勾股定理应用(含解答).doc
《勾股定理应用(含解答).doc》由会员分享,可在线阅读,更多相关《勾股定理应用(含解答).doc(10页珍藏版)》请在咨信网上搜索。
勾股定理 点击一:勾股定理 勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2 = c2. 即直角三角形两直角的平方和等于斜边的平方. 因此,在运用勾股定理计算三角形的边长时,要注意如下三点: (1)注意勾股定理的使用条件:只对直角三角形适用,而不适用于锐角三角形和钝角三角形; (2)注意分清斜边和直角边,避免盲目代入公式致错; (3)注意勾股定理公式的变形:在直角三角形中,已知任意两边,可求第三边长. 即c2= a2+b2,a2= c2-b2,b2= c2-a2. 点击二:学会用拼图法验证勾股定理 拼图法验证勾股定理的基本思想是:借助于图形的面积来验证,依据是对图形经过割补、拼接后面积不变的原理. 如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形. 请读者证明. a b c (图1) (1) (2) (3) 如上图示,在图(1)中,利用图1边长为a,b,c的四个直角三角形拼成的一个以c为边长的正方形,则图2(1)中的小正方形的边长为(b-a),面积为(b-a)2,四个直角三角形的面积为4×ab = 2ab. 由图(1)可知,大正方形的面积 =四个直角三角形的面积+小正方形的的面积,即c2 =(b-a)2+2ab,则a2+b2 = c2问题得证. 请同学们自己证明图(2)、(3). 点击三:在数轴上表示无理数 将在数轴上表示无理数的问题转化为化长为无理数的线段长问题.第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中一条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点. 点击四:直角三角形边与面积的关系及应用 直角三角形有许多属性,除边与边、边与角、角与角的关系外,边与面积也有内的联系.设、为直角三角形的两条直角边,为斜边,为面积,于是有: ,,, 所以.即. 也就是说,直角三角形的面积等于两直角边和的平方与斜边平方差的四分之一.利用该公式来计算直角三角形的有关面积、周长、斜边上的高等问题,显得十分简便. 点击五:熟练掌握勾股定理的各种表达形式. 如图2,在Rt中,0,∠A、∠B、∠C的对边分别为a、b、c,则c2=a2+b2, a2=c2-b2 , b2=c2-a2, 点击六:勾股定理的应用 (1)已知直角三角形的两条边,求第三边; (2)已知直角三角形的一边,求另两条边的关系; (3)用于推导线段平方关系的问题等. (4)用勾股定理,在数轴上作出表示、、的点,即作出长为的线段. 类型之一:勾股定理 例1:如果直角三角形的斜边与一条直角边的长分别是13cm和5cm,那么这个直角三角形的面积是 cm2. 解析:欲求直角三角形的面积,已知一直角三角形的斜边与一条直角边的长,则求得另一直角边的长即可. 根据勾股定理公式的变形,可求得. A B 图3⑴ 解:由勾股定理,得 132-52=144,所以另一条直角边的长为12. 所以这个直角三角形的面积是×12×5 = 30(cm2). 例2: 如图3(1),一只蚂蚁沿棱长为a的正方体表面从顶点A爬到 顶点B,则它走过的最短路程为( ) A. B. C.3a D. 解析:本题显然与例2属同种类型,思路相同.但正方体的 A B C 图3⑵ 各棱长相等,因此只有一种展开图. 解:将正方体侧面展开得,如图3⑵. 由图知AC=2a,BC=a. 根据勾股定理得 故选D. 类型之二:在数轴上表示无理数 例3:在数轴上作出表示的点. 解析:根据在数轴上表示无理数的方法,需先把视为直角三角形斜边的长,再确定出两直角边的长度后即可在数轴上作出. 解:以为斜边的直角三角形的两直角边可以是3和1,所以需在数轴上找出两段分别长为3和1的线段,如图所示,然后即可确定斜边长,再用圆规在数轴上作出长为的线段即可. 下面的问题是关于数学大会会标设计与勾股定理知识的综合运用 例5:阅读材料,第七届国际数学教育大会的会徽.它的主题图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA1A2是等腰三角形,且OA1=A1A2=A2A3=A3A4=……=A8A9=1,请你先把图中其它8条线段的长计算出来,填在下面的表格中,然后再计算这8条线段的长的乘积. OA1 OA2 OA3 OA4 OA5 OA6 OA7 OA8 解:;;;;;;;;这8条线段的长的乘积是 例6:2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么的值为( ) (A)13 (B)19 (C)25 (D)169 解析:由勾股定理,结合题意得a2+b2=13 ①. 由题意,得 (b-a)2=1 ②. 由②,得 a2+b2-2ab =1 ③. 把①代入③,得 13-2ab=1 ∴ 2ab=12. ∴ (a+b)2 = a2+b2+2ab =13+12=25. 因此,选C. 说明:2002年8月20日~28日,我国在首都北京成功举办了第24届国际数学家大会. 这是在发展中国家举行的第一次国际数学家大会,也是多年来在我国举行的最重要的一次国际会议. 它标志着我国数学已度过了六百多年的低谷,进入了数学大国的行列,并向着新世纪成为数学强国迈开了步伐. 这次大会的会标如下图所示: 它取材于我国三国时期(公元3世纪)赵爽所著的《勾股圆方图注》. 类型之四:勾股定理的应用 (一)求边长 例1: 已知:如图,在△ABC中,∠ACB=90º,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长. . (二)求面积 例2:(1)观察图形思考并回答问题(图中每个小方格代表一个单位面积) ①观察图1-1. 正方形A中含有__________个小方格, 即A的面积是__________个单位面积; 正方形B中含有__________个小方格, 即B的面积是__________个单位面积; 正方形C中含有__________个小方格,即C的面积是__________个单位面积. ②在图1-2中,正方形A,B,C中各含有多少个小方格?它们的面积各是多少? ③你能发现图1-1中三个正方形A,B,C的面积之间有什么关系吗?图1-2中的呢? (2)做一做: ①观察图1-3、图1-4,并填写下表: ②三个正方形A,B,C的面积之间有什么关系? (3)议一议: ①你能用三角形的边长表示正方形的面积吗? ②你能发现直角三角形三边长度之间存在什么关系吗? ③分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度,②中的规律对这个三角形仍然成立吗? 解析: 注意到图中每个小方格代表一个单位面积,通过观察图形不能得到答案: ①9 9 9 9 18 18; ②A中含4个,B中含4个,C中含8个,面积分别为4,4,8; ③A与B的面积之和等于C,图1-2中也是A与B的面积之和等于C. (2)①答案: ②答案:. (3)答案:①设直角三角形三边长分别为a,b,c(如图) ; ②, . ③成立. (三)作线段 例3 作长为、、的线段. 解析: 作法:1.作直角边长为1(单位长)的等腰直角三角形ACB(如图); 2.以斜边AB为一直角边,作另一直角边长为1的直角三角形ABB1; 3.顺次这样作下去,最后作到直角三角形AB2B3,这时斜边AB、AB1、AB2、AB3的长度就是、、、. 证明:根据勾股定理,在Rt△ACB中, ∵AB>0, ∴AB=. 其他同理可证. 点评 由勾股定理,直角边长为1的等腰直角三角形,斜边长就等于,直角边长为、1的直角三角形的斜边长就是.类似地也可作出……;将上图无限地向两个方向画下去就可得到“勾股树”,请你试试看. (四)证明平方关系 例4: 已知:如图,在中,,是边上的中线,于,求证:. 解析: 根据勾股定理,在中,, 在中,,在中, , ∴. 又∵,∴. 点评 证明线段的平方差或和,常常要考虑到运用勾股定理;若无直角三角形,则可通过作垂线的方法,构成直角三角形,以便为运用勾股定理创造必要的条件. (五)实际应用 例5: 台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30º方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响. (1)该城市是否会受到这交台风的影响?请说明理由. (2)若会受到台风影响,那么台风影响该城市持续时间有多少? (3)该城市受到台风影响的最大风力为几级? 解析 (1)由点A作AD⊥BC于D, 则AD就为城市A距台风中心的最短距离 在Rt△ABD中,∠B=30º,AB=220, ∴AD=AB=110. 由题意知,当A点距台风(12-4)20=160(千米)时,将会受到台风影响. 故该城市会受到这次台风的影响. (2)由题意知,当A点距台风中心不超过60千米时, 将会受到台风的影响,则AE=AF=160.当台风中心从E到F处时, 该城市都会受到这次台风的影响. 由勾股定理得 ∴EF=2DE=60. 因为这次台风中心以15千米/时的速度移动, 所以这次台风影响该城市的持续时间为小时. (3)当台风中心位于D处时,A城市所受这次台风的风力最大,其最大风力为12-=6.5级. 3、通过活动,使学生养成博览群书的好习惯。 B比率分析法和比较分析法不能测算出各因素的影响程度。√ C采用约当产量比例法,分配原材料费用与分配加工费用所用的完工率都是一致的。X C采用直接分配法分配辅助生产费用时,应考虑各辅助生产车间之间相互提供产品或劳务的情况。错 C产品的实际生产成本包括废品损失和停工损失。√ C成本报表是对外报告的会计报表。× C成本分析的首要程序是发现问题、分析原因。× C成本会计的对象是指成本核算。× C成本计算的辅助方法一般应与基本方法结合使用而不单独使用。√ C成本计算方法中的最基本的方法是分步法。X D当车间生产多种产品时,“废品损失”、“停工损失”的借方余额,月末均直接记入该产品的产品成本 中。× D定额法是为了简化成本计算而采用的一种成本计算方法。× F“废品损失”账户月末没有余额。√ F废品损失是指在生产过程中发现和入库后发现的不可修复废品的生产成本和可修复废品的修复费用。X F分步法的一个重要特点是各步骤之间要进行成本结转。(√) G各月末在产品数量变化不大的产品,可不计算月末在产品成本。错 G工资费用就是成本项目。(×) G归集在基本生产车间的制造费用最后均应分配计入产品成本中。对 J计算计时工资费用,应以考勤记录中的工作时间记录为依据。(√) J简化的分批法就是不计算在产品成本的分批法。(×) J简化分批法是不分批计算在产品成本的方法。对 J加班加点工资既可能是直接计人费用,又可能是间接计人费用。√ J接生产工艺过程的特点,工业企业的生产可分为大量生产、成批生产和单件生产三种,X K可修复废品是指技术上可以修复使用的废品。错 K可修复废品是指经过修理可以使用,而不管修复费用在经济上是否合算的废品。X P品种法只适用于大量大批的单步骤生产的企业。× Q企业的制造费用一定要通过“制造费用”科目核算。X Q企业职工的医药费、医务部门、职工浴室等部门职工的工资,均应通过“应付工资”科目核算。X S生产车间耗用的材料,全部计入“直接材料”成本项目。X S适应生产特点和管理要求,采用适当的成本计算方法,是成本核算的基础工作。(×) W完工产品费用等于月初在产品费用加本月生产费用减月末在产品费用。对 Y“预提费用”可能出现借方余额,其性质属于资产,实际上是待摊费用。对 Y引起资产和负债同时减少的支出是费用性支出。X Y以应付票据去偿付购买材料的费用,是成本性支出。X Y原材料分工序一次投入与原材料在每道工序陆续投入,其完工率的计算方法是完全一致的。X Y运用连环替代法进行分析,即使随意改变各构成因素的替换顺序,各因素的影响结果加总后仍等于指标的总差异,因此更换各因索替换顺序,不会影响分析的结果。(×) Z在产品品种规格繁多的情况下,应该采用分类法计算产品成本。对 Z直接生产费用就是直接计人费用。X Z逐步结转分步法也称为计列半成品分步法。√ A按年度计划分配率分配制造费用,“制造费用”账户月末(可能有月末余额/可能有借方余额/可能有贷方余额/可能无月末余额)。 A按年度计划分配率分配制造费用的方法适用于(季节性生产企业) - 10 -- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 应用 解答
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文