠NEQ=(∠BME+∠END)−∠END=∠BME, ∵∠BME=60°, ∴∠FEQ=×60°=30°. 【点睛】 本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键. 10.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3) 【分析】 (1)由非负性可求α,β的值,由平行线的性质和外角性质可求解; (2)过点E作直线EH∥AB,由角平分线的性质和平行 解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3) 【分析】 (1)由非负性可求α,β的值,由平行线的性质和外角性质可求解; (2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解; (3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解. 【详解】 解:(1)∵+(β﹣60)2=0, ∴α=30,β=60, ∵AB∥CD, ∴∠AMN=∠MND=60°, ∵∠AMN=∠B+∠BEM=60°, ∴∠BEM=60°﹣30°=30°; (2)∠DEF+2∠CDF=150°. 理由如下:过点E作直线EH∥AB, ∵DF平分∠CDE, ∴设∠CDF=∠EDF=x°; ∵EH∥AB, ∴∠DEH=∠EDC=2x°, ∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°; ∴∠DEF=150°﹣2∠CDF, 即∠DEF+2∠CDF=150°; (3)如图3,设MQ与CD交于点E, ∵MQ平分∠BMT,QC平分∠DCP, ∴∠BMT=2∠PMQ,∠DCP=2∠DCQ, ∵AB∥CD, ∴∠BME=∠MEC,∠BMP=∠PND, ∵∠MEC=∠Q+∠DCQ, ∴2∠MEC=2∠Q+2∠DCQ, ∴∠PMB=2∠Q+∠PCD, ∵∠PND=∠PCD+∠CPM=∠PMB, ∴∠CPM=2∠Q, ∴∠Q与∠CPM的比值为, 故答案为:. 【点睛】 本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键. 三、解答题 11.(1)见解析;(2)见解析;(3)见解析;. 【分析】 (1)过点C作,得到,再根据,,得到,进而得到,最后证明; (2)先证明,再证明,得到,问题得证; (3)根据题意得到,根据(2)结论得到∠D 解析:(1)见解析;(2)见解析;(3)见解析;. 【分析】 (1)过点C作,得到,再根据,,得到,进而得到,最后证明; (2)先证明,再证明,得到,问题得证; (3)根据题意得到,根据(2)结论得到∠DEF=∠ECA=,进而得到,根据三角形内角和即可求解. 【详解】 解:(1)过点C作, , , , , , , , , ; (2)解:,, 又, , , , , , ; (3)如图三角形DEF即为所求作三角形. ∵, ∴, 由(2)得,DE∥AC, ∴∠DEF=∠ECA=, ∵, ∴∠ACB=, ∴ , ∴∠A=180°-=. 故答案为为:. 【点睛】 本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键. 12.(1)∠DAC;(2)360°;(3)65° 【分析】 (1)根据平行线的性质即可得到结论; (2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论; 解析:(1)∠DAC;(2)360°;(3)65° 【分析】 (1)根据平行线的性质即可得到结论; (2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论; (3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数. 【详解】 解:(1)过点A作ED∥BC, ∴∠B=∠EAB,∠C=∠DCA, 又∵∠EAB+∠BAC+∠DAC=180°, ∴∠B+∠BAC+∠C=180°. 故答案为:∠DAC; (2)过C作CF∥AB, ∵AB∥DE, ∴CF∥DE, ∴∠D=∠FCD, ∵CF∥AB, ∴∠B=∠BCF, ∵∠BCF+∠BCD+∠DCF=360°, ∴∠B+∠BCD+∠D=360°; (3)如图3,过点E作EF∥AB, ∵AB∥CD, ∴AB∥CD∥EF, ∴∠ABE=∠BEF,∠CDE=∠DEF, ∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°, ∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°, ∴∠BED=∠BEF+∠DEF=30°+35°=65°. 【点睛】 此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算. 13.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或. 【分析】 (1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得; (2)如图(见解析),先根据平行线的性质可 解析:(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或. 【分析】 (1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得; (2)如图(见解析),先根据平行线的性质可得,再根据等量代换可得,然后根据平行线的判定即可得; (3)先根据点D的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得. 【详解】 (1)由题意,补全图形如下: ,理由如下: , , , , ; (2),理由如下: 如图,延长BA交DF于点O, , , , , ; (3)由题意,有以下两种情况: ①如图3-1,,理由如下: , , , , , 由对顶角相等得:, ; ②如图3-2,,理由如下: , , , , . 【点睛】 本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键. 14.(1);(2)理由见解析;(3),理由见解析. 【分析】 (1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案; (2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠ 解析:(1);(2)理由见解析;(3),理由见解析. 【分析】 (1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案; (2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC−∠DBC=60°−∠1,进而得出结论; (3)过点C 作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论. 【详解】 解:(1)如图1 ,, , , ; 图1 (2)理由如下:如图2. 过点作, 图2 , , , , , , ; (3), 图3 理由如下:如图3,过点作, 平分, , , 又, , , , , 又 , , . 【点睛】 本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键. 15.(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析. 【分析】 (1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案; (2)首先根据角 解析:(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析. 【分析】 (1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案; (2)首先根据角平分线的定义得出∠FCD=∠ECD,∠HAF=∠HAD,进而得出∠F=(∠HAD+∠ECD),然后根据平行线的性质得出∠HAD+∠ECD的度数,进而可得出答案; (3)根据平行线的性质及角平分线的定义得出,, ,再通过等量代换即可得出∠MQN=∠ACB. 【详解】 解:(1)∵CEAB, ∴∠ACE=∠A,∠ECD=∠B, ∵∠ACD=∠ACE+∠ECD, ∴∠ACD=∠A+∠B; (2)∵CF平分∠ECD,FA平分∠HAD, ∴∠FCD=∠ECD,∠HAF=∠HAD, ∴∠F=∠HAD+∠ECD=(∠HAD+∠ECD), ∵CHAB, ∴∠ECD=∠B, ∵AHBC, ∴∠B+∠HAB=180°, ∵∠BAD=70°, , ∴∠F=(∠B+∠HAD)=55°; (3)∠MQN=∠ACB,理由如下: 平分, . 平分, . , . ∴∠MQN=∠MQG﹣∠NQG =180°﹣∠QGR﹣∠NQG =180°﹣(∠AQG+∠QGD) =180°﹣(180°﹣∠CQG+180°﹣∠QGC) =(∠CQG+∠QGC) =∠ACB. 【点睛】 本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键. 四、解答题 16.(1)3; (2)见解析; (3)见解析 【详解】 分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠ 解析:(1)3; (2)见解析; (3)见解析 【详解】 分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE. (3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案. 详解:(1)S△BCD=CD•OC=×3×2=3. (2)如图②,∵AC⊥BC,∴∠- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中学 年级 下册 数学 期末 解答 试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文