初二上册压轴题模拟数学检测试题带答案.doc
《初二上册压轴题模拟数学检测试题带答案.doc》由会员分享,可在线阅读,更多相关《初二上册压轴题模拟数学检测试题带答案.doc(18页珍藏版)》请在咨信网上搜索。
初二上册压轴题模拟数学检测试题带答案 1.在平面直角坐标系中,点A的坐标是,点B的坐标且a,b满足. (1)求A、B两点的坐标; (2)如图(1),点C为x轴负半轴一动点,,于D,交y轴于点E,求证:平分. (3)如图(2),点F为的中点,点G为x正半轴点右侧的一动点,过点F作的垂线,交y轴的负半轴于点H,那么当点G的位置不断变化时,的值是否发生变化?若变化,请说明理由;若不变化,请求出相应结果. 2.如图1,在平面直角坐标系中,AO=AB,∠BAO=90°,BO=8cm,动点D从原点O出发沿x轴正方向以acm/s的速度运动,动点E也同时从原点O出发在y轴上以bcm/s的速度运动,且a,b满足关系式a2+b2﹣4a﹣2b+5=0,连接OD,OE,设运动的时间为t秒. (1)求a,b的值; (2)当t为何值时,△BAD≌△OAE; (3)如图2,在第一象限存在点P,使∠AOP=30°,∠APO=15°,求∠ABP. 3.完全平方公式:适当的变形,可以解决很多的数学问题. 例如:若,求的值. 解:因为 所以 所以 得. 根据上面的解题思路与方法,解决下列问题: (1)若,求的值; (2)①若,则 ; ②若则 ; (3)如图,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积. 4.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE =∠BAC,连接CE. (1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度; (2)设,. ①如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由; ②当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论. 5.如图1,在平面直角坐标系中,直线AB与轴交于点A、与轴交于点B,且∠ABO=45°,A(-6,0),直线BC与直线AB关于轴对称. (1)求△ABC的面积; (2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角△BDE,求证:AB⊥AE; (3)如图3,点E是轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明. 6.如图,是等边三角形,点在上,点在的延长线上,且. (1)如图甲,若点是的中点,求证: (2)如图乙,若点不的中点,是否成立?证明你的结论. (3)如图丙,若点在线段的延长线上,试判断与的大小关系,并说明理由. 7.若整式A只含有字母x,且A的次数不超过3次,令,其中a,b,c,d为整数,在平面直角坐标系中,我们定义:M为整式A的关联点,我们规定次数超过3次的整式没有关联点.例如,若整式,则a=0,b=2,c=-5,d=4,故A的关联点为(-5,-11). (1)若,试求出A的关联点坐标; (2)若整式B是只含有字母x的整式,整式C是B与的乘积,若整式C的关联点为(6,15),求整式B的表达式. (3)若整式D=x-2,整式E是只含有字母x的一次多项式,整式F是整式D与整式E的平方的乘积,若整式F的关联点为(-32,0),请直接写出整式E的表达式. 8.已知:为的中线,分别以和为一边在的外部作等腰三角形和等腰三角形,且,连接,. (1)如图1,若,求的度数. (2)如图1,求证:. (3)如图2,设交于点,交于点与交于点,若点为中点,且,请探究和的数量关系,并直接写出答案(不需要证明). 【参考答案】 2.(1),;(2)证明见解析;(3)不变化,. 【分析】(1)由非负性可求a,b的值,即可求A、B两点的坐标; (2)过点O作于M,于N,根据全等三角形的判定和性质解答即可; (3)由于点F是等 解析:(1),;(2)证明见解析;(3)不变化,. 【分析】(1)由非负性可求a,b的值,即可求A、B两点的坐标; (2)过点O作于M,于N,根据全等三角形的判定和性质解答即可; (3)由于点F是等腰直角三角形AOB的斜边的中点,所以连接OF,得出OF=BF.∠BFO=∠GFH,进而得出∠OFH=∠BFG,利用等腰直角三角形和全等三角形的判定和性质以及三角形面积公式解答即可. 【详解】解:(1)∵ ∴, ∴ ,即. ∴,. (2)如图,过点O作于M,于N, 根据题意可知. ∵, ∴, ∴. ∵,, ∴OA=OB=6. 在和中, , ∴. ∴, ,. ∴, ∴, ∴点O一定在∠CDB的角平分线上, 即OD平分∠CDB. (3)如图,连接OF, ∵是等腰直角三角形且点F为AB的中点, ∴,,OF平分∠AOB. ∴. 又∵, ∴, ∴. ∵, ∴. 又∵, ∴. 在和中 , ∴. ∴, ∴. 故不发生变化,且. 【点睛】本题为三角形综合题,考查非负数的性质,角平分线的判定,等腰直角三角形的性质和判定、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,正确添加辅助线,构造全等三角形解决问题,属于中考压轴题. 3.(1)a=2,b=1;(2)t=或t=8;(3)∠ABP=105°. 【分析】(1)将a2+b2﹣4a﹣2b+5=0用配方法得出(a﹣2)2+(b﹣1)2=0,利用非负数的性质,即可得出结论; 解析:(1)a=2,b=1;(2)t=或t=8;(3)∠ABP=105°. 【分析】(1)将a2+b2﹣4a﹣2b+5=0用配方法得出(a﹣2)2+(b﹣1)2=0,利用非负数的性质,即可得出结论; (2)先由运动得出BD=|8﹣2t|,再由全等三角形的性质的出货BD=OE,建立方程求解即可得出结论. (3)先判断出△OAP≌△BAQ(SAS),得出OP=BQ,∠ABQ=∠AOP=30°,∠AQB=∠APO=15°,再求出∠OAP=135°,进而判断出△OAQ≌△BAQ(SAS),得出∠OQA=∠BQA=15°,OQ=BQ,再判断出△OPQ是等边三角形,得出∠OQP=60°,进而求出∠BQP=30°,再求出∠PBQ=75°,即可得出结论. 【详解】解:(1)∵a2+b2﹣4a﹣2b+5=0, ∴(a﹣2)2+(b﹣1)2=0, ∴a﹣2=0,b﹣1=0, ∴a=2,b=1; (2)由(1)知,a=2,b=1, 由运动知,OD=2t,OE=t, ∵OB=8, ∴DB=|8﹣2t| ∵△BAD≌△OAE, ∵DB=OE, ∴|8﹣2t|=t, 解得,t=(如图1)或t=8(如图2); (3)如图3, 过点A作AQ⊥AP,使AQ=AP,连接OQ,BQ,PQ, 则∠APQ=45°,∠PAQ=90°, ∵∠OAB=90°, ∴∠PAQ=∠OAB, ∴∠OAB+∠BAP=∠PAQ+∠BAP, 即:∠OAP=∠BAQ, ∵OA=AB,AD=AD, ∴△OAP≌△BAQ(SAS), ∴OP=BQ,∠ABQ=∠AOP=30°,∠AQB=∠APO=15°, 在△AOP中,∠AOP=30°,∠APO=15°, ∴∠OAP=180°﹣∠AOP﹣∠APO=135°, ∴∠OAQ=360°﹣∠OAP﹣∠PAQ=135°﹣90°=135°=∠OAP, ∵OA=AB,AD=AD, ∴△OAQ≌△BAQ(SAS), ∴∠OQA=∠BQA=15°,OQ=BQ, ∵OP=BQ, ∴OQ=OP, ∵∠APQ=45°,∠APO=15°, ∴∠OPQ=∠APO+∠APQ=60°, ∴△OPQ是等边三角形, ∴∠OQP=60°, ∴∠BQP=∠OQP﹣∠OQA﹣∠BQA=60°﹣15°﹣15°=30°, ∵BQ=PQ, ∴∠PBQ=(180°﹣∠BQP)=75°, ∴∠ABP=∠ABQ+∠PBQ=30°+75°=105°. 【点睛】本题是三角形综合题,主要考查了配方法、非负数的性质、三角形内角和定理、等边三角形的判定和性质、全等三角形的判定及性质,构造出全等三角形是解题的关键. 4.(1)12;(2)①6;②17;(3) 【分析】(1)根据完全平方公式的变形应用,解决问题; (2)①两边平方,再将代入计算; ②两边平方,再将代入计算; (3)由题意可得:,,两边平方从而 解析:(1)12;(2)①6;②17;(3) 【分析】(1)根据完全平方公式的变形应用,解决问题; (2)①两边平方,再将代入计算; ②两边平方,再将代入计算; (3)由题意可得:,,两边平方从而得到,即可算出结果. 【详解】解:(1); ; ; 又; , , ∴. (2)①, ; 又, . ②由, ; 又, . (3)由题意可得,,; ,; , ; 图中阴影部分面积为直角三角形面积, , . 【点睛】本题主要考查了完全平方公式的适当变形灵活应用,(1)可直接应用公式变形解决问题.(2)①②小题都需要根据题意得出两个因式和或者差的结果,合并同类项得①,②是解决本题的关键,再根据完全平方公式变形应用得出答案.(3)根据几何图形可知选段,再根据两个正方形面积和为18,利用完全平方公式变形应用得到,再根据直角三角形面积公式得出答案. 5.(1)90;(2)①,理由见解析;②当点D在射线BC.上时,a+β=180°,当点D在射线BC的反向延长线上时,a=β. 【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB 解析:(1)90;(2)①,理由见解析;②当点D在射线BC.上时,a+β=180°,当点D在射线BC的反向延长线上时,a=β. 【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB=45°,即可解决问题; (2)①证明△BAD≌△CAE,得到∠B=∠ACE,β=∠B+∠ACB,即可解决问题; ②证明△BAD≌△CAE,得到∠ABD=∠ACE,借助三角形外角性质即可解决问题. 【详解】解:(1)∵AB=AC,∠BAC=90°, ∴∠ABC=∠ACB=45°, ∵∠DAE=∠BAC, ∴∠BAD=∠CAE, ∵AB=AC,AD=AE, ∴△BAD≌△CAE(SAS) ∴∠ABC=∠ACE=45°, ∴∠BCE=∠ACB+∠ACE=90°, 故答案为:; (2)①. 理由:∵, ∴. 即. 又, ∴. ∴. ∴. ∴. ∵, ∴. ②如图:当点D在射线BC上时,α+β=180°,连接CE, ∵∠BAC=∠DAE, ∴∠BAD=∠CAE, 在△ABD和△ACE中, , ∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE, 在△ABC中,∠BAC+∠B+∠ACB=180°, ∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°, 即:∠BCE+∠BAC=180°, ∴α+β=180°, 如图:当点D在射线BC的反向延长线上时,α=β.连接BE, ∵∠BAC=∠DAE, ∴∠BAD=∠CAE, 又∵AB=AC,AD=AE, ∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE, ∴∠ABD=∠ACE=∠ACB+∠BCE, ∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°, ∵∠BAC=180°-∠ABC-∠ACB, ∴∠BAC=∠BCE. ∴α=β; 综上所述:点D在直线BC上移动,α+β=180°或α=β. 【点睛】该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点. 6.(1)36;(2)证明见解析;(3)3,理由见解析. 【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解; (2) 过E作EF⊥x轴于点 解析:(1)36;(2)证明见解析;(3)3,理由见解析. 【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解; (2) 过E作EF⊥x轴于点F,延长EA交y轴于点H,证△DEF≌△BDO,得出EF=OD=AF,有,得出∠BAE=90°. (3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离.再由,在直角三角形中, 即可得解. 【详解】解:(1)由已知条件得: AC=12,OB=6 ∴ (2)过E作EF⊥x轴于点F,延长EA交y轴于点H, ∵△BDE是等腰直角三角形, ∴DE=DB, ∠BDE=90°, ∴ ∵ ∴ ∴ ∵EF轴, ∴ ∴DF=BO=AO,EF=OD ∴AF=EF ∴ ∴∠BAE=90° (3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离,即点O到直线AE的垂线段的长, ∵,OA=6, ∴OM+ON=3 【点睛】本题考查的知识点主要是直角三角形的性质及应用,轴对称在最短路径问题中的应用,弄懂题意,作出合理的辅助线是解题的关键. 7.(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析. 【分析】(1)根据等边三角形三线合一的性质即可求得∠DBC的度数,根据BD=DE即可解题; (2)过D作DF∥BC,交AB于F, 解析:(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析. 【分析】(1)根据等边三角形三线合一的性质即可求得∠DBC的度数,根据BD=DE即可解题; (2)过D作DF∥BC,交AB于F,证△BFD≌△DCE,推出DF=CE,证△ADF是等边三角形,推出AD=DF,即可得出答案. (3)如图3,过点D作DP∥BC,交AB的延长线于点P,证明△BPD≌△DCE,得到PD=CE,即可得到AD=CE. 【详解】证明:是等边三角形, 为中点, ,, ; (2)成立, 如图乙,过作,交于, 则是等边三角形, , , ,, 在和中 , 即 如图3,过点作,交的延长线于点, 是等边三角形,也是等边三角形, , , 在和中, 【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,解决本题的关键是作出辅助线,构建全等三角形. 8.(1) (2) (3)或 【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标; (2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关 解析:(1) (2) (3)或 【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标; (2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关联点为,列出关于 , 的等式,解出、的值即可; (3)设,根据题意求出,进而表达出,,,的值,再根据的关联点为,列出关于,的等式,解出、的值即可. (1) 解:(1), ,,,, ,, 的关联点坐标为:, 故笞案为:; (2) 整式是只含有字母的整式,整式是与的乘积, 是二次多项式,且的次数不能超过次, 中的次数为次, 设 , , ,,,, 整式的关联点为, ,, 解得:,, ; (3) 根据题意:设, , ,,,, 整式 的关联点为, ,, ,, , 把代入得: , 解得: , 或, 或. 【点睛】本题主要考查整式的乘法,掌握整式的乘法是解决问题的关键. 9.(1)∠BAC=50°; (2)见解析; (3) 【分析】(1)利用三角形内角和定理求出∠EAB和∠CAF,再根据构建方程即可解决问题; (2)延长AD至H,使DH=AD,连接BH,想办法证 解析:(1)∠BAC=50°; (2)见解析; (3) 【分析】(1)利用三角形内角和定理求出∠EAB和∠CAF,再根据构建方程即可解决问题; (2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题; (3)先证明△ACD≌△FAG,推出∠ACD=∠FAG,再证明∠BCF=150°即可. (1) ∵AE=AB, ∴∠AEB=∠ABE=65°, ∴∠EAB=50°, ∵AC=AF, ∴∠ACF=∠AFC=75°, ∴∠CAF=30°, ∵∠EAF+∠BAC=180°, ∴∠EAB+2∠ABC+∠FAC=180°, ∴50°+2∠BAC+30°=180°, ∴∠BAC=50°. (2) 证明:延长AD至H,使DH=AD,连接BH, ∵EF=2AD, ∴AH=EF, 在△BDH和△CDA中, , ∴△BDH≌△CDA, ∴HB=AC=AF,∠BHD=∠CAD, ∴AC∥BH, ∴∠ABH+∠BAC=180°, ∵∠EAF+∠BAC=180°, ∴∠EAF=∠ABH, 在△ABH和△EAF中, , ∴△ABH≌△EAF, ∴∠AEF=∠ABH,EF=AH=2AD, (3) 结论:∠GAF-∠CAF=60°. 由(1)得,AD=EF,又点G为EF中点, ∴EG=AD, 在△EAG和△ABD中, , ∴△EAG≌△ABD, ∴∠EAG=∠ABC=60°, ∴△AEB是等边三角形, ∴∠ABE=60°, ∴∠CBM=60°, 在△ACD和△FAG中, , ∴△ACD≌△FAG, ∴∠ACD=∠FAG, ∵AC=AF,∴∠ACF=∠AFC, 在四边形ABCF中,∠ABC+∠BCF+∠CFA+∠BAF=360°, ∴60°+2∠BCF=360°, ∴∠BCF=150°, ∴∠BCA+∠ACF=150°, ∴∠GAF+(180°-∠CAF)=150°, ∴∠GAF-∠CAF=60°. . 【点睛】本题考查三角形综合题,涉及全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 上册 压轴 模拟 数学 检测 试题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文