人教版八年级数学下册期末试卷综合测试(Word版含答案).doc
《人教版八年级数学下册期末试卷综合测试(Word版含答案).doc》由会员分享,可在线阅读,更多相关《人教版八年级数学下册期末试卷综合测试(Word版含答案).doc(30页珍藏版)》请在咨信网上搜索。
人教版八年级数学下册期末试卷综合测试(Word版含答案) 一、选择题 1.下列式子中不一定是二次根式的是( ) A. B. C. D. 2.下列三条线段不能组成直角三角形的是( ) A.a=5,b=12,c=13 B.a=6,b=8,c=10 C. D.a:b:c=2:3:4 3.如图所示,在中,点E,D,F分别在边上,且.下列判断中,不正确的是( ) A.四边形是平行四边形 B.如果,那么四边形是矩形 C.如果平分,那么四边形是菱形 D.如果,那么四边形是菱形 4.为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表,则关于这10名学生周阅读所用时间,下列说法中正确的是( ) 周阅读用时数(小时) 4 5 8 12 学生人数(人) 3 4 2 1 A.中位数是6.5 B.众数是12 C.平均数是3.9 D.方差是6 5.如图,菱形的边长为2,,点是边的中点,点是对角线上一动点,则周长的最小值是( ) A. B. C. D. 6.如图,在菱形中,与相交于点,的垂直平分线分别交,于点,,连接,若,则的度数是( ) A.60° B.75 C.80° D.110° 7.如图,在正方形ABCD中,E为AB中点,连结DE,过点D作DF⊥DE交BC的延长线于点F,连结EF.若AE=2,则EF的值为( ) A.6 B. C. D.5 8.如图,矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AB=5,则AD的长是( ) A.5 B.5 C.5 D.10 二、填空题 9.若代数式有意义,则实数的取值范围是_________. 10.如图,菱形ABCD的对角线AC、BD的长分别为3cm和4cm,则其面积是____cm2. 11.如图,每个小正方形的边长都为1,则的三边长,,的大小关系是________(用“>”连接). 12.如图,在矩形ABCD中,点E是对角线AC上一点,CB=CE,∠ACB=30°,则∠ABE=_____°. 13.在平面直角坐标系中,一次函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6),则一次函数y=kx+b的解析式为 ____. 14.如图,在△ABC中,AD⊥BC于点D,点E,F分别是A4B.AC边的中点,请你在△ABC中添加一个条件:_______________使得四边形AEDF是菱形. 15.如图,在平面直角坐标系中,点,都在轴正半轴上,点,都在直线上,,,都是等边三角形,且,则点的横坐标是_______. 16.如图,在矩形中,,沿直线折叠,使点与点重合,折痕交于点,交于点,连接,,则______. 三、解答题 17.计算 (1) (2) (3) 18.有一架米长的梯子搭在墙上,刚好与墙 头对齐,此时梯脚与墙的距离是米 (1)求墙的高度? (2)若梯子的顶端下滑米,底端将水平动多少米? 19.如图,正方形网格中的△ABC,若小方格边长为1 (1)判断△ABC是什么形状?并说明理由. (2)求AC边上的高. 20.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE. (1)求证:四边形ADCE是菱形; (2)若∠B=60°,BC=6,求四边形ADCE的面积. 21.先化简,再求值:a+,其中a=1007. 如图是小亮和小芳的解答过程. (1) 的解法是错误的; (2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:a+2,其中a=﹣2018. 22.在乡村道路建设过程中,甲、乙两村之间需要修建水泥路,甲、乙两村合作完成.已知甲村需要水泥70吨,乙村需要水泥110吨,A厂可提供100吨水泥,B厂可提供80吨水泥,两厂到两村的运费如表: 目的地 运费/(元/吨) 甲村 乙村 A厂 240 180 B厂 250 160 (1)设从A厂运往甲村水泥x吨,求运送的总费用y(元)与x(吨)之间的函数关系式,并写出自变量x的取值范围; (2)请你设计出运费最低的运送方案,并求出最低运费. 23.如图1,在平面直角坐标系xOy中,直线l1:y=x+6交x轴于点A,交y轴于点B,经过点B的直线l2:y=kx+b交x轴于点C,且l2与l1关于y轴对称. (1)求直线l2的函数表达式; (2)点D,E分别是线段AB,AC上的点,将线段DE绕点D逆时针α度后得到线段DF. ①如图2,当点D的坐标为(﹣2,m),α=45°,且点F恰好落在线段BC上时,求线段AE的长; ②如图3,当点D的坐标为(﹣1,n),α=90°,且点E恰好和原点O重合时,在直线y=3﹣上是否存在一点G,使得∠DGF=∠DGO?若存在,直接写出点G的坐标;若不存在,请说明理由. 24.如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,过点的直线交轴正半轴于,且面积为10. (1)求点的坐标及直线的解析式; (2)如图,设点为线段中点,点为轴上一动点,连接,以为边向右侧作正方形,在点的运动过程中,当顶点落在直线上时,求点的坐标; (3)如图2,若为线段的中点,点为直线上一动点,在轴上是否存在点,使以点,,,为顶点的四边形为平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由. 25.已知,如图,在三角形中,,于,且.点从点出发,沿方向匀速运动,速度为;同时点由点出发,沿方向匀速运动,速度为,过点的动直线,交于点,连结,设运动时间为,解答下列问题: (1)线段_________; (2)求证:; (3)当为何值时,以为顶点的四边形为平行四边形? 26.如图,△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,∠BAC=∠DAE. (1)如图①,连接BE、CD,求证:BE=CD; (2)如图②,连接BD、CD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=5,求BD的长; (3)如图③,若∠BAC=∠DAE=90°,且C点恰好落在DE上,试探究CD、CE和CA之间的数量关系,并加以说明. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据二次根式的性质即可判断. 【详解】 、、是二次根式,中的a可能为负数,故不一定是二次根式 故选C. 【点睛】 此题主要考查二次根式的识别,解题的关键是熟知二次根式的定义. 2.D 解析:D 【分析】 先求出两小边的平方和,再求出最长边的平方,看看是否相等即可. 【详解】 解:A.∵52+122=132, ∴以a、b、c为边能组成直角三角形,故本选项不符合题意; B.∵62+82=102, ∴以a、b、c为边能组成直角三角形,故本选项不符合题意; C.∵()2+()2=()2, ∴以a、b、c为边能组成直角三角形,故本选项不符合题意; D.∵22+32≠42, ∴以a、b、c为边不能组成直角三角形,故本选项符合题意; 故选:D. 【点睛】 本题考查了勾股定理的逆定理,注意:如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形. 3.D 解析:D 【解析】 【分析】 由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形,据此可以判断A正确;又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形,故可以判断B选项;如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,进而知∠FAD=∠ADF,AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形;如果AD⊥BC且当AB=AC时,那么AD平分∠BAC,则可得四边形AEDF是菱形,故知D选项不正确. 【详解】 解:由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形; 又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形.故A、B正确; 如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF, ∴∠FAD=∠ADF, ∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形,故C正确; 如果AD⊥BC且AB=AC,那么AD平分∠BAC,可得四边形AEDF是菱形.只有AD⊥BC,不能判断四边形AEDF是菱形,故D选项错误. 故选:D. 【点睛】 本题考查平行四边形、矩形及菱形的判定,具体选择哪种方法需要根据已知条件来确定,此题是道基础概念题,需要熟练掌握菱形的判定定理. 4.D 解析:D 【解析】 【分析】 根据平均数,中位数,众数和方差的意义分别对每一项进行分析即可得出答案. 【详解】 解:A、这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,则这10名学生周阅读所用时间的中位数是:=5; B、这10名学生周阅读所用时间出现次数最多的是5小时,所以众数是5; C、这组数据的平均数是:(4×3+5×4+8×2+12)÷10=6; D、这组数据的方差是:×[(4-6)2+(4-6)2+(4-6)2+(5-6)2+(5-6)2+(5-6)2+(5-6)2+(8-6)2+(8-6)2+(12-6)2]=6; 故选:D. 【点睛】 本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量. 5.A 解析:A 【分析】 连接BQ,BD,当P,Q,B在同一直线上时,DQ+PQ的最小值等于线段BP的长,依据勾股定理求得BP的长,即可得出DQ+PQ的最小值,进而得出△DPQ周长的最小值. 【详解】 解:如图所示,连接BQ,BD, ∵点Q是菱形对角线AC上一动点, ∴BQ=DQ, ∴DQ+PQ=BQ+PQ, 当P,Q,B在同一直线上时,BQ+PQ的最小值等于线段BP的长, ∵四边形ABCD是菱形,∠BAD=60°, ∴△BAD是等边三角形, 又∵P是AD的中点, ∴BP⊥AD,AP=DP=1, ∴Rt△ABP中,∠ABP=30°, ∴AP=AB=1, ∴BP=, ∴DQ+PQ最小值为, 又∵DP=1, ∴△DPQ周长的最小值是, 故选:A. 【点睛】 本题主要考查了菱形的性质以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点. 6.B 解析:B 【解析】 【分析】 连接BF,由菱形的性质得∠DCF=∠BCF=35°,AC垂直平分BD,AD∥BC,再由线段垂直平分线的性质得BF=DF,BF=CF,则DF=CF,得∠CDF=∠DCF=35°,然后求出∠ADC=110°,求解即可. 【详解】 解:连接BF,如图所示: ∵四边形ABCD是菱形, ∴∠DCF=∠BCF=∠BCD=35°,AC垂直平分BD,AD∥BC, ∴BF=DF, ∵EF是BC的垂直平分线, ∴BF=CF, ∴DF=CF, ∴∠CDF=∠DCF=35°, ∵AD∥BC, ∴∠ADC+∠BCD=180°, ∴∠ADC=180°-70°=110°, ∴∠ADF=110°-35°=75°, 故选:B. 【点睛】 本题考查了菱形的性质、线段垂直平分线的性质、等腰三角形的性质以及平行线的性质等知识;熟练掌握菱形的性质,证出DF=CF是解题的关键. 7.B 解析:B 【解析】 【分析】 根据“ASA”判定△ADE≌△CDF,可证DE=DF,在Rt△ADE中,运用勾股定理求出DE的长度,再在Rt△DEF中,运用勾股定理即可求出EF的长. 【详解】 解:∵四边形ABCD是正方形, ∴AD=AB=BC=CD,∠A=∠ADC=∠DCB=∠B=90°, ∵DF⊥DE, ∴∠ADE+∠EDC=∠CDF+∠EDC=90°, 即∠ADE=∠CDF, 在△ADE和△CDF中, , ∴△ADE≌△CDF(ASA), ∴DE=DF, ∵E为AB的中点,AE=2, ∴AD=AB=4, 在Rt△ADE中,DE, 在Rt△DEF中,EF. 故选:B. 【点睛】 本题主要考查了正方形的性质和勾股定理的应用,求线段的长度常常是把线段转化到直角三角形中,运用勾股定理进行计算求值. 8.A 解析:A 【分析】 根据矩形的性质可得△AOB是等边三角形,可得BD的长度,再根据勾股定理求解即可. 【详解】 解:因为在矩形ABCD中,AO=AC=BD=BO, 又因为∠AOB=60°,所以△AOB是等边三角形,所以AO=AB=5, 所以BD=2AO=10, 所以AD2=BD2﹣AB2=102﹣52=75, 所以AD=5. 故选:A. 【点睛】 本题考查了矩的性质、等边三角形的判定和性质以及勾股定理等知识,属于基本题型,熟练掌握上述知识是解题的关键. 二、填空题 9.且 【解析】 【分析】 根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案. 【详解】 解:由题意得,x+2≥0,x≠0, 解得,x≥-2且x≠0, 故答案为:x≥-2且x≠0. 【点睛】 本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键. 10.A 解析:6 【解析】 【分析】 直接根据菱形的面积等于其对角线积的一半,即可求得面积. 【详解】 解:∵菱形ABCD的对角线AC、BD的长分别为3cm和4cm ∴(cm) 故答案为:6. 【点睛】 此题主要考查菱形的性质,熟练掌握性质是解题关键. 11.; 【解析】 【分析】 观察图形根据勾股定理分别计算出a、b、c,根据二次根式的性质即可比较a、b、c的大小. 【详解】 解:在图中,每个小正方形的边长都为1,由勾股定理可得: , , , ∵,即, ∴, 故答案为:. 【点睛】 本题考查了勾股定理和比较二次根式的大小,本题中正确求出a、b、c的值是解题的关键. 12.E 解析:15 【分析】 利用等腰三角形的的性质求得∠EBC的度数,再由矩形的性质可得. 【详解】 解:∵∠ACB=30°,CB=CE, ∴∠EBC=(180°﹣∠ECB)=(180°﹣30°)=75°, ∵矩形ABCD, ∴∠ABC=90°, ∴∠ABE=90°﹣∠EBC=15°, 故答案为:15°. 【点睛】 本题考查了矩形的性质和等要三角形的性质,解决这类问题关键是熟练掌握矩形的性质. 13.A 解析:y=2x+4 【分析】 根据函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6),即可得出k和b的值,即得出了函数解析式. 【详解】 解:∵函数y=kx+b的图象与直线y=2x平行, ∴k=2, 又∵函数y=2x+b的图象经过点A(1,6), ∴6=2+b, ∴b=4, ∴一次函数的解析式为y=2x+4, 故答案为y=2x+4. 【点睛】 本题考查了一次函数的性质,待定系数法求解析式,理解两条直线平行,解析式中的值相等是解题的关键. 14.A 解析:AB=AC(或∠B=∠C,或BD=DC) 【分析】 可根据三角形的中位线定理、等腰三角形的性质、菱形的判定,分析得出当△ABC满足条件AB=AC或∠B=∠C时,四边形AEDF是菱形. 【详解】 解:要使四边形AEDF是菱形,则应有DE=DF=AE=AF, ∵E,F分别为AC,BC的中点 ∴AE=BE,AF=FC, 应有DE=BE,DF=CF,则应有△BDE≌△CDF,应有BD=CD, ∴当点D应是BC的中点,而AD⊥BC, ∴△ABC应是等腰三角形, ∴应添加条件:AB=AC或∠B=∠C. 则当△ABC满足条件AB=AC或∠B=∠C时,四边形AEDF是菱形. 故答案为:AB=AC(或∠B=∠C,或BD=DC). 【点睛】 本题考查了菱形的判定,解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论. 15.【分析】 设△的边长为,根据直线的解析式得出,再结合等边三角形的性质及外角的性质即可得出,,从而得出,由点的坐标为,得到,,,,,,即可解决问题. 【详解】 解:过作轴于,过作轴于,过作轴于,如图 解析: 【分析】 设△的边长为,根据直线的解析式得出,再结合等边三角形的性质及外角的性质即可得出,,从而得出,由点的坐标为,得到,,,,,,即可解决问题. 【详解】 解:过作轴于,过作轴于,过作轴于,如图所示: 设△的边长为, 则,,, ,,,, ,, 点,,,是直线上的第一象限内的点, , , 又△为等边三角形, , ,, , , 点的坐标为, ,,,,, , , 点的横坐标为, 故答案为:. 【点睛】 本题考查了一次函数的性质、等边三角形的性质、规律型、以及三角形外角的性质等,解题的关键是找出规律. 16.【分析】 先证明得到AE=CE,再证明AF=AE=CE,利用勾股定理求出cm ,然后求出cm,cm 由此求解即可. 【详解】 解:如图,过点E作EG⊥BC于G, 由折叠的性质可知,CF=AF,, 解析: 【分析】 先证明得到AE=CE,再证明AF=AE=CE,利用勾股定理求出cm ,然后求出cm,cm 由此求解即可. 【详解】 解:如图,过点E作EG⊥BC于G, 由折叠的性质可知,CF=AF,,,,∠AFE=∠EFC, ∴, ∴AE=CE ∵四边形ABCD是矩形, ∴∠B=∠BCD=∠D=90°,AD∥BC,cm, ∴∠AEF=∠EFC, ∴∠AEF=∠AFE, ∴AF=AE=CE, 设AF=CF=x,则BF=4-x, ∵, ∴, 解得, ∴cm, ∵EG⊥CG, ∴∠EGC=∠D=∠GCD=90°, ∴四边形EGCD是矩形, ∴cm, ∴cm , ∴cm, ∴cm , 故答案为:. 【点睛】 本题主要考查了矩形的性质与判定,勾股定理,折叠的性质,等腰三角形的性质与判定,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 三、解答题 17.(1);(2);(3) 【分析】 (1)根据二次根式乘法法则计算即可; (2)根据二次根式运算法则进行计算即可; (3)利用完全平方公式和平方差公式计算即可. 【详解】 解:(1)原式, 解析:(1);(2);(3) 【分析】 (1)根据二次根式乘法法则计算即可; (2)根据二次根式运算法则进行计算即可; (3)利用完全平方公式和平方差公式计算即可. 【详解】 解:(1)原式, (2)原式 , (3)原式; 【点睛】 本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则和乘法公式进行计算.. 18.(1)4米;(2)1米 【分析】 (1)利用勾股定理可以得出梯子的顶端距离地面的高度. (2)由(1)可以得出梯子的初始高度,下滑4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的 解析:(1)4米;(2)1米 【分析】 (1)利用勾股定理可以得出梯子的顶端距离地面的高度. (2)由(1)可以得出梯子的初始高度,下滑4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为7米,可以得出,梯子底端水平方向上滑行的距离. 【详解】 解:(1)根据勾股定理: 墙的高度(米; (2)梯子下滑了1米,即梯子距离地面的高度(米. 根据勾股定理:(米 则(米,即底端将水平动1米. 答:(1)墙的高度是4米; (2)若梯子的顶端下滑1米,底端将水平动1米. 【点睛】 本题考查了勾股定理的应用,要求熟练掌握利用勾股定理求直角三角形边长. 19.(1)△ABC是直角三角形.理由见解析;(2) 【解析】 【分析】 (1)根据勾股定理和勾股定理的逆定理可直接判断; (2)根据三角形的面积公式可求解. 【详解】 解:(1)△ABC是直角三角形.理 解析:(1)△ABC是直角三角形.理由见解析;(2) 【解析】 【分析】 (1)根据勾股定理和勾股定理的逆定理可直接判断; (2)根据三角形的面积公式可求解. 【详解】 解:(1)△ABC是直角三角形.理由如下: 由题意可得,AB=,BC=, AC=, ∴AB2+BC2=AC2, ∴∠B=90°, ∴△ABC是直角三角形; (2)设AC边上的高为h. ∵S△ABC=AC•h=AB•BC, ∴h=. 【点睛】 本题主要考查了勾股定理和勾股定理的逆定理,解题的关键在于能够熟练掌握相关知识进行求解. 20.(1)见解析;(2) 【分析】 (1)先根据已知条件,证明四边形DBCE是平行四边形,可得EC∥AB,且EC=DB,根据直角三角形斜边上的中线等于斜边的一半可得,则可得四边形是平行四边形,根据邻边相 解析:(1)见解析;(2) 【分析】 (1)先根据已知条件,证明四边形DBCE是平行四边形,可得EC∥AB,且EC=DB,根据直角三角形斜边上的中线等于斜边的一半可得,则可得四边形是平行四边形,根据邻边相等的平行四边形是菱形即可得证; (2)根据已知条件可得是等边三角形,进而求得,根据,进而根据菱形的性质求得面积. 【详解】 (1)证明:∵DE∥BC,EC∥AB, ∴四边形DBCE是平行四边形. ∴EC∥AB,且EC=DB. 在Rt△ABC中,CD为AB边上的中线, ∴AD=DB=CD. ∴EC=AD. 四边形ADCE是平行四边形 ∴四边形ADCE是菱形. (2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6, 是等边三角形 ∴AD=DB=CD=6. ∴AB=12,由勾股定理得. ∵四边形DBCE是平行四边形, ∴DE=BC=6. ∴菱形. 【点睛】 本题考查了菱形的性质与判定,直角三角形斜边上的中线等于斜边的一半,勾股定理,等边三角形的性质与判定,掌握以上知识是解题的关键. 21.(1)小亮(2)=-a(a<0)(3)2024. 【解析】 【详解】 试题分析:(1)根据二次根式的性质=|a|,判断出小亮的计算是错误的; (2)错误原因是:二次根式的性质=|a|的应用错误; ( 解析:(1)小亮(2)=-a(a<0)(3)2024. 【解析】 【详解】 试题分析:(1)根据二次根式的性质=|a|,判断出小亮的计算是错误的; (2)错误原因是:二次根式的性质=|a|的应用错误; (3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮 (2)=-a(a<0) (3)原式=a+2=a+2(3-a)=6-a=6-(-2018)=2024. 22.(1)y=﹣30x+37100(0≤x≤70);(2)最低运送方案为A厂运往甲村水泥70吨,运往乙村水泥30吨:B厂运往甲村水泥0吨,B厂运往乙村水泥80吨,最低运费为35000元. 【分析】 (1 解析:(1)y=﹣30x+37100(0≤x≤70);(2)最低运送方案为A厂运往甲村水泥70吨,运往乙村水泥30吨:B厂运往甲村水泥0吨,B厂运往乙村水泥80吨,最低运费为35000元. 【分析】 (1)由从A厂运往甲村水泥x吨,根据题意首先求得从A厂运往乙村水泥(100-x)吨,B厂运往甲村水泥(70-x)吨,B厂运往乙村水泥吨,然后根据表格求得总运费y(元)关于x(吨)的函数关系式; (2)根据(1)中的一次函数解析式的增减性,即可知当x=70时,总运费y最省,然后代入求解即可求得最低运费. 【详解】 (1)设从A厂运往甲村水泥x吨,则A厂运往乙村水泥(100﹣x) 吨,B厂运往甲村水泥(70﹣x)吨,B厂运往乙村水泥110﹣(100﹣x)=(10+x)吨, ∴y=240x+180(100﹣x)+250(70﹣x)+160(10+x)=﹣30x+37100,x的取值范围是0≤x≤70, ∴y=﹣30x+37100(0≤x≤70); (2)∵y=﹣30x+37100(0≤x≤70),﹣30<0, ∴y随x的增大而减小, ∵0≤x≤70, ∴当x=70时,总费用最低, 最低运费为:﹣30×70+37100=35000 (元), ∴最低运送方案为A厂运往甲村水泥70吨,运往乙村水泥30吨:B厂运往甲村水泥0吨,B厂运往乙村水泥80吨,最低运费为35000元. 【点睛】 本题主要考查了一次函数的实际应用问题,解决本题的关键是理解题意,读懂表格,求得一次函数解析式,然后根据一次函数的性质求解. 23.(1)y=-x+6;(2)①;②,或或, 【分析】 (1)先求出点A,B的坐标,再运用待定系数法求出直线直线l2的函数解析式; (2)①将点D(-2,m)代入y=x+6中,求出D(-2,4),如图2 解析:(1)y=-x+6;(2)①;②,或或, 【分析】 (1)先求出点A,B的坐标,再运用待定系数法求出直线直线l2的函数解析式; (2)①将点D(-2,m)代入y=x+6中,求出D(-2,4),如图2,作∠DHF=45°,利用AAS证明△ADE≌△HFD,再运用等腰直角三角形性质即可求出答案; ②将D(-1,n)代入y=x+6中,得D(-1,5),过D作DM⊥x轴于M,作FN⊥DM于N,如图3,利用AAS可证得△FDN≌△DEM,进而得出F(4,6),再根据∠DGF=∠DGO分类讨论即可. 【详解】 解:(1)交轴于点,交轴于点, ,, 与关于轴对称, , 设直线为:,将、坐标代入得 ,解得, 直线的函数解析式为:; (2)①将点代入中,得: ,解得:, , 如图2,作, , , ,, , 在和中, , , ,, 又,, 和均为等腰直角三角形, , , , 是等腰直角三角形, , , . ②将代入中,得:, ,则,, 过作轴于,作于,如图3, ,, ,, , 在和中, , , ,, ,, , 当点、、三点共线时,如图3,, 设直线的解析式为, , , 解得:, 直线的解析式为, 当时,, ,; 如图4,连接DG2,FG2, 过点D作DM⊥OG2,DN⊥FG2, ∵, ∴DM=DN,又DO=DF, ∴(HL), ∴∠ODM=∠FDN,又∠ODN+∠FDN=90°, ∴∠ODM+∠ODN=90°,即∠MDN=90°, ∴四边形DMG2N是正方形, ∴∠OG2F=90°, 设, , , , 解得:, ; 当平分时,如图5, ,, , 又, , 设与交于点, , ,, , 设直线解析式为, ,, , 解得:, 直线解析式为, 联立方程组, 解得:, ,; 综上所述,符合条件的的坐标为,或或,. 【点睛】 本题是一次函数综合题,考查了运用待定系数法求一次函数解析式,求一次函数图象与坐标轴交点坐标,利用解方程组求两直线交点坐标,等腰直角三角形判定和性质,全等三角形判定和性质,勾股定理等,添加辅助线构造全等三角形,运用分类讨论思想和数形结合思想是解题关键. 24.(1),;(2)或;(3)存在,或或. 【解析】 【分析】 (1)利用三角形的面积公式求出点坐标,再利用待定系数法即可解决问题. (2)设G(0,n)分两种情形:①当时,如图中,点落在上时,过作直线 解析:(1),;(2)或;(3)存在,或或. 【解析】 【分析】 (1)利用三角形的面积公式求出点坐标,再利用待定系数法即可解决问题. (2)设G(0,n)分两种情形:①当时,如图中,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,.求出.②当时,如图中,同法可得,利用待定系数法即可解决问题. (3)由,得,,即得直线为,设,,①以、为对角线,此时、中点重合,而中点为,,中点为,,即得,解得;②以、为对角线,同理可得:;③以、为对角线,同理. 【详解】 解:(1)直线与轴交于点,与轴交于点, ,, ,, , , , , 设直线的解析式为,则有, 解得, 直线的解析式为; (2),,, , 设, ①当时,如图中,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,. 四边形是正方形, ,, , 而, , ,, , 点在直线上, , , ; ②当时,如图中,同法可得, 点在直线上, , , . 综上所述,满足条件的点坐标为或; (3)存在,理由如下: ,,为线段的中点, ,, 设直线为,则, 解得, 直线为, 设,, ①以、为对角线,此时、中点重合,而中点为,,中点为,, ,解得, ; ②以、为对角线,同理可得: ,解得, ; ③以、为对角线,同理可得: ,解得, ; 综上所述,的坐标为:或或. 【点睛】 本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题 25.(1)12;(2)证明见详解;(3)或t=4s. 【分析】 (1)由勾股定理求出AD即可; (2)由等腰三角形的性质和平行线的性质得出∠PBQ=∠PQB,再由等腰三角形的判定定理即可得出结论; (3 解析:(1)12;(2)证明见详解;(3)或t=4s. 【分析】 (1)由勾股定理求出AD即可; (2)由等腰三角形的性质和平行线的性质得出∠PBQ=∠PQB,再由等腰三角形的判定定理即可得出结论; (3)分两种情况:①当点M在点D的上方时,根据题意得:PQ=BP=t,AM=4t,AD=12,得出MD=AD-AM=12-4t,由PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,得出方程,解方程即可; ②当点M在点D的下方时,根据题意得:PQ=BP=t,AM=4t,AD=12,得出MD=AM-AD=4t-12,由PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,得出方程,解方程即可. 【详解】 (1)解:∵BD⊥AC, ∴∠ADB=90°, ∴(cm), (2)如图所示: ∵AB=AC, ∴∠ABC=∠C,即∠PBQ=∠C, ∵PQ∥AC, ∴∠PQB=∠C, ∴∠PBQ=∠PQB, ∴PB=PQ; (3)分两种情况: ①当点M在点D的上方时,如图2所示: 根据题意得:PQ=BP=t,AM=4t,AD=12, ∴MD=AD-AM=12-4t, ∵PQ∥AC, ∴PQ∥MD, ∴当PQ=MD时,四边形PQDM是平行四边形, 即:当t=12-4t,时,四边形PQDM是平行四边形, 解得:(s); ②当点M在点D的下方时,如图3所示: 根据题意得:PQ=BP=t,AM=4t,AD=12, ∴MD=AM-AD=4t-12, ∵PQ∥AC, ∴PQ∥MD, ∴当PQ=MD时,四边形PQDM是平行四边形, 即:当t=4t-12时,四边形PQDM是平行四边形, 解得:t=4(s); 综上所述,当或t=4s时,以P、Q、D、M为顶点的四边形为平行四边形. 【点睛】 本题是四边形综合题目,考查了平行四边形的判定、等腰三角形的判定与性质、勾股定理以及分类讨论等知识;本题综合性强,熟练掌握平行四边形的判定方法,进行分类讨论是解决问题(3)的关键. 26.(1)见解析;(2);(3)2AC2=CD2+CE2,理由见解析 【分析】 (1)先判断出∠BAE=∠CAD,进而得出△ACD≌△ABE,即可得出结论; (2)先求出∠CDA=∠ADE=30°,进而 解析:(1)见解析;(2);(3)2AC2=CD2+CE2,理由见解析 【分析】 (1)先判断出∠BAE=∠CAD,进而得出△ACD≌△ABE,即可得出结论; (2)先求出∠CDA=∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论; (3)连接BE,由等腰直角三角形的性质和全等三角形的性质可得BE=CD,∠BEA=∠CDA=45°,由勾股定理可得2AC2=CD2+CE2. 【详解】 证明:(1)∵∠BAC=∠DAE, ∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD; 又∵AB=AC,AD=AE, ∴△ACD≌△ABE(SAS), ∴CD=BE; (2)如图②,连接BE, ∵AD=AE,∠DAE=60°, ∴△ADE是等边三角形, ∴DE=AD=3,∠ADE=∠AED=60°, ∵CD⊥AE, ∴∠CDA=∠ADE=×60°=30°, ∵由(1)得△ACD≌△ABE, ∴BE=CD=5,∠BEA=∠CDA=30°, ∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE, ∴. (3)2AC2=CD2+CE2, 理由如下:连接BE, ∵AD=AE,∠DAE=90°, ∴∠D=∠AED=45°, 由(1)得△ACD≌△ABE, ∴BE=CD,∠BEA=∠CDA=45°, ∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE, 在Rt△BEC中,BC2=BE2+CE2, 在Rt△ABC中,AB2+AC2=BC2, ∴2AC2=CD2+CE2. 【点睛】 此题考查了等腰直角三角形、全等三角形的性质以及勾股定理,熟练掌握相关基本性质是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 八年 级数 下册 期末试卷 综合测试 Word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文