八年级上学期压轴题强化数学试卷含解析(一)[001].doc
《八年级上学期压轴题强化数学试卷含解析(一)[001].doc》由会员分享,可在线阅读,更多相关《八年级上学期压轴题强化数学试卷含解析(一)[001].doc(24页珍藏版)》请在咨信网上搜索。
八年级上学期压轴题强化数学试卷含解析(一) 1.已知:AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°. (1)如图1,若∠ABE=65°,∠ACF=75°,求∠BAC的度数. (2)如图1,求证:EF=2AD. (3)如图2,设EF交AB于点G,交AC于点R,FC与EB交于点M,若点G为EF中点,且∠BAE=60°,请探究∠GAF和∠CAF的数量关系,并证明你的结论. 2.阅读下列材料,完成相应任务. 数学活动课上,老师提出了如下问题: 如图1,已知中,是边上的中线. 求证:. 智慧小组的证法如下: 证明:如图2,延长至,使, ∵是边上的中线∴ 在和中 ∴(依据一)∴ 在中,(依据二) ∴. 任务一:上述证明过程中的“依据1”和“依据2”分别是指: 依据1:______________________________________________; 依据2:______________________________________________. 归纳总结:上述方法是通过延长中线,使,构造了一对全等三角形,将,,转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系. 任务二:如图3,,,则的取值范围是_____________; 任务三:如图4,在图3的基础上,分别以和为边作等腰直角三角形,在中,,;中,,.连接.试探究与的数量关系,并说明理由. 3.如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B(b,0),且a、b满足a2-4a+4+=0. (1)求a,b的值; (2)以AB为边作Rt△ABC,点C在直线AB的右侧,且∠ACB=45°,求点C的坐标; (3)若(2)的点C在第四象限(如图2),AC与 x轴交于点D,BC与y轴交于点E,连接 DE,过点C作CF⊥BC交x轴于点F. ①求证:CF=BC; ②直接写出点C到DE的距离. 4.在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足. (1)求点A和点B的坐标; (2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;: (3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标. 5.已知:在平面直角坐标系中,A为x轴负半轴上的点,B为y轴负半轴上的点. (1)如图1,以A点为顶点、AB为腰在第三象限作等腰,若,,求C点的坐标; (2)如图2,若点A的坐标为,点B的坐标为,点D的纵坐标为n,以B为顶点,BA为腰作等腰.当B点沿y轴负半轴向下运动且其他条件都不变时,整式的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理出; (3)如图3,若,于点F,以OB为边作等边,连接AM交OF于点N,若,,请直接写出线段AM的长. 6.如图,和中,,,,边与边交于点(不与点,重合),点,在异侧,为与的角平分线的交点. (1)求证:; (2)设,请用含的式子表示,并求的最大值; (3)当时,的取值范围为,求出,的值. 7.[背景]角的平分线是常见的几何模型,利用轴对称构造三角形全等可解决有关问题. [问题]在四边形ABDE中,C是BD边的中点. (1)如图1,若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为______;(直接写出答案) (2)如图2,AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明; (3)如图3,若∠ACE=120°,AB=4,DE=9,BD=12,则AE的最大值是______.(直接写出答案) 8.如图,在等边△ABC中,AB=AC=BC=6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts. (1)当t为何值时,M、N两点重合; (2)当点M、N分别在AC、BA边上运动,△AMN的形状会不断发生变化. ①当t为何值时,△AMN是等边三角形; ②当t为何值时,△AMN是直角三角形; (3)若点M、N都在BC边上运动,当存在以MN为底边的等腰△AMN时,求t的值. 【参考答案】 2.(1)∠BAC=50° (2)见解析 (3)∠GAF﹣∠CAF=60°,理由见解析 【分析】(1)利用三角形的内角和定理求出∠EAB,∠CAF,再根据∠EAF+∠BAC=180°构建方程即可解 解析:(1)∠BAC=50° (2)见解析 (3)∠GAF﹣∠CAF=60°,理由见解析 【分析】(1)利用三角形的内角和定理求出∠EAB,∠CAF,再根据∠EAF+∠BAC=180°构建方程即可解决问题; (2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题; (3)结论:∠GAF﹣∠CAF=60°.想办法证明△ACD≌△FAG,推出∠ACD=∠FAG,再证明∠BCF=150°即可. (1) 解:∵AE=AB, ∴∠AEB=∠ABE=65°, ∴∠EAB=50°, ∵AC=AF, ∴∠ACF=∠AFC=75°, ∴∠CAF=30°, ∵∠EAF+∠BAC=180°, ∴∠EAB+2∠ABC+∠FAC=180°, ∴50°+2∠BAC+30°=180°, ∴∠BAC=50°. (2) 证明:证明:如图,延长AD至点H,使DH=AD,连接BH ∵AD是△ABC的中线, ∴BD=DC, 又∵DH=AD,∠BDH=∠ADC ∴△ADC≌△HDB(SAS), ∴BH=AC,∠BHD=∠DAC, ∴BH=AF, ∵∠BHD=∠DAC, ∴BH∥AC, ∴∠BAC+∠ABH=180°, 又∵∠EAF+∠BAC=180°, ∴∠ABH=∠EAF, 又∵AB=AE,BH=AF, ∴△AEF≌△BAH(SAS), ∴EF=AH=2AD, ∴EF=2AD; (3) 结论:∠GAF﹣∠CAF=60°. 理由:由(2)得,AD=EF,又点G为EF中点, ∴EG=AD, 由(2)△AEF≌△BAH, ∴∠AEG=∠BAD, 在△EAG和△ABD中, , ∴△EAG≌△ABD, ∴∠EAG=∠ABC=60°,AG=BD, ∴△AEB是等边三角形,AG=CD, ∴∠ABE=60°, ∴∠CBM=60°, 在△ACD和△FAG中, , ∴△ACD≌△FAG, ∴∠ACD=∠FAG, ∵AC=AF, ∴∠ACF=∠AFC, 在四边形ABCF中,∠ABC+∠BCF+∠CFA+∠BAF=360°, ∴60°+2∠BCF=360°, ∴∠BCF=150°, ∴∠BCA+∠ACF=150°, ∴∠GAF+(180°﹣∠CAF)=150°, ∴∠GAF﹣∠CAF=60°. 【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题. 3.任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析 【分析】任务一:依据1:根据全等的判 解析:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析 【分析】任务一:依据1:根据全等的判定方法判断即可; 依据2:根据三角形三边关系判断; 任务二:可根据任务一的方法直接证明即可; 任务三:根据任务一的方法,延长中线构造全等三角形证明线段关系即可. 【详解】解:任务一: 依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”); 依据2:三角形两边的和大于第三边. 任务二: 任务三:EF=2AD.理由如下: 如图延长AD至G,使DG=AD, ∵AD是BC边上的中线 ∴BD=CD 在△ABD和△CGD中 ∴△ABD≌△CGD ∴AB=CG,∠ABD=∠GCD 又∵AB=AE ∴AE=CG 在△ABC中,∠ABC+∠BAC+∠ACB=180°, ∴∠GCD+∠BAC+∠ACB=180° 又∵∠BAE=90°,∠CAF=90° ∴∠EAF+∠BAC=360°-(∠BAE+∠CAF)=180° ∴∠EAF=∠GCD 在△EAF和△GCA中 ∴△EAF≌△GCA ∴EF=AG ∴EF=2AD. 【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,倍长中线法,构造全等三角形是解本题的关键. 4.(1)a=2,b=-1;(2)满足条件的点C(2,1)或(1,-1);(3)①证明见解析;②1. 【分析】(1)可得(a−2)2+=0,由非负数的性质可得出答案; (2)分两种情况:∠BAC=9 解析:(1)a=2,b=-1;(2)满足条件的点C(2,1)或(1,-1);(3)①证明见解析;②1. 【分析】(1)可得(a−2)2+=0,由非负数的性质可得出答案; (2)分两种情况:∠BAC=90°或∠ABC=90°,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标; (3)①如图3,过点C作CL⊥y轴于点L,则CL=1=BO,根据AAS可证明△BOE≌△CLE,得出BE=CE,根据ASA可证明△ABE≌△BCF,得出BE=CF,则结论得证; ②如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,根据SAS可证明△CDE≌△CDF,可得∠BAE=∠CBF,由角平分线的性质可得CK=CH=1. 【详解】(1)∵a2−4a+4+=0, ∴(a−2)2+=0, ∵(a-2)2≥0,≥0, ∴a-2=0,2b+2=0, ∴a=2,b=-1; (2)由(1)知a=2,b=-1, ∴A(0,2),B(-1,0), ∴OA=2,OB=1, ∵△ABC是直角三角形,且∠ACB=45°, ∴只有∠BAC=90°或∠ABC=90°, Ⅰ、当∠BAC=90°时,如图1, ∵∠ACB=∠ABC=45°, ∴AB=CB, 过点C作CG⊥OA于G, ∴∠CAG+∠ACG=90°, ∵∠BAO+∠CAG=90°, ∴∠BAO=∠ACG, 在△AOB和△BCP中, , ∴△AOB≌△CGA(AAS), ∴CG=OA=2,AG=OB=1, ∴OG=OA-AG=1, ∴C(2,1), Ⅱ、当∠ABC=90°时,如图2, 同Ⅰ的方法得,C(1,-1); 即:满足条件的点C(2,1)或(1,-1) (3)①如图3,由(2)知点C(1,-1), 过点C作CL⊥y轴于点L,则CL=1=BO, 在△BOE和△CLE中, , ∴△BOE≌△CLE(AAS), ∴BE=CE, ∵∠ABC=90°, ∴∠BAO+∠BEA=90°, ∵∠BOE=90°, ∴∠CBF+∠BEA=90°, ∴∠BAE=∠CBF, 在△ABE和△BCF中, , ∴△ABE≌△BCF(ASA), ∴BE=CF, ∴CF=BC; ②点C到DE的距离为1. 如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H, 由①知BE=CF, ∵BE=BC, ∴CE=CF, ∵∠ACB=45°,∠BCF=90°, ∴∠ECD=∠DCF, ∵DC=DC, ∴△CDE≌△CDF(SAS), ∴∠BAE=∠CBF, ∴CK=CH=1. 【点睛】此题考查三角形综合题,非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,坐标与图形的性质,等腰三角形的性质,点到直线的距离,角平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 5.(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2) 【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案; (2) 解析:(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2) 【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案; (2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案; (3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解. 【详解】(1)∵, ∴. ∵, ∴, ∴, ∴, ∴,. (2)如图,过点F作FH⊥AO于点H ∵AF⊥AE ∴∠FHA=∠AOE=90°, ∵ ∴∠AFH=∠EAO 又∵AF=AE, 在和中 ∴ ∴AH=EO=2,FH=AO=4 ∴OH=AO-AH=2 ∴F(-2,4) ∵OA=BO, ∴FH=BO 在和中 ∴ ∴HD=OD ∵ ∴HD=OD=1 ∴D(-1,0) ∴D(-1,0),F(-2,4); (3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S ∴ ∴, ∴ ∴ ∴ ∴等腰 ∴NQ=NO, ∵NG⊥PN, NS⊥EG ∴ ∴, ∴ ∵, ∴ ∵点E为线段OB的中点 ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴等腰 ∴NG=NP, ∵ ∴ ∴∠QNG=∠ONP 在和中 ∴ ∴∠NGQ=∠NPO,GQ=PO ∵, ∴PO=PB ∴∠POE=∠PBE=45° ∴∠NPO=90° ∴∠NGQ=90° ∴∠QGR=45°. 在和中 ∴. ∴QR=OE 在和中 ∴ ∴QM=OM. ∵NQ=NO, ∴NM⊥OQ ∵ ∴等腰 ∴ ∵ ∴ 在和中 ∴ ∴NS=EM=4,MS=OE=2 ∴N(-6,2). 【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解. 6.(1) (2)整式的值不发生变化.其值为 (3) 【分析】(1)过点作于点,可以证明,由,,再由条件就可以求出的坐标; (2)过点作于点,可以证明,则有为定值,从而可以得出结论的值不变为; 解析:(1) (2)整式的值不发生变化.其值为 (3) 【分析】(1)过点作于点,可以证明,由,,再由条件就可以求出的坐标; (2)过点作于点,可以证明,则有为定值,从而可以得出结论的值不变为; (3)在上截取,连接,证明,由全等三角形的性质得出.由等腰三角形的性质可得出结论. (1) 解:如图1,过点作于点, , 等腰直角三角形, ,, . , ,. ,, ,, , ; (2) 解:整式的值不会变化. 理由如下: 如图2,过点作于点, , 等腰直角三角形, ,, , , , , , , , 当点沿轴负半轴向下运动时, , 整式的值不变,为; (3) . 证明:如图3,在上截取,连接, 是等边三角形, ,, 为等腰直角三角形, ,, , , , ,, , , . , ,, , , , , , , 即. 【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,等边三角形的性质,全等三角形的判定与性质,正确的做出辅助线并证明三角形全等是解决问题的关键. 7.(1)见解析 (2),3 (3)m=105,n=150 【分析】(1)由条件易证,得,即可得证. (2)PD=AD-AP=6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即AD⊥ 解析:(1)见解析 (2),3 (3)m=105,n=150 【分析】(1)由条件易证,得,即可得证. (2)PD=AD-AP=6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即AD⊥BC时AP的长度,此时PD可得最大值. (3)为与的角平分线的交点,应用“三角形内角和等于180°”及角平分线定义,即可表示出,从而得到m,n的值. (1) 解:在和中,如图1 即 (2) 解: 当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值 (3) 解:如图2,设则 为与的角平分线的交点 即 【点睛】本题是一道几何综合题,考查了点到直线的距离垂线段最短,30°的角所对的直角边等于斜边的一半,全等三角形的判定和性质,角平分线定义等,解题关键是将PD最大值转化为PA的最小值. 8.(1)AE=AB+DE (2)AE=AB+DE+BD (3) 【分析】(1)在AE上取一点F,使AF=AB,及可以得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△ 解析:(1)AE=AB+DE (2)AE=AB+DE+BD (3) 【分析】(1)在AE上取一点F,使AF=AB,及可以得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△CEF≌△CED.就可以得出结论; (3)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG.可以求得CF=CG,△CFG是等边三角形,就有FG=CG=BD,进而得出结论; (3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG.根据两点之间线段最短解决问题即可. (1) AE=AB+DE; 理由:在AE上取一点F,使AF=AB, ∵AC平分∠BAE, ∴∠BAC=∠FAC. 在△ACB和△ACF中, , ∴△ACB≌△ACF(SAS), ∴BC=FC,∠ACB=∠ACF. ∵C是BD边的中点. ∴BC=CD, ∴CF=CD. ∵∠ACE=90°, ∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90° ∴∠ECF=∠ECD. 在△CEF和△CED中, , ∴△CEF≌△CED(SAS), ∴EF=ED. ∵AE=AF+EF, ∴AE=AB+DE, 故答案为:AE=AB+DE; (2) 猜想:AE=AB+DE+BD. 证明:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG. ∵C是BD边的中点, ∴CB=CD=BD. ∵AC平分∠BAE, ∴∠BAC=∠FAC. 在△ACB和△ACF中, ∴△ACB≌△ACF(SAS), ∴CF=CB, ∴∠BCA=∠FCA. 同理可证:CD=CG, ∴∠DCE=∠GCE. ∵CB=CD, ∴CG=CF ∵∠ACE=120°, ∴∠BCA+∠DCE=180°-120°=60°. ∴∠FCA+∠GCE=60°. ∴∠FCG=60°. ∴△FGC是等边三角形. ∴FG=FC=BD. ∵AE=AF+EG+FG. ∴AE=AB+DE+BD. (3) 作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG,如图所示: ∵C是BD边的中点, ∴CB=CD=BD=, ∵△ACB≌△ACF(SAS), ∴CF=CB=, ∴∠BCA=∠FCA, 同理可证:CD=CG=, ∴∠DCE=∠GCE, ∵CB=CD, ∴CG=CF, ∵∠ACE=120°, ∴∠BCA+∠DCE=180°-120°=60°, ∴∠FCA+∠GCE=60°, ∴∠FCG=60°, ∴△FGC是等边三角形, ∴FC=CG=FG=, ∵AE≤AF+FG+EG, ∴当A、F、G、E共线时AE的值最大,最大值为. 故答案为:. 【点睛】本题考查了四边形的综合题,角平分线的性质的运用,全等三角形的判定及性质的运用,等边三角形的性质的运用,勾股定理的运用,解答时证明三角形全等是关键. 9.(1)当M、N运动6秒时,点N追上点M;(2)①,△AMN是等边三角形;②当或时,△AMN是直角三角形;(3) 【详解】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的 解析:(1)当M、N运动6秒时,点N追上点M;(2)①,△AMN是等边三角形;②当或时,△AMN是直角三角形;(3) 【详解】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多6cm,列出方程求解即可; (2)①根据题意设点M、N运动t秒后,可得到等边三角形△AMN,然后表示出AM,AN的长,由于∠A等于60°,所以只要AM=AN三角形ANM就是等边三角形; ②分别就∠AMN=90°和∠ANM=90°列方程求解可得; (3)首先假设△AMN是等腰三角形,可证出△ACM≌△ABN,可得CM=BN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值. 【解答】解:(1)设点M、N运动x秒后,M、N两点重合, x×1+6=2x, 解得:x=6, 即当M、N运动6秒时,点N追上点M; (2)①设点M、N运动t秒后,可得到等边三角形△AMN,如图1, AM=t,AN=6﹣2t, ∵AB=AC=BC=6cm, ∴∠A=60°,当AM=AN时,△AMN是等边三角形, ∴t=6﹣2t, 解得t=2, ∴点M、N运动2秒后,可得到等边三角形△AMN. ②当点N在AB上运动时,如图2, 若∠AMN=90°, ∵BN=2t,AM=t, ∴AN=6﹣2t, ∵∠A=60°, ∴2AM=AN,即2t=6﹣2t, 解得; 如图3,若∠ANM=90°, 由2AN=AM得2(6﹣2t)=t, 解得. 综上所述,当t为或时,△AMN是直角三角形; (3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形, 由(1)知6秒时M、N两点重合,恰好在C处, 如图4,假设△AMN是等腰三角形, ∴AN=AM, ∴∠AMN=∠ANM, ∴∠AMC=∠ANB, ∵AB=BC=AC, ∴△ACB是等边三角形, ∴∠C=∠B, 在△ACM和△ABN中, ∵∠AMC=∠ANB,∠C=∠B,AC=AB, ∴△ACM≌△ABN(AAS), ∴CM=BN, ∴t﹣6=18﹣2t, 解得t=8,符合题意. 所以假设成立,当M、N运动8秒时,能得到以MN为底的等腰三角形. 【点睛】本题是三角形综合题,主要考查了等边三角形的判定与性质,含30°角的直角三角形的性质,全等三角形的判定与性质,将动点问题转化为线段的长是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 001 年级 上学 压轴 强化 数学试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文