![点击分享此内容可以赚币 分享](/master/images/share_but.png)
相交线和平行线重难点.doc
《相交线和平行线重难点.doc》由会员分享,可在线阅读,更多相关《相交线和平行线重难点.doc(13页珍藏版)》请在咨信网上搜索。
整理 七年级数学第五章相交线和平行线重难点 5.1相交线 [教学重点与难点] 重点:对顶角的概念.对顶角性质与应用 难点:理解对顶角相等的性质的探索 [教学设计]一.创设情境 激发好奇 观察剪刀剪布的过程,引入两条相交直线所成的角 在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。 教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题: 剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化? (学生观察、思考、回答),得出: 握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大. 教师点评:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征. 二.认识邻补角和对顶角,探索对顶角性质 1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配 共能组成几对角?根据不同的位置怎么将它们分类? 学生思考并在小组内交流,全班交流。 当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用 几何语言准确表达 ; 有公共的顶点O,而且的两边分别是两边的反向延长线 2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系? (学生得出结论:相邻关系的两个角互补,对顶的两个角相等) 3学生根据观察和度量完成下表: 两条直线相交 所形成的角 分类 位置关系 数量关系 教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗? 4.概括形成邻补角、对顶角概念和对顶角的性质 三.初步应用 练习: 下列说法对不对 (1) 邻补角可以看成是平角被过它顶点的一条射线分成的两个角 (2) 邻补角是互补的两个角,互补的两个角是邻补角 (3) 对顶角相等,相等的两个角是对顶角 学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象 四.巩固运用例题:如图,直线a,b相交,,求的度数。 [巩固练习](教科书5页练习)已知,如图,,求:的度数 [小结] 邻补角、对顶角. [作业]课本P9-1,2P10-7,8 [备选题] 一判断题: 如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角( ) 两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补( ) 二填空题 1如图,直线AB、CD、EF相交于点O,的对顶角是 ,的邻补角是 若:=2:3,,则= 2如图,直线AB、CD相交于点O 则 5.1.2 垂线 [教学重点与难点] 1.教学重点:垂线的定义及性质。 2.教学难点:垂线的画法。 [教学过程设计] 一. 复习提问: 1、 叙述邻补角及对顶角的定义。 2、 对顶角有怎样的性质。 二.新课: 引言: 前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。 (一)垂线的定义 当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 如图,直线AB、CD互相垂直,记作,垂足为O。 请同学举出日常生活中,两条直线互相垂直的实例。 注意: 1、 如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。 2、掌握如下的推理过程:(如上图) 反之, (二)垂线的画法 探究: 1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条? 2、经过直线l上一点A画l的垂线,这样的垂线能画出几条? 3、经过直线l外一点B画l的垂线,这样的垂线能画出几条? 画法: 让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。 注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。 (三)垂线的性质 经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即: 性质1 过一点有且只有一条直线与已知直线垂直。 练习:教材第7页 探究: 如图,连接直线l外一点P与直线l上各点O, A,B,C,……,其中(我们称PO为点P到直线 l的垂线段)。比较线段PO、PA、PB、PC……的长短,这些线段中,哪一条最短? 性质2 连接直线外一点与直线上各点的所有线段中,垂线段最短。 简单说成: 垂线段最短。 (四)点到直线的距离 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 如上图,PO的长度叫做点 P到直线l的距离。 例1 (1)AB与AC互相垂直; (2)AD与AC互相垂直; (3)点C到AB的垂线段是线段AB; (4)点A到BC的距离是线段AD; (5)线段AB的长度是点B到AC的距离; (6)线段AB是点B到AC的距离。 其中正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个 解:A 例2 如图,直线AB,CD相交于点O, 解:略 例3 如图,一辆汽车在直线形公路AB上由A 向B行驶,M,N分别是位于公路两侧的村庄, 设汽车行驶到点P位置时,距离村庄M最近, 行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。 练习: 1. 2.教材第9页3、4 教材第10页9、10、11、12 小结: 1. 要掌握好垂线、垂线段、点到直线的距离这几个概念; 2. 要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形; 3. 垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。 作业:教材第9页5、6. 1.如图,AC⊥BC,C为垂足,CD⊥AB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C到AB的距离是_______,点A到BC的距离是________,点B到CD 的距离是_____,A、B两点的距离是_________. 2.如图,在线段AB、AC、AD、AE、AF中AD最短.小明说垂线段最短, 因此线段AD的长是点A到BF的距离,对小明的说法,你认为_________________. 3.如图,∠AOB的边OA上有一点P, (1)过点P做OA的垂线,交OB于点C (2)过点P做OB的垂线,垂足是D (3)判断PC、PD、OC的大小关系,用小于号连接。 5.1.3三线八角 教学重点、难点三线八角的意义是重点,能在各种变式的图形中找出这三类角既是重点,也是难点 教学过程设计 一、从学生原有的认识结构提出问题 教师提问: 1两条直线相交后产生了几个角?每两个角之间的关系是什么?(除平角外,产生四个角,对顶角相等,邻补角互补) 2三条直线之间也可以有什么样的位置关系?(可以让学生用手中的铅笔表示直线)在学生回答的基础上,教师打出投影,(四种情况,如图2—30) (1)三条直线都没有交点 (2)两条直线平行被第三条直线所截(3)三条直线两两相交,有三个交点(4)三条直线交于一点 上节课是对相交的两条直线所形成的四个角进行研究,今天我们就对三条直线相交后形成的八个角如图2—30(3)进行研究,简称为:三线八角(板书课题) 二、三线八角的意义 1教师用谈话方式提出问题:在图2—31中,l1和l3(或l2和l3)所形成的四个角是有公共顶点的,而每两个角之间的关系从位置来分,可分为两类:对顶角和邻补角,而上面四个角和下面四个角是没有公共顶点的,那么上面的一个与下面的一个又有什么样的位置关系呢?这就是下面所要研究的问题 2分析特点,形成概念 (1)同位角的意义先引导学生分析∠1和∠5有什么共同特点?在学生回答的基础上,教师归纳总结出共同特点是:均在直线l3的一侧,且分别在l1和l2的上方,像这样的两个角叫作同位角请同学们指出:图中还有同位角吗?(答:∠2与∠6,∠4与∠8,∠3与∠7) (2)内错角的意义 (3)同旁内角的意义 (这两种角的教法类似同位角,如果学生要问∠1和∠6,∠1和∠7是什么关系,可以简单说一下,不问也不说) 3变式练习,揭露概念本质属性 (1)如图2—32,说出以下各对角是哪两条直线被第三条直线所截而得到的?∠1与∠2,∠2与∠4,∠2与∠3 答:∠1与∠2是l2、l3被l1所截而得到的一对同旁内角。∠2与∠4是直线l2、l1被l3所截而得到的同旁内角。∠2与∠3是l2、l1被l3所截而得到的同位角 (2)如图2—33,找出下列图中的同位角,内错角和同旁内角 答:同位角有:∠2与∠3,∠4与∠7,∠4与∠8;内错角有∠1与∠3,∠6与∠8,∠6与∠7;同旁内角有∠3与∠8,∠1与∠4 (3)如图2—34,指出图中∠1与∠2,∠3与∠4的关系 答:∠1与∠2是内错角,∠3与∠4也是内错角 4正确识别这三类角应注意的问题 (1)识别这三类角首先要抓住“三条线”,即:哪两条线被哪一条直线所截 (2)抓住“截线”,截线的同侧有哪些角、从中找出同位角和同旁内角,在截线的两侧找内错角 三、综合应用,课堂练习 1找出如图2—35中的对顶角和邻补角 答:对顶角有四对:它们是∠1与∠3,∠2与∠4,∠5与∠6,∠7与∠8; 邻补角有∠1与∠2,∠2与∠3,∠3与∠4,∠4与∠1,∠5与∠8,∠8与∠6,∠6与∠7,∠7与∠5 (还可以找出图2—35中相等的角,即四对对顶角) 2如图2—36,如果∠1=∠2=∠7,那么还有哪些角是相等的 答:∠1与∠4是邻补角,∠2与∠5是邻补角,∠3与∠6是邻补角∠7与∠8是邻补角,因为∠1=∠2=∠7,∠2=∠3(对顶角相等),所以∠1=∠2=∠3=∠7,则∠4=∠5=∠6=∠8(等角的补角相等) 3如图2—37中,若∠1=∠2,证明:∠3与∠4是互补的角 证明:因为∠1=∠3,(对顶角相等) ∠1=∠2,(已知) 所以∠2=∠3(等量代换) 又因为∠2+∠4=180° 所以∠3+∠4=180°(等量代换) 即∠3与∠4是互补的角 此题在证明的分析中,可以用以下逻辑思考的过程,即“执果索因”法 若要证∠3与∠4互补,即证∠3+∠4=180°,但∠4与∠2的和为180°,因此需证∠3=∠2,由于∠3=∠1(对顶角相等),∠1=∠2是已知,所以∠2=∠3而写出证明过程时,要从先证∠2=∠3出发,最后得到∠3+∠4=180° 以上的几何证明题的思考过程是一种常见的方法,它是从要证明结果的出发,探索要得出这个结果时,应具备的条件,只要将条件准备充足,就能得到要求的结果 四、小结 1教师先提出以下问题: (1)在所学的知识中,直线的位置关系是怎样形成和发展的? (2)学了哪些相互关系的角? (3)寻找同位角、内错角和同旁内角关键应准确找到什么? 2在学生回答的基础上,教师指出, (1)(投影)直线位置关系所对应的基本图形结构如图2—38 (2)学过六咱相互关系的角 ①互为余角,②互为补角(邻补角是特殊情形),③对顶角,④同位角,⑤内错角,⑥同旁内角 (3)寻找同位角,同旁内角关键在于准确找到三线(两线被第三线所截) 五、作业 1选书中习题 2以下六个题供选用 (1)指出图2—39(1)中, ①∠2和∠5的关系是_________; ②∠3和∠5的关系是_________; ③∠2和____是直线____、______被_____所截,形成的同位角; ④∠1和∠4呢?∠3和∠4呢?∠6和∠7是对顶角吗? (2)指出图中2—39(2)中, ①∠C和∠D的关系: ②∠B和∠GEF的关系; ③∠A和∠D的关系; ④∠AGE和∠BGE的关系; ⑤∠CFD和∠AFB的关系 (3)如图2—39(3),用数学标出的八个角中 ①同位角有________________;②内错角有________________;③同旁内角有_______________; (4)如图2—39(4),若∠1=∠2,可推出∠1与∠ADE______________;∠1与∠BDE__________________ (5)判断正误:如图2—39(5),①∠1和∠B是同位角;②∠2和∠B是同位角;③∠2和∠C是内错角;④∠EAD和∠C是内错角; (6)如图2—39(6),①∠1和∠4是同位角;②∠1和∠5是同位角;③∠2和∠7是内错角;④∠1和∠4是同旁内角; (7)如图,图中的内错角的对数是( ) A. 2对 B. 3对 C. 4对 D. 5对 平行线的判定 重点、难点: 重点:平行线的三种识别方法,运用这三种方法判断两直线平行。 难点:运用平行线的识别方法进行简单的推理是本节课的教学难点。 教学过程: 一、复习引入: 1.如图,已知四条直线AB、AC、DE、FG (1)∠1与∠2是直线_____和直线____被直线______所截而成的________角. (2) ∠3与∠2是直线_____和直线____被直线______所截而成的________角. (3) ∠5与∠6是直线_____和直线____被直线______所截而成的________角. (4) ∠4与∠7是直线_____和直线____被直线______所截而成的________角. (5) ∠8与∠2是直线_____和直线____被直线______所截而成的________角. 2.下面说法中正确的是 ( ). (1) 在同一平面内,两条直线的位置关系有相交、平行、垂直三种 (2) 在同一平面内, 不垂直的两条直线必平行 (3) 在同一平面内, 不平行的两条直线必垂直 (4) 在同一平面内,不相交的两条直线一定不垂直 3.如果 a∥ b ,b ∥c ,那么_______,理由是_____________________. 导言: 上节课我们学习了平行线的意义, 在同一平面内,两条直线的位置关系,以及平行公理, 在此基础上,我们再来研究直线平行的条件. 请同学们利用直尺、三角尺画直线b,使它经过P点,且平行于直线a。 请同学们思考这样的问题,与是什么位置关系的角?在三角板移动的过程中,与是否产生变化? 二、 新课: 1.同位角相等,两直线平行。 (1)提出新问题:如果只有a、b两条直线,如何判断它们是否平行?由于前面已经复习了平行方法的推论,因为估计学生会说“再作一条直线c,让c//a,再看c是否平行于b就行了”。而后再以“如何作c,使它与a平行?作出c后,又如何判断c是否与b平行”追问,使学生意识到刚才的回答似是而非、需要找新的方法后,进一步启发学生,能否由平行线的画法找到判断两直线平行的条件,并让学生过已知直线a外一点p画a的平行线b,而后作以下演示: (2)进行观察比较,得出初步结论 由刚才的演示发现:画平行线仍借助了第三条直线,但是要用与a、b都相交的第三线,根据“三线八角”的名称,在画平行线的过程中,实际上是保证了同位的两个角都是45°或60°,……因此,得出“猜想”:如果同位角相等,那么两直线平行。 2.内错角相等,两直线平行。 例如,如图,直线a、b被直线l所截,如果∠1=∠2,那么a∥b。 在图中,由于∠2=∠3,因此,如果∠1=∠3,那么就有∠1=∠2,于是可得a∥b。这就是说:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单地说,就是内错角相等,两直线平行。 3. 同旁内角互补,两直线平行。 例1 如图,直线a、b被直线l所截,已知∠1=115°,∠2=115°,直线a、b平行吗?为什么? 平行线的识别方法: 1 同位角相等,两直线平行。 2 内错角相等,两直线平行。 3 同旁内角互补,两直线平行。 4.例题讲解: 例2 如图,在四边形ABCD中,已知∠B=60°,∠C=120°,AB与CD平行吗?AD与BC平行吗? 解 本题中直线AB与CD平行,但根据题目的已知条件,无法判定AD与BC平行。由已知条件可得∠B+∠C = 180°。根据同旁内角互补,两直线平行,因此AB∥CD。 三、 练习:P171至P172第1、2、3、4. 四、 小结: 本节课学习了平行线的识别方法,即同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。希望同学们能运用这些知识进行判断两直线是否平行,并能把判断过程正确书写出来。 五、作业: 课堂练习: 1.下列判断正确的是 ( ). A. 因为∠1和∠2是同旁内角,所以∠1+∠2=180° B. 因为∠1和∠2是内错角,所以∠1=∠2 C. 因为∠1和∠2是同位角,所以∠1=∠2 因为∠1和∠2是补角,所以∠1+∠2=180° 2.如图:(1) 已知∠1=65°, ∠2=65°,那么DE与 BC平行吗?为什么? (2)如果∠1=65°, ∠3=115°,那么AB与DF平行吗?为什么? (3) )如果∠4=60°, ∠2=65°,那么DE与BC平行吗?为什么? 4.如图所示: (1)如果已知∠1=∠3,则可判定AB∥______,其理由是__________________; (2)如果已知∠4+∠5=180°,则可判定___________∥______,其理由是__________________; (3)如果已知∠1+∠2=180°,则可判定___________∥______,其理由是__________________; (4)如果已知∠5+∠2=180°那么根据对顶角相等有∠2=__, 因此可知∠4+∠5= ____,所以可确定 ___________∥______,其理由是__________________; (5)如果已知∠1=∠6,则可判定_____∥______,其理由是__________________. 第4题图 第5题图 5.如图,(1)如果∠1=________,那么DE∥ AC;(2) 如果∠1=________,那么EF∥ BC; (3)如果∠FED+ ∠________=180°,那么AC∥ED;(4) 如果∠2+ ∠________=180°,那么AB∥DF. 平行线的性质 重点:平行线的三个性质. 难点:平行线的三个性质和怎样区分性质和判定. 关键:能结合图形用符号语言表示平行线的三条性质. 教学过程 一、复习 1.如何用同位角、内错角、同旁内角来判定两条直线是否平行? 2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗? 二、新授 1.实验观察,发现平行线第一个性质 请学生画出下图进行实验观察. 设l1∥l2,l3与它们相交,请度量∠1和∠2的大小,你能发现什么关系? 请同学们再作出直线l4,再度量一下∠3和∠4的大小,你还能发现它们有什么关系? 平行线性质1(公理):两直线平行,同位角相等. 2.演绎推理,发现平行线的其它性质 (1)已知:如图,直线AB,CD被直线EF所截,AB∥CD. 求证:∠1= ∠2. (2)已知:如图2-64,直线AB,CD被直线EF所截,AB∥CD. 求证:∠1+∠2=180°. 在此基础上指出:“平行线的性质2 (定理)”和“平行线的性质3 (定理)”. 3.平行线判定与性质的区别与联系 投影:将判定与性质各三条全部打出. (1)性质:根据两条直线平行,去证角的相等或互补. (2)判定:根据两角相等或互补,去证两条直线平行. 联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的. 三、例题 例2如图所示.已知:AD∥BC,∠AEF=∠B,求证:AD∥EF. 分析:(执果索因)从图直观分析,欲证AD∥EF,只需∠A+∠AEF=180°, (由因求果)因为AD∥BC,所以∠A+∠B=180°,又∠B=∠AEF,所以∠A+∠AEF=180°成立.于是得证. 证明:因为 AD∥BC,(已知) 所以 ∠A+∠B=180°.(两直线平行,同旁内角互补) 因为 ∠AEF=∠B,(已知) 所以 ∠A+∠AEF=180°,(等量代换) 所以 AD∥EF.(同旁内角互补,两条直线平行) 四、练习: 1.如图所示,已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD. 求证:∠1+∠2=90°. 证明:因为 AB∥CD, 所以 ∠BAC+∠ACD=180°, 又因为 AE平分∠BAC,CE平分∠ACD, 所以,, 故. 即 ∠1+∠2=90°. (理由略) 2.如图所示,已知:∠1=∠2, 求证:∠3+∠4=180°. 分析:(让学生自己分析) 证明:(学生板书) 小结 我们是如何得到平行线的性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理.从因果关系和所起的作用来看性质定理和判定定理的区别与联系. 作业: 1.如图,AB∥CD,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据? 2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠1、∠3、∠C、∠BAC+∠B+∠C各是多少度,为什么? 3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由. 补充练习: 1.已知:如图,AB ∥CD,EF分别交 AB、CD于 E、F,EG平分∠ AEF ,FH平分∠ EFD EG与 FH平行吗?为什么? 2.已知:如图,E、F分别是AB和CD上的点,DE、AF分别交BC于G、H,A=D,1=2,求证:B=C。 3.已知:如图,,DE平分,BF平分,且。 求证: 4.已知:如图,。 求证: .- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相交 平行线 难点
![提示](https://www.zixin.com.cn/images/bang_tan.gif)
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文