人教版部编版八年级数学下册期末试卷测试卷(解析版).doc
《人教版部编版八年级数学下册期末试卷测试卷(解析版).doc》由会员分享,可在线阅读,更多相关《人教版部编版八年级数学下册期末试卷测试卷(解析版).doc(32页珍藏版)》请在咨信网上搜索。
人教版部编版八年级数学下册期末试卷测试卷(解析版) 一、选择题 1.使代数式有意义的负整数之积是( ) A.−3 B.3 C.2 D.−2 2.以下列各组数为边长,能构成直角三角形的是( ) A.,,2 B.1,2, C.1,, D.4,5,6 3.如图,在四边形中,,要使四边形成为平行四边形,则应增加的条件是( ) A. B. C. D. 4.甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是,,则甲、乙两个同学的数学成绩比较稳定的是( ) A.甲 B.乙 C.甲和乙一样 D.无法确定 5.如图,点E是边长为8的正方形ABCD的对角线BD上的动点,以AE为边向左侧作正方形AEFG,点P为AD的中点,连接PG,在点E运动过程中,线段PG的最小值是( ) A.2 B. C.2 D.4 6.如图,在菱形纸片ABCD中,∠A=60°,点E在BC边上,将菱形纸片ABCD沿DE折叠,点C落在AB边的垂直平分线上的点C′处,则∠DEC的大小为( ) A.30° B.45° C.60° D.75° 7.如图,△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1、l2、l3上,且l1、l2之间的距离为1,l2、l3之间的距离为3,则AC的长是( ) A.4 B.5 C.5 D.10 8.如图点按的顺序在边长为1的正方形边上运动,是边上的中点.设点经过的路程为自变量,的面积为,则函数的大致图象是( ). A. B. C. D. 二、填空题 9.函数中,自变量的取值范围是_______. 10.若菱形的两条对角线长分别是8cm和10cm,则该菱形的面积是________. 11.一条直角边3,斜边长为5的直角三角的面积为_________. 12.如图,将矩形折叠,使点和点重合,折痕为,与交于点.若,,则的长为______. 13.一次函数的图象与轴的交点是,则______. 14.如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于_____. 15.如图1,在长方形中,动点P从点A出发,沿方向运动至D点处停止,设点P出发时的速度为每秒,a秒后点P改变速度,以每秒向点D运动,直到停止.图2是的面积与时间的图像,则b的值是_________. 16.如图,在平面直角坐标系,直线与轴交于点,以为一边在上方作等边,过点作平行于轴,交直线于点,以为一边在上方作等边,过点作平行于轴,交直线于点,以为一边在上方作等边,……,则的横坐标为__________. 三、解答题 17.计算题. (1); (2)﹣; (3)()0+(﹣)﹣2+﹣; (4)()×6. 18.有一架米长的梯子搭在墙上,刚好与墙 头对齐,此时梯脚与墙的距离是米 (1)求墙的高度? (2)若梯子的顶端下滑米,底端将水平动多少米? 19.如图,每个小正方形的边长都是1,△ABC的三个顶点分别在正方形网格的格点上. (1)求AB,BC的长; (2)判断△ABC的形状,并说明理由. 20.如图,在中,对角线、相交于点,,过点作,交延长线于点,过点作,交延长线于点. (1)求证:四边形是矩形; (2)连接,若,,求的长. 21.[观察]请你观察下列式子的特点,并直接写出结果: ; ; ; …… [发现]根据你的阅读回答下列问题: (1)请根据上面式子的规律填空: (为正整数); (2)请证明(1) 中你所发现的规律. [应用]请直接写出下面式子的结果: . 22.某商场用相同的价格分三次购进A型和B型两种型号的电视机,前两次购进情况如下表. A型(台) B型(台) 总进价(元) 第一次 20 30 90000 第二次 10 20 55000 (1)求该商场购进A型和B型电视机的单价各为多少元? (2)已知商场第三次购进A型和B型电视机共40台,A型电视机的标价为每台2000元,B型电视机的标价为每台3750元,不考虑其他因素,为了促销,A型电视机打九折、B型电视机打八折销售,设购进A型电视机a台,销售完这40台电视机商场可获利W元. ①求出利润W与a的函数关系式; ②若利润为31600元,此时应购进A型和B型电视机各名少台? 23.如图1,四边形ACBD中,AC=AD,BC=BD.我们把这种两组邻边分别相等的四边形叫做“筝形”,如图2,在“筝形”ACBD中,对角线AB=CD,过点B作BE⊥AC于E点,F为线段BE上一点,连接FA、FD,FA=FB. (1)求证:△ABF≌△CDA; (2)如图3,FA、FD分别交CD、AB于点M、N,若AM=MF,求证:BN=CM+MN. 24.如图所示,在平面直角坐标系中,点B的坐标为(4,8),过点B分别作BA⊥y轴,BC⊥x轴,得到一个长方形OABC,D为y轴上的一点,将长方形OABC沿着直线DM折叠,使得点A与点C重合,点B落在点F处,直线DM交BC于点E. (1)直接写出点D的坐标 ; (2)若点P为x轴上一点,是否存在点P使△PDE的周长最小?若存在,请求出△PDE的最小周长;若不存在,请说明理由. (3)在(2)的条件下,若Q点是线段DE上一点(不含端点),连接PQ.有一动点H从P点出发,沿线段PQ以每秒1个单位的速度运动到点Q,再沿着线段QE以每秒个单位长度的速度运动到点E后停止.请直接写出点H在整个运动过程中所用的最少时间t,以及此时点Q的坐标. 25.如图,四边形为正方形.在边上取一点,连接,使. (1)利用尺规作图(保留作图痕迹):分别以点、为圆心,长为半径作弧交正方形内部于点,连接并延长交边于点,则; (2)在前面的条件下,取中点,过点的直线分别交边、于点、. ①当时,求证:; ②当时,延长,交于点,猜想与的数量关系,并说明理由. 26.如图,Rt△CEF中,∠C=90°,∠CEF,∠CFE外角平分线交于点A,过点A分别作直线CE,CF的垂线,B,D为垂足. (1)∠EAF= °(直接写出结果不写解答过程); (2)①求证:四边形ABCD是正方形. ②若BE=EC=3,求DF的长. (3)如图(2),在△PQR中,∠QPR=45°,高PH=5,QH=2,则HR的长度是 (直接写出结果不写解答过程). 【参考答案】 一、选择题 1.C 解析:C 【分析】 先根据二次根式和分式有意义的条件求出x的取值范围,然后求出满足题意的负整数的积即可. 【详解】 解:∵有意义, ∴, 解得, ∴满足题意的负整数解为-2,-1, ∴负整数解的积=, 故选C. 【点睛】 本题主要考查了分式有意义的条件,二次根式有意义的条件,解题的关键在于能够熟练掌握相关知识进行求解. 2.C 解析:C 【分析】 根据勾股定理的逆定理,判断较小两边的平方和是否等于第三边的平方,则可以判断各个选项的三条线段能否构成直角三角形,本题得以解决. 【详解】 解:A、,故选项中的三条线段不能构成直角三角形; B、,故选项中的三条线段不能构成直角三角形; C、,故选项中的三条线段能构成直角三角形; D、,故选项中的三条线段不能构成直角三角形; 故选:C. 【点睛】 本题考查勾股定理的逆定理,解答本题的关键是明确题意,利用勾股定理的逆定理解答. 3.B 解析:B 【解析】 【分析】 根据平行四边形的判定方法,以及等腰梯形的性质等知识,对各选项进行判断即可. 【详解】 A.错误,当四边形是等腰梯形时,也满足条件. B.正确,∵, ∴, ∵, ∴四边形是平行四边形. C.错误,当四边形是等腰梯形时,也满足条件. D.错误,∵, ∴,与题目条件重复,无法判断四边形是不是平行四边形. 故选:B. 【点睛】 本题考查了平行四边形的判定和性质,平行线的判定,等腰梯形的性质等知识,解题的关键是熟练掌握平行四边形的判定方法. 4.A 解析:A 【解析】 【分析】 平均成绩相同情况下,方差越小越稳定即可求解. 【详解】 解:∵甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分, 方差分别是,,, ∴甲同学的数学成绩比较稳定. 故选择A. 【点睛】 本题考查用平均数,方差进行决策,掌握平均数是集中趋势的物理量,方差是离散程度的物理量,方差越小波动越小,方差越大波动越大越不稳定是解题关键. 5.C 解析:C 【分析】 连接DG,可证△AGD≌△AEB,得到G点轨迹,利用点到直线的最短距离进行求解. 【详解】 解:连接DG,如图, , ∵四边形ABCD、四边形AEFG均为正方形, ∴∠DAB=∠GAE=90°,AB=AD,AG=AE, ∵∠GAD+∠DAE=∠DAE+∠BAE, ∴∠GAD=∠BAE, ∵AB=AD,AG=AE, ∴△AEB≌△AGD(SAS), ∴∠PDG=∠ABE=45°, ∴G点轨迹为线段DH, 当PG⊥DH时,PG最短, 在Rt△PDG中,∠PDG=45°,P为AD中点,DP=4, 设PG=x,则DG=x,由勾股定理得, x2+x2=42, 解得x=2. 故选:C. 【点睛】 本题主要考查正方形的性质,全等三角形的判定和性质,掌握连接DG,得到G点轨迹,是解题的关键. 6.D 解析:D 【解析】 【分析】 连接,由菱形的性质及,得到为等边三角形,为的中点,利用三线合一得到为角平分线,得到,,,进而求出,由折叠的性质得到,利用三角形的内角和定理即可求出所求角的度数. 【详解】 解:连接,如图所示: ∵四边形为菱形, ∴, ∵, ∴为等边三角形,,, ∵为的中点, ∴为的平分线,即, ∴, ∴由折叠的性质得到, 在中,. 故选:D 【点睛】 此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键. 7.C 解析:C 【解析】 【分析】 过点A作AE⊥,垂足为E,过点C作CF⊥,垂足为F,交于点G,证明△ABE≌△BCF,得到BF=AE=3,CF=4,运用勾股定理计算即可. 【详解】 过点A作AE⊥,垂足为E,过点C作CF⊥,垂足为F,交于点G, ∵∥∥, ∴CG⊥, ∴AE=3,CG=1,FG=3, ∵∠ABC=90°,AB=BC, ∴∠ABE+∠CBF=90°,∠ABE+∠BAE=90°, ∴∠CBF=∠BAE, ∴△ABE≌△BCF, ∴BF=AE=3,CF=4, ∴BC==5, ∴AC==5, 故选C. 【点睛】 本题考查了平行线间的距离,三角形的全等和性质,勾股定理,熟练掌握三角全等判定,灵活运用勾股定理是解题的关键. 8.C 解析:C 【分析】 分类讨论,分别表示出点P位于线段AB上、点P位于线段BC上、点P位于线段MC上时对应的的面积,判断函数图像,选出正确答案即可. 【详解】 由点M是CD中点可得:CM=, (1)如图:当点P位于线段AB上时,即0≤x≤1时, y==x; (2)如图:当点P位于线段BC上时,即1<x≤2时, BP=x-1,CP=2-x, y===; (3)如图:当点P位于线段MC上时,即2<x≤时, MP=, y===. 综上所述: . 根据一次函数的解析式判断一次函数的图像,只有C选项与解析式相符. 故选:C. 【点睛】 本题主要考查一次函数的实际应用,分类讨论,将分别表示为一次函数的形式是解题关键. 二、填空题 9.且 【解析】 【分析】 根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0即可求解. 【详解】 解:由题意可得: 且, 解得:且, 故答案为:且. 【点睛】 考查了函数自变量的取值范围,函数自变量的取值范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负. 10.40 【解析】 【分析】 根据菱形的面积公式计算即可. 【详解】 解:这个菱形的面积为: ×8×10=40cm2, 故答案为:40 【点睛】 本题主要考查菱形的面积公式,熟知菱形的面积等于两条对角线乘积的一半是解题关键. 11.6 【解析】 【分析】 根据勾股定理可以求得另一条直角边的长,然后即可求得此直角三角形的面积. 【详解】 解:∵直角三角形一直角边的长是3,斜边长是5, ∴另一条直角边为=4, ∴此直角三角形的面积为:=6, 故答案为:6. 【点睛】 本题考查勾股定理,解答本题的关键是明确题意,利用勾股定理和三角形的面积公式解答. 12.B 解析: 【分析】 首先根据矩形的性质得出,,,然后根据平行线的性质及等量代换得出,则,然后根据折叠的性质得出,,进而求出BC,然后利用勾股定理求出AB,AC,从而答案可求. 【详解】 ∵四边形是矩形, ∴,,, ∴,由折叠得,, ∴, ∴, 由折叠得,,, ∴, 在中, , 在中, , ∴, 故答案为:. 【点睛】 本题主要考查矩形的性质,折叠的性质和勾股定理,掌握折叠和矩形的性质及勾股定理是关键. 13.3 【分析】 将(0,3)代入一次函数解析式中即可得出关于m的一元一次方程,解之即可得出结论; 【详解】 解:∵函数的图象经过, ∴3=0+m, ∴m=3. 故答案为:3. 【点睛】 本题考查了一次函数图象上点的坐标特征以及解一元一次方程,解题的关键是:代入点的坐标找出关于m的一元一次方程. 14.A 解析: 【详解】 解:设AC与BD相交于点O,连接OP,过D作DM⊥AC于M, ∵四边形ABCD是矩形, ∴,AC=BD,∠ADC=90°. ∴OA=OD. ∵AB=3,AD=4,∴由勾股定理得:AC= . ∵ ,∴DM=. ∵, ∴ . ∴PE+PF=DM=.故选B. 15.【分析】 根据图像,结合题意,先求出AD的长,再根据三角形的面积公式求出a,即可求出b的值. 【详解】 解:由函数图像可知:时,点P在AB上,,点P在BC上,时,点P在CD上, ∴, ∵, ∴解得 解析: 【分析】 根据图像,结合题意,先求出AD的长,再根据三角形的面积公式求出a,即可求出b的值. 【详解】 解:由函数图像可知:时,点P在AB上,,点P在BC上,时,点P在CD上, ∴, ∵, ∴解得, 又∵,即 ∴, 故答案为:. 【点睛】 本题主要考查了动点问题的函数图像,解题的关键在于能够准确从函数图像中获取信息求解. 16.【分析】 先根据直线 与x轴交于点,可得 (3,0),O=3,再过作A⊥O于A,根据等边三角形的性质以及含30°角的直角三角形的性质,求得的横坐标为,过作于,求得的横坐标为,过作于,求得的横坐标为 解析: 【分析】 先根据直线 与x轴交于点,可得 (3,0),O=3,再过作A⊥O于A,根据等边三角形的性质以及含30°角的直角三角形的性质,求得的横坐标为,过作于,求得的横坐标为,过作于,求得的横坐标为,同理可得 的横坐标为,由此可得,的横坐标为,进而求得点的横坐标是. 【详解】 解:由直线与轴交于点, 可得, ∴, 如图所示,过作于, 则, 即的横坐标为, 由题意可得,, ∴, ∴, 过作于, 则, 即的横坐标为, 过作于,同理可得 横坐标为, 同理可得,的横坐标为, 由此可得,的横坐标为, 点的横坐标是, 故答案为. 【点睛】 本题考查了一次函数图象上点的坐标特征以及等边三角形性质应用,解题的关键是根据性质找出规律,求得坐标. 三、解答题 17.(1)(2)(3)-1(4)6 【分析】 (1)根据二次根式的加减运算法则即可求解; (2)根据二次根式的混合运算法则即可求解; (3)根据实数的混合运算法则即可求解; (4)根据二次根式的混合运算 解析:(1)(2)(3)-1(4)6 【分析】 (1)根据二次根式的加减运算法则即可求解; (2)根据二次根式的混合运算法则即可求解; (3)根据实数的混合运算法则即可求解; (4)根据二次根式的混合运算法则即可求解. 【详解】 (1) = = (2)﹣; = = = (3)()0+(﹣)﹣2+﹣ =1+4-2-4 =-1 (4)()×6 = =6. 【点睛】 此题主要考查二次根式与实数的运算,解题的关键是熟知负指数幂与二次根式的运算法则. 18.(1)4米;(2)1米 【分析】 (1)利用勾股定理可以得出梯子的顶端距离地面的高度. (2)由(1)可以得出梯子的初始高度,下滑4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的 解析:(1)4米;(2)1米 【分析】 (1)利用勾股定理可以得出梯子的顶端距离地面的高度. (2)由(1)可以得出梯子的初始高度,下滑4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为7米,可以得出,梯子底端水平方向上滑行的距离. 【详解】 解:(1)根据勾股定理: 墙的高度(米; (2)梯子下滑了1米,即梯子距离地面的高度(米. 根据勾股定理:(米 则(米,即底端将水平动1米. 答:(1)墙的高度是4米; (2)若梯子的顶端下滑1米,底端将水平动1米. 【点睛】 本题考查了勾股定理的应用,要求熟练掌握利用勾股定理求直角三角形边长. 19.(1)AB=2,BC=,(2)△ABC是直角三角形,见解析. 【解析】 【分析】 (1)先利用勾股定理分别计算两边的长即可; (2)利用勾股定理的逆定理得到三角形为直角三角形. 【详解】 解:(1) 解析:(1)AB=2,BC=,(2)△ABC是直角三角形,见解析. 【解析】 【分析】 (1)先利用勾股定理分别计算两边的长即可; (2)利用勾股定理的逆定理得到三角形为直角三角形. 【详解】 解:(1)AB=,BC=, (2)AC=5, ∵, ∴AB2+BC2=AC2, ∴△ABC是直角三角形. 【点睛】 此题考查了勾股定理和勾股定理的逆定理,熟练掌握勾股定理是解本题的关键. 20.(1)见解析;(2) 【分析】 (1)根据平行四边形的性质得到AD∥BC,进而得到,再由,得到,根据矩形的判定定理即可得到结论; (2)根据菱形的性质得到AD=AB=BC=5,AO=CO,在、中利用 解析:(1)见解析;(2) 【分析】 (1)根据平行四边形的性质得到AD∥BC,进而得到,再由,得到,根据矩形的判定定理即可得到结论; (2)根据菱形的性质得到AD=AB=BC=5,AO=CO,在、中利用勾股定理分别求BE、AC,进而在中利用斜边上的中线等于斜边的一半求解即可. 【详解】 (1)证明:∵四边形为平行四边形, ∴, ∴, ∵,, ∴, ∴, ∴, ∴四边形为矩形. (2)解:∵四边形为平行四边形,, ∴四边形为菱形, ∴,, 在中,,, ∴, ∴, 在中,,, ∴, ∵, ∴OE是的中线, ∴. 【点睛】 本题考查了矩形的判定和性质,菱形的判定与性质,直角三角形中斜边的中线等于斜边的一半,正确的识别图形是解题的关键. 21.[观察],,;[发现](1)或;(2)证明见解析;[应用]或. 【解析】 【分析】 (1)计算题目中结果,并根据计算过程和结果,总结得到一般规律,作出猜想,并对猜想进行计算,即可进行证明; (2)运 解析:[观察],,;[发现](1)或;(2)证明见解析;[应用]或. 【解析】 【分析】 (1)计算题目中结果,并根据计算过程和结果,总结得到一般规律,作出猜想,并对猜想进行计算,即可进行证明; (2)运用(1)中发现规律,进行计算即可. 【详解】 [观察],,, [发现](1)或 (2)左 ∵为正整数, ∴ ∴左右 [应用] ∴答案为:或. 【点睛】 (1)此类规律探究问题一定要结合式子特点和数的规律进行探究,类比; (2)此类题目往往无法直接进行计算,一般要根据规律进行变形,往往会消去部分中间项,实现简化运算目的. 22.(1)该商场购进A型电视机的单价为1500元,B型电视机的单价为2000元.(2)①W=﹣700a+40000.②应购进A型电视机12台,B型电视机28台. 【分析】 (1)设该商场购进型电视机的单 解析:(1)该商场购进A型电视机的单价为1500元,B型电视机的单价为2000元.(2)①W=﹣700a+40000.②应购进A型电视机12台,B型电视机28台. 【分析】 (1)设该商场购进型电视机的单价为元,型电视机的单价为元,根据总价单价数量,即可得出关于,的二元一次方程组,解之即可得出结论; (2)①设购进型电视机台,销售完这40台电视机商场可获利元,则购进型电视机台,根据获得的总利润销售每台电视机获得的利润销售数量,即可得出关于的函数关系式; ②代入,即可求出的值,再将其代入中即可求出结论. 【详解】 解:(1)设该商场购进A型电视机的单价为x元,B型电视机的单价为y元, 依题意得:, 解得:. 答:该商场购进A型电视机的单价为1500元,B型电视机的单价为2000元. (2)①设购进A型电视机a台,销售完这40台电视机商场可获利W元,则购进B型电视机(40﹣a)台, 依题意得:W=(2000×0.9﹣1500)a+(3750×0.8﹣2000)(40﹣a)=﹣700a+40000. ②当W=31600时,﹣700a+40000=31600, ∴a=12, ∴40﹣a=28. 答:此时应购进A型电视机12台,B型电视机28台. 【点睛】 本题考查了二元一次方程组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程;(2)①根据各数量之间的关系,找出关于的函数关系式;②代入的值,求出与之对应的值. 23.(1)证明见解析;(2)证明见解析 【分析】 (1)根据已知条件可得△ABC≌△ABD,再根据∠AOC+∠AOD=180°,进而可证得AB⊥CD,进而得到∠ACO=∠ABE,进而证得△ABF≌△CD 解析:(1)证明见解析;(2)证明见解析 【分析】 (1)根据已知条件可得△ABC≌△ABD,再根据∠AOC+∠AOD=180°,进而可证得AB⊥CD,进而得到∠ACO=∠ABE,进而证得△ABF≌△CDA; (2)取AB中点H,根据已知条件可知MO为△AFH的中位线,进而可证得△AFH≌△DAO,进一步得到△AFD为等腰直角三角形,然后过点F作FI⊥AF交AB于点I,取CD上点G使MG=MN,连接AG,先证△AFI≌△DAM,而后△FMN≌△FIN,得到∠FIN =∠FMN,进而可证△AMG≌△FMN,得到∠AGM=∠FNM,进而证得△ACG≌△FBN,得到BN=CG,再根据CG=CM+MG,得到BN=CM+MG,又MG=MN,继而得到BN=CM+MN. 【详解】 证明:(1)∵AC=AD,BC=BD,AB=AB, ∴△ABC≌△ABD, ∴∠CAO=∠DAO, 又∵∠ACO=∠ADO, ∴∠AOC=∠AOD, 又∵∠AOC+∠AOD=180°, ∴∠AOC=∠AOD=90°, ∴AB⊥CD, 在Rt△AOC中,∠ACO+∠CAO=90°, 在Rt△AEB中,∠ABE+∠CAO=90°, ∴∠ACO=∠ABE, 又∵AC=AD,FA=FB, ∴∠ACO=∠ADO=∠ABF=∠FAB, ∵, ∴△ABF≌△CDA; (2)如图,取AB中点H, ∵△ABF是等腰三角形, ∴FH⊥AB, ∵AM=MF且MO⊥AB, ∴MO为△AFH的中位线, ∴AO=OH=, 又∵AH===DO, 由△ABF≌△CDA,可知:AF=BF=AC=AD, ∴△AFH≌△DAO, ∴∠AFH=∠DAO, ∵∠FAH+∠AFH=90°, ∴∠FAH+∠DAO=90°, ∴∠FAD=90°, ∴△AFD为等腰直角三角形, 过点F作FI⊥AF交AB于点I,取CD上点G使MG=MN,连接AG, 由△AFH≌△DAO可得∠FAI=∠ADM, 又∵AD=AF, ∴△AFI≌△DAM, ∴FI=AM, 又∵AM=MF, ∴FI=MF, 由FI⊥AF可知∠AFI=90°,∠AFN=45°, ∴∠NFI=∠AFI-∠AFN=90°-45°=45°, ∴∠MFN=∠NFI,又∵FI=FM, ∴△FMN≌△FIN, ∴∠FIN =∠FMN, 又∵∠AMD=∠FIA, ∴∠AMD=∠FMN, 又∵AM=FM,MG=MN, ∴△AMG≌△FMN, ∴∠AGM=∠FNM, 又∵∠FNM=∠FNB, ∴∠AGM=∠FNB, 又∵∠ACG=∠FBN,AC=FB, ∴△ACG≌△FBN, ∴BN=CG, 又∵CG=CM++MG, ∴BN=CM+MG, 又∵MG=MN, ∴BN=CM+MN. 【点睛】 本题考查全等三角形的判定与性质、等腰三角形的性质、中位线等知识,解题的关键是综合运用相关知识解题. 24.(1)D(0,3);(2)存在,6;(3)5秒,Q(,) 【解析】 【分析】 (1)设D(0,m),且m>0,运用矩形性质和折叠性质可得:OD=m,OA=8,CD=8﹣m,再利用勾股定理建立方程求解 解析:(1)D(0,3);(2)存在,6;(3)5秒,Q(,) 【解析】 【分析】 (1)设D(0,m),且m>0,运用矩形性质和折叠性质可得:OD=m,OA=8,CD=8﹣m,再利用勾股定理建立方程求解即可; (2)如图1,作点D关于x轴的对称点D′,连接D′E,交x轴于点P,则点P即为所求,此时△PDE的周长最小,运用勾股定理可得CE=5,BE=3,作EG⊥OA,在Rt△DEG中,可得DE=,在Rt△D′EG中,可得,即可求出答案; (3)运用待定系数法求得直线D′E的解析式为y=2x﹣3,进而求得P(,0),过点E作EG⊥y轴于点G,过点Q、P分别作y轴的平行线,分别交EG于点H、H′,H′P交DE于点Q′,利用待定系数法可得直线DE的解析式为y=x+3,设Q(t,t+3),则H(t,5),再运用勾股定理即可求出答案. 【详解】 解:(1)设D(0,m),且m>0, ∴OD=m, ∵四边形OABC是矩形, ∴OA=BC=8,AB=OC=4,∠AOC=90°, ∵将长方形OABC沿着直线DM折叠,使得点A与点C重合, ∴CD=AD=OA﹣OD=8﹣m, 在Rt△CDO中,OD2+OC2=CD2, ∴m2+42=(8﹣m)2, 解得:m=3, ∴点D的坐标为(0,3); (2)存在. 如图1,作点D关于x轴的对称点D′,连接D′E,交x轴于点P,则点P即为所求, 此时△PDE的周长最小, 在Rt△CEF中,BE=EF=BC﹣CE,EF2+CF2=CE2,BC=8,CF=4, ∴CE=5,BE=3, 作EG⊥OA, ∵OD=AG=BE=3,OA=8, ∴DG=2, 在Rt△DEG中,EG2+DG2=DE2,EG=4, ∴DE=, 在Rt△D′EG中,EG2+D′G2=D′E2,EG=4,D′G=8, ∴D′E=, ∴△PDE周长的最小值为DE+D′E=; (3)由(2)得,E(4,5),D′(0,﹣3), 设直线D′E的解析式为y=kx+b, 则, 解得:, ∴直线D′E的解析式为y=2x﹣3, 令y=0,得2x﹣3=0, 解得:x=, ∴P(,0), 过点E作EG⊥y轴于点G,过点Q、P分别作y轴的平行线,分别交EG于点H、H′,H′P交DE于点Q′, 设直线DE的解析式为y=k′x+b′, 则, 解得:, ∴直线DE的解析式为y=x+3, 设Q(t,t+3),则H(t,5), ∴QH=5﹣(t+3)=2﹣t,EH=4﹣t, 由勾股定理得:DE==(2﹣t)=QH, ∴点H在整个运动过程中所用时间==PQ+QH, 当P、Q、H在一条直线上时,PQ+QH最小,即为PH′=5,点Q坐标(,), 故:点H在整个运动过程中所用最少时间为5秒,此时点Q的坐标(,). 【点睛】 本题考查了矩形的性质,折叠的性质,勾股定理,一次函数的性质,线段的动点问题,以及最短路径问题,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行分析. 25.(1)作图见解析;(2)①见解析;②数量关系为:或.理由见解析; 【分析】 (1)按照题意,尺规作图即可; (2)连接PE,先证明PQ垂直平分BE,得到PB=PE,再证明,得到,利用在直角三角形中, 解析:(1)作图见解析;(2)①见解析;②数量关系为:或.理由见解析; 【分析】 (1)按照题意,尺规作图即可; (2)连接PE,先证明PQ垂直平分BE,得到PB=PE,再证明,得到,利用在直角三角形中,30°所对的直角边等于斜边的一半,即可解答; (3)NQ=2MQ或NQ=MQ,分两种情况讨论,作辅助线,证明,即可解答. 【详解】 (1)如图1,分别以点、为圆心,长为半径作弧交正方形内部于点,连接并延长交边于点; 图1 (2)①连接,如图2, 图2 点是的中点, 垂直平分. , , , , , , . ②数量关系为:或. 理由如下,分两种情况: I、如图3所示,过点作于点交于点,则. 图3 正方形中,, . 在和中, . . 又, , .. . Ⅱ、如图4所示,过点作于点交于点,则. 图4 同理可证. 此时. 又,. . ,. 【点睛】 本题为正方形和三角形变化综合题,难度较大,熟练掌握相关性质定理以及分类讨论思想是解答本题的关键. 26.(1)45;(2)①见解析;②DF的长为2;(3) 【分析】 (1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=DFE,∠AEF=BEF,求得∠ 解析:(1)45;(2)①见解析;②DF的长为2;(3) 【分析】 (1)根据平角的定义得到∠DFE+∠BEF=360°﹣90°=270°,根据角平分线的定义得到∠AFE=DFE,∠AEF=BEF,求得∠AEF+∠AFE=(∠DFE+∠BEF),根据三角形的内角和定理即可得到结论; (2)①作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD是矩形,再由角平分线的性质得出AB=AD,即可得出四边形ABCD是正方形; ②设DF=x,根据已知条件得到BC=6,由①得四边形ABCD是正方形,求得BC=CD=6,根据全等三角形的性质得到BE=EG=3,同理,GF=DF=x,根据勾股定理列方程即可得到结论; (3)把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,得出MG=DG=MP=PH=6,GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR中,由勾股定理得出方程,解方程即可. 【详解】 解:(1)∵∠C=90°, ∴∠CFE+∠CEF=90°, ∴∠DFE+∠BEF=360°﹣90°=270°, ∵AF平分∠DFE,AE平分∠BEF, ∴∠AFE=DFE,∠AEF=BEF, ∴∠AEF+∠AFE=(∠DFE+∠BEF)=270°=135°, ∴∠EAF=180°﹣∠AEF﹣∠AFE=45°, 故答案为:45; (2)①作AG⊥EF于G,如图1所示: 则∠AGE=∠AGF=90°, ∵AB⊥CE,AD⊥CF, ∴∠B=∠D=90°=∠C, ∴四边形ABCD是矩形, ∵∠CEF,∠CFE外角平分线交于点A, ∴AB=AG,AD=AG, ∴AB=AD, ∴四边形ABCD是正方形; ②设DF=x, ∵BE=EC=3, ∴BC=6, 由①得四边形ABCD是正方形, ∴BC=CD=6, 在Rt△ABE与Rt△AGE中, , ∴Rt△ABE≌Rt△AGE(HL), ∴BE=EG=3, 同理,GF=DF=x, 在Rt△CEF中,EC2+FC2=EF2, 即32+(6﹣x)2=(x+3)2, 解得:x=2, ∴DF的长为2; (3)解:如图2所示: 把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G, 由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2, ∴MG=DG=MP=PH=5, ∴GQ=3, 设MR=HR=a,则GR=5﹣a,QR=a+2, 在Rt△GQR中,由勾股定理得:(5﹣a)2+32=(2+a)2, 解得:a=,即HR=; 故答案为:. 【点睛】 本题考查了正方形的判定与性质、全等三角形的判定与性质、角平分线的性质、勾股定理、矩形的判定、翻折变换的性质等知识;本题综合性强,有一定难度.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版部编版 八年 级数 下册 期末试卷 测试 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文