2023年人教版中学七7年级下册数学期末测试题及答案.doc
《2023年人教版中学七7年级下册数学期末测试题及答案.doc》由会员分享,可在线阅读,更多相关《2023年人教版中学七7年级下册数学期末测试题及答案.doc(25页珍藏版)》请在咨信网上搜索。
2023年人教版中学七7年级下册数学期末测试题及答案 一、选择题 1.如图,和不是同位角的是( ) A. B. C. D. 2.如图所示的图案分别是四种汽车的车标,其中可以看作是由“基本图案”经过平移得到的是( ) A. B. C. D. 3.下列各点在第二象限的是( ) A. B. C. D. 4.下列说法中,真命题的个数为( ) ①两条平行线被第三条直线所截,同位角相等; ②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行; ③过一点有且只有一条直线与这条直线平行; ④点到直线的距离是这一点到直线的垂线段; A.1个 B.2个 C.3个 D.4个 5.如图所示,,OE平分∠AOD,,,则∠BOF为( ) A. B. C. D. 6.下列计算正确的是( ) A. B. C. D. 7.如图:AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①OF平分∠BOD;②∠POE=∠BOF;③∠BOE=70°;④∠POB=2∠DOF,其中结论正确的序号是( ) A.①②③ B.①②④ C.①③④ D.①②③④ 8.如图,所有正方形的中心均在坐标原点,且各边与轴或轴平行,从内到外,它们的边长依次2,4,6,8,,…顶点依次用,,,,…表示,则顶点的坐标是( ) A. B. C. D. 九、填空题 9.比较大小,请在横线上填“>”或“<”或“=”________. 十、填空题 10.在平面直角坐标系中,点P(-2,3)关于直线y=x-1对称的点的坐标是_______. 十一、填空题 11.已知,射线在同一平面内绕点O旋转,射线分别是和的角平分线.则的度数为______________. 十二、填空题 12.将一条长方形纸带按如图方式折叠,若,则的度数为________°. 十三、填空题 13.如图,把一张长方形纸片沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若,则____________,____________. 十四、填空题 14.按一定规律排列的一列数依次为:,,,,,,按此规律排列下去,这列数中第个数及第个数(为正整数)分别是__________. 十五、填空题 15.已知点A(0,0),|AB|=5,点B和点A在同一坐标轴上,那么点B的坐标是________. 十六、填空题 16.如图,在平面直角坐标系中,轴,轴,点、、、在轴上,,,,,.把一条长为2018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在处,并按的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标是_______. 十七、解答题 17.计算下列各题: (1); (2)-×; (3)-++. 十八、解答题 18.求满足下列各式x的值 (1)2x2﹣8=0; (2)(x﹣1)3=﹣4. 十九、解答题 19.如图,,试说明. 证明:∵(已知) ∴________=________(垂直定义) ∴________//________(________________) ∵(________) ∴________//________(________________) ∴________(平行于同一直线的两条直线互相平行) ∴(________________________). 二十、解答题 20.已知在平面直角坐标系中有三点,,,请回答如下问题: (1)在平面直角坐标系内描出、、,连接三边得到; (2)将三点向下平移2个单位长度,再向左平移1个单位,得到;画出,并写出、、三点坐标; (3)求出的面积. 二十一、解答题 21.已知的整数部分是a,小数部分是b,求a+ 的值。 的整数部分是2,所以的小数部分是 −2,所以a=2,b=−2, a+, 请根据以上解题提示,解答下题: 已知9+ 与9−的小数部分分别为a,b,求ab−4a+3b−2的值. 二十二、解答题 22.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长. 二十三、解答题 23.如图,已知,是的平分线. (1)若平分,求的度数; (2)若在的内部,且于,求证:平分; (3)在(2)的条件下,过点作,分别交、于点、,绕着点旋转,但与、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围. 二十四、解答题 24.问题情境 (1)如图1,已知,求的度数.佩佩同学的思路:过点作,进而,由平行线的性质来求,求得 ; 问题迁移 (2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合与相交于点,有一动点在边上运动,连接,记. ①如图2,当点在两点之间运动时,请直接写出与之间的数量关系; ②如图3,当点在两点之间运动时,与之间有何数量关系?请判断并说明理由. 二十五、解答题 25.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方. (1)l2与l3的位置关系是 ; (2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED= °,∠ADC= °; (3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG; (4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据同位角定义可得答案. 【详解】 解:A、∠1和∠2是同位角,故此选项不符合题意; B、∠1和∠2是同位角,故此选项不符合题意; C、∠1和∠2不是同位角,故此选项符合题意; D、∠1和∠2是同位角,故此选项不符合题意; 故选C. 【点睛】 本题考查同位角的概念.解题的关键是掌握同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角. 2.C 【分析】 根据平移变换的定义可得结论. 【详解】 解:由平移变换的定义可知,选项C可以看作由“基本图案”经过平移得到的. 故选:C. 【点睛】 本题考查利用平移设计图案,解题的关键是理解平移变换 解析:C 【分析】 根据平移变换的定义可得结论. 【详解】 解:由平移变换的定义可知,选项C可以看作由“基本图案”经过平移得到的. 故选:C. 【点睛】 本题考查利用平移设计图案,解题的关键是理解平移变换的定义,属于中考基础题. 3.C 【分析】 根据各象限内点的坐标特征对各选项分析判断即可得解. 【详解】 解:A.在第一象限,故本选项不合题意; B.在第四象限,故本选项不合题意; C.在第二象限,故本选项符合题意. D.在第三象限,故本选项不合题意; 故选:C. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 4.B 【分析】 根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可 【详解】 ①两条平行线被第三条直线所截,同位角相等,故①是真命题; ②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题; ③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题, ④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题, 故真命题是①②, 故选B 【点睛】 本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键. 5.B 【分析】 由平行线的性质和角平分线的定义,求出,,然后即可求出∠BOF的度数. 【详解】 解:∵, ∴,, ∵OE平分∠AOD, ∴, ∴; ∴; 故选:B. 【点睛】 本题考查了平行线的性质,角平分线的定义,以及角的和差关系,解题的关键是熟练掌握所学的知识,正确的求出角的度数. 6.D 【分析】 分别根据算术平方根的定义以及立方根的定义逐一判断即可. 【详解】 解:A、,故本选项不合题意; B、,故本选项不合题意; C、,故本选项不合题意; D、,故本选项符合题意; 故选:D. 【点睛】 本题主要考查算术平方根及立方根,熟练掌握求一个数的算术平方根及立方根是解题的关键. 7.A 【分析】 根据AB∥CD可得∠BOD=∠ABO=40°,利用平角得到∠COB=140°,再根据角平分线的定义得到∠BOE=70°,则③正确;利用OP⊥CD,AB∥CD,∠ABO=40°,可得∠POB=50°,∠BOF=20°,∠FOD=20°,进而可得OF平分∠BOD,则①正确;由∠EOB=70°,∠POB=50°,∠POE=20°,由∠BOF=∠POF-∠POB=20°,进而可得∠POE=∠BOF,则②正确;由②可知∠POB=50°,∠FOD=20°,则④不正确. 【详解】 ③∵AB∥CD, ∴∠BOD=∠ABO=40°, ∴∠COB=180°-40°=140°, 又∵OE平分∠BOC, ∴∠BOE=∠COB=×140°=70°, 故③正确; ①∵OP⊥CD, ∴∠POD=90°, 又∵AB∥CD, ∴∠BPO=90°, 又∵∠ABO=40°, ∴∠POB=90°-40°=50°, ∴∠BOF=∠POF-∠POB=70°-50°=20°, ∠FOD=40°-20°=20°, ∴OF平分∠BOD, 故①正确; ②∵∠EOB=70°,∠POB=90°-40°=50°, ∴∠POE=70°-50°=20°, 又∵∠BOF=∠POF-∠POB=70°-50°=20°, ∴∠POE=∠BOF, 故②正确; ④由①可知∠POB=90°-40°=50°, ∠FOD=40°-20°=20°, 故∠POB≠2∠DOF, 故④不正确. 故结论正确的是①②③, 故选A. 【点睛】 本题考查了平行线的性质,解题的关键是要注意将垂直、平行、角平分线的定义结合应用,弄清图中线段和角的关系,再进行解答. 8.C 【分析】 根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(−n−1,−n−1),A4n+2(−n−1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,− 解析:C 【分析】 根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(−n−1,−n−1),A4n+2(−n−1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,−n−1)(n为自然数)”,依此即可得出结论. 【详解】 解:观察发现:A1(−1,−1),A2(−1,1),A3(1,1),A4(1,−1),A5(−2,−2),A6(−2,2),A7(2,2),A8(2,−2),A9(−3,−3),…, ∴A4n+1(−n−1,−n−1),A4n+2(−n−1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,−n−1)(n为自然数), ∵2021=505×4+1, ∴A2021(−506,−506) 故选C. 【点睛】 本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(−n−1,−n−1),A4n+2(−n−1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,−n−1)(n为自然数)”. 九、填空题 9.= 【分析】 先根据算数平方根和立方根的定义进行化简,再根据实数大小的比较方法进行比较即可 【详解】 解:∵, ∴= 故答案为:= 【点睛】 本题考查的是实数的大小比较以及算数平方根、立方根,熟练掌 解析:= 【分析】 先根据算数平方根和立方根的定义进行化简,再根据实数大小的比较方法进行比较即可 【详解】 解:∵, ∴= 故答案为:= 【点睛】 本题考查的是实数的大小比较以及算数平方根、立方根,熟练掌握相关的知识是解答此题的关键. 十、填空题 10.【分析】 如图,设点P关于直线y=x-1的对称点是点Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ,先由直线y=x-1与两坐标轴的交点坐标确定△OBC是等腰直角三角形,然后根据平行线的性质 解析: 【分析】 如图,设点P关于直线y=x-1的对称点是点Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ,先由直线y=x-1与两坐标轴的交点坐标确定△OBC是等腰直角三角形,然后根据平行线的性质和轴对称的性质可得AP=AQ,∠PAQ=90°,由于点P坐标已知,故可求出点A的坐标,进而可求出点Q坐标. 【详解】 解:如图,设点P关于直线y=x-1的对称点是点Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ, 设直线y=x-1交x轴于点B,交y轴于点C,则点B(1,0)、点C(0,﹣1), ∴OB=OC=1,∴∠OBC=45°,∴∠PAB=45°, ∵P、Q关于直线y=x-1对称,∴AP=AQ,∠PAB=∠QAB=45°,∴∠PAQ=90°,∴AQ⊥x轴, ∵P(﹣2,3),且当y=3时,3=x﹣1,解得x=4,∴A(4,3),∴AD=3,PA=6=AQ,∴DQ=3,∴点Q的坐标是(4,﹣3). 故答案为:(4,﹣3). 【点睛】 本题以平面直角坐标系为载体,考查了直线上点的坐标特点、轴对称的性质、等腰直角三角形的性质等知识,熟练掌握一次函数图象上点的坐标特点和轴对称的性质是解题关键. 十一、填空题 11.50° 【分析】 分射线OC在∠AOB的内部和射线OC在∠AOB的外部,分别画出图形,结合根据角平分线定义求解. 【详解】 解:若射线OC在∠AOB的内部, ∵OE,OF分别是∠AOC和∠COB的 解析:50° 【分析】 分射线OC在∠AOB的内部和射线OC在∠AOB的外部,分别画出图形,结合根据角平分线定义求解. 【详解】 解:若射线OC在∠AOB的内部, ∵OE,OF分别是∠AOC和∠COB的角平分线, ∴∠EOC=∠AOC,∠FOC=∠BOC, ∴∠EOF=∠EOC+∠FOC=∠AOC+∠BOC=50°; 若射线OC在∠AOB的外部, ①射线OE,OF只有1个在∠AOB外面,如图, ∠EOF=∠FOC-∠COE=∠BOC-∠AOC=(∠BOC-∠AOC)=∠AOB=50°; ②射线OE,OF都在∠AOB外面,如图, ∠EOF=∠EOC+∠COF=∠AOC+∠BOC=(∠AOC+∠BOC)=(360°-∠AOB)=130°; 综上:∠EOF的度数为50°或130°, 故答案为:50°或130°. 【点睛】 本题考查的是角的计算,角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.注意分类思想的运用. 十二、填空题 12.36 【分析】 根据平行线的性质、折叠的性质即可解决. 【详解】 ∵AB∥CD,如图 ∴∠GEC=∠1=108゜ 由折叠的性质可得:∠2=∠FED ∵∠2+∠FED+∠GEC=180゜ ∴∠2= 解析:36 【分析】 根据平行线的性质、折叠的性质即可解决. 【详解】 ∵AB∥CD,如图 ∴∠GEC=∠1=108゜ 由折叠的性质可得:∠2=∠FED ∵∠2+∠FED+∠GEC=180゜ ∴∠2= 故答案为:36 【点睛】 本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质. 十三、填空题 13.68°; 112°. 【分析】 首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数. 【详解】 解:∵延折叠得到, 解析:68°; 112°. 【分析】 首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数. 【详解】 解:∵延折叠得到, ∴, ∵,, ∴(两直线平行,内错角相等), ∴, ∴, 又∵, ∴, ∴. 综上,. 故答案为:68°;112°. 【点睛】 本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键. 十四、填空题 14.; 【详解】 观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有, 又因为,,,,,所以第n个数的绝对值是, 所以第个数是,第n个数是,故答案为-82,. 点睛:本题主要考查了有理数的混合运 解析:; 【详解】 观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有, 又因为,,,,,所以第n个数的绝对值是, 所以第个数是,第n个数是,故答案为-82,. 点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律. 十五、填空题 15.(5,0)或(﹣5,0)或(0,5)或(0,﹣5) 【分析】 根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案. 【详解】 解 解析:(5,0)或(﹣5,0)或(0,5)或(0,﹣5) 【分析】 根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案. 【详解】 解:∵点A(0,0),点B和点A在同一坐标轴上, ∴点B在x轴上或在y轴上, ∵|AB|=5, ∴当点B在x轴上时,点B的坐标为(5,0)或(﹣5,0), 当点B在y轴上时,点B的坐标为(0,5)或(0,﹣5); 故答案为:(5,0)或(﹣5,0)或(0,5)或(0,﹣5). 【点睛】 本题考查了点的坐标,解决本题的关键是要注意坐标轴上到一点距离相等的点有两个,以防遗漏. 十六、填空题 16.(1,0) 【分析】 先求出凸形ABCDEFGHP的周长为20,得到2018÷20的余数为18,由此即可解决问题. 【详解】 解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G 解析:(1,0) 【分析】 先求出凸形ABCDEFGHP的周长为20,得到2018÷20的余数为18,由此即可解决问题. 【详解】 解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2), ∴“凸”形ABCDEFGHP的周长为20, 2018÷20的余数为18, ∴细线另一端所在位置的点在P处,坐标为(1,0). 故答案为:(1,0). 【点睛】 本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型. 十七、解答题 17.(1)5;(2)-2;(3)2 【解析】 【分析】 根据实数的性质进行化简,再求值. 【详解】 解:(1)==5; (2)-× =-×4=-2; (3)-++=-6+5+3=2. 【点睛】 此题主要 解析:(1)5;(2)-2;(3)2 【解析】 【分析】 根据实数的性质进行化简,再求值. 【详解】 解:(1)==5; (2)-× =-×4=-2; (3)-++=-6+5+3=2. 【点睛】 此题主要考查实数的计算,解题的关键是熟知实数的性质. 十八、解答题 18.(1)或者;(2) 【分析】 (1)根据求一个数的平方根解方程 (2)根据求一个数的立方根解方程 【详解】 (1)2x2﹣8=0, , , 解得或者; (2)(x﹣1)3=﹣4, , , 解得. 【 解析:(1)或者;(2) 【分析】 (1)根据求一个数的平方根解方程 (2)根据求一个数的立方根解方程 【详解】 (1)2x2﹣8=0, , , 解得或者; (2)(x﹣1)3=﹣4, , , 解得. 【点睛】 本题考查了求一个数的平方根和立方根,掌握平方根和立方根的概念是解题的关键. 十九、解答题 19.,90;,同位角相等,两直线平行;已知;,内错角相等,两直线平行;;两直线平行,同位角相等. 【分析】 根据平行线的判定定理得到AB∥CD∥EF,再由平行线的性质证得结论,据此填空即可. 【详解】 解析:,90;,同位角相等,两直线平行;已知;,内错角相等,两直线平行;;两直线平行,同位角相等. 【分析】 根据平行线的判定定理得到AB∥CD∥EF,再由平行线的性质证得结论,据此填空即可. 【详解】 证明:∵(已知), ∴(垂直定义), ∴(同位角相等,两直线平行), ∵(已知), ∴(内错角相等,两直线平行), ∴(平行于同一直线的两条直线互相平行), ∴(两直线平行,同位角相等). 故答案为:CDF,90;AB,CD,同位角相等,两直线平行;已知;AB,EF,内错角相等,两直线平行;EF;两直线平行,同位角相等. 【点睛】 本题考查了平行线的判定与性质,熟练掌握性质及判定定理是解题的关键. 二十、解答题 20.(1)见详解;(2)图形见详解,(-4,-2)、(4,2)、(0,3);(3)12. 【分析】 (1)根据坐标在坐标图中描点连线即可; (2)按照平移方式描点连线并写出坐标点; (3)根据坐标点利用 解析:(1)见详解;(2)图形见详解,(-4,-2)、(4,2)、(0,3);(3)12. 【分析】 (1)根据坐标在坐标图中描点连线即可; (2)按照平移方式描点连线并写出坐标点; (3)根据坐标点利用割补法求面积即可. 【详解】 解:(1)如图: (2)平移后如图: 平移后坐标分别为:(-4,-2)、(4,2)、(0,3); (3)的面积: . 【点睛】 此题考查坐标系中坐标的平移和坐标图形的面积,难度一般,掌握平移的性质是关键. 二十一、解答题 21.-3. 【解析】 【分析】 根据题意可以分别求得a、b的值,然后代入ab-4a+3b-2,即可解答本题. 【详解】 ∵9+ 与9−的小数部分分别为a,b, ∴a=9+−12=−3,b=9−−5=4− 解析:-3. 【解析】 【分析】 根据题意可以分别求得a、b的值,然后代入ab-4a+3b-2,即可解答本题. 【详解】 ∵9+ 与9−的小数部分分别为a,b, ∴a=9+−12=−3,b=9−−5=4−, ∴ab−4a+3b−2=(−3)(4−)−4(−3)+3(4-)-2=7-13-12-4+12+12-3-2=-3. 【点睛】 此题考查估算无理数的大小,解题关键在于分别求得a、b的值. 二十二、解答题 22.正方形纸板的边长是18厘米 【分析】 根据正方形的面积公式进行解答. 【详解】 解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得: , ∴, 取正值,可得, 解析:正方形纸板的边长是18厘米 【分析】 根据正方形的面积公式进行解答. 【详解】 解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得: , ∴, 取正值,可得, ∴答:正方形纸板的边长是18厘米. 【点评】 本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式. 二十三、解答题 23.(1)90°;(2)见解析;(3)不变,180° 【分析】 (1)根据邻补角的定义及角平分线的定义即可得解; (2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解; (3),过,分别作,,根据 解析:(1)90°;(2)见解析;(3)不变,180° 【分析】 (1)根据邻补角的定义及角平分线的定义即可得解; (2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解; (3),过,分别作,,根据平行线的性质及平角的定义即可得解. 【详解】 解(1),分别平分和, ,, , ; (2), ,即, , 是的平分线, , , 又, , 又在的内部, 平分; (3)如图,不发生变化,,过,分别作,, 则有, ,,,, ,, , ,, , , 不变. 【点睛】 此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键. 二十四、解答题 24.(1)80;(2)①;② 【分析】 (1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数; (2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系; 解析:(1)80;(2)①;② 【分析】 (1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数; (2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系; ②过P作PQ∥DF,依据平行线的性质可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ-∠EPQ=∠β-∠α. 【详解】 解:(1)过点P作PG∥AB,则PG∥CD, 由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°, 又∵∠PBA=125°,∠PCD=155°, ∴∠BPC=360°-125°-155°=80°, 故答案为:80; (2)①如图2, 过点P作FD的平行线PQ, 则DF∥PQ∥AC, ∴∠α=∠EPQ,∠β=∠APQ, ∴∠APE=∠EPQ+∠APQ=∠α+∠β, ∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β; ②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β-∠α;理由: 过P作PQ∥DF, ∵DF∥CG, ∴PQ∥CG, ∴∠β=∠QPA,∠α=∠QPE, ∴∠APE=∠APQ-∠EPQ=∠β-∠α. 【点睛】 本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论. 二十五、解答题 25.(1)互相平行;(2)35,20;(3)见解析;(4)不变, 【分析】 (1)根据平行线的判定定理即可得到结论; (2)根据角平分线的定义和平行线的性质即可得到结论; (3)根据角平分线的定义和平行 解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变, 【分析】 (1)根据平行线的判定定理即可得到结论; (2)根据角平分线的定义和平行线的性质即可得到结论; (3)根据角平分线的定义和平行线的性质即可得到结论; (4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论. 【详解】 解:(1)直线l2⊥l1,l3⊥l1, ∴l2∥l3, 即l2与l3的位置关系是互相平行, 故答案为:互相平行; (2)∵CE平分∠BCD, ∴∠BCE=∠DCE=BCD, ∵∠BCD=70°, ∴∠DCE=35°, ∵l2∥l3, ∴∠CED=∠DCE=35°, ∵l2⊥l1, ∴∠CAD=90°, ∴∠ADC=90°﹣70°=20°; 故答案为:35,20; (3)∵CF平分∠BCD, ∴∠BCF=∠DCF, ∵l2⊥l1, ∴∠CAD=90°, ∴∠BCF+∠AGC=90°, ∵CD⊥BD, ∴∠DCF+∠CFD=90°, ∴∠AGC=∠CFD, ∵∠AGC=∠DGF, ∴∠DGF=∠DFG; (4)∠N:∠BCD的值不会变化,等于;理由如下: ∵l2∥l3, ∴∠BED=∠EBH, ∵∠DBE=∠DEB, ∴∠DBE=∠EBH, ∴∠DBH=2∠DBE, ∵∠BCD+∠BDC=∠DBH, ∴∠BCD+∠BDC=2∠DBE, ∵∠N+∠BDN=∠DBE, ∴∠BCD+∠BDC=2∠N+2∠BDN, ∵DN平分∠BDC, ∴∠BDC=2∠BDN, ∴∠BCD=2∠N, ∴∠N:∠BCD=. 【点睛】 本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年人教版 中学 年级 下册 数学 期末 测试 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文