人教版八年级上册压轴题强化数学综合试卷附答案[003].doc
《人教版八年级上册压轴题强化数学综合试卷附答案[003].doc》由会员分享,可在线阅读,更多相关《人教版八年级上册压轴题强化数学综合试卷附答案[003].doc(20页珍藏版)》请在咨信网上搜索。
人教版八年级上册压轴题强化数学综合试卷附答案 1.如图1,在平面直角坐标系中,AO=AB,∠BAO=90°,BO=8cm,动点D从原点O出发沿x轴正方向以acm/s的速度运动,动点E也同时从原点O出发在y轴上以bcm/s的速度运动,且a,b满足关系式a2+b2﹣4a﹣2b+5=0,连接OD,OE,设运动的时间为t秒. (1)求a,b的值; (2)当t为何值时,△BAD≌△OAE; (3)如图2,在第一象限存在点P,使∠AOP=30°,∠APO=15°,求∠ABP. 2.在等腰三角形ABC中,AB=AC,点D是AC上一动点,在BD的延长线上取一点E满足:AE=AB;AF平分∠CAE交BE于点F. (1)如图1,连CF,求证:△ACF≌△AEF. (2)如图2,当∠ABC=60°时,线段AF,EF,BF之间存在某种数量关系,写出你的结论并加以证明. (3)如图3,当∠ACB=45°时,且AE∥BC,若EF=3,请直接写出线段BD的长是 (只填写结果). 3.[背景]角的平分线是常见的几何模型,利用轴对称构造三角形全等可解决有关问题. [问题]在四边形ABDE中,C是BD边的中点. (1)如图1,若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为______;(直接写出答案) (2)如图2,AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明; (3)如图3,若∠ACE=120°,AB=4,DE=9,BD=12,则AE的最大值是______.(直接写出答案) 4.如图,在等边△ABC中,AB=AC=BC=6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts. (1)当t为何值时,M、N两点重合; (2)当点M、N分别在AC、BA边上运动,△AMN的形状会不断发生变化. ①当t为何值时,△AMN是等边三角形; ②当t为何值时,△AMN是直角三角形; (3)若点M、N都在BC边上运动,当存在以MN为底边的等腰△AMN时,求t的值. 5.我们不妨约定:把“有一组邻边相等”的凸四边形叫做“菠菜四边形”. (1)如下:①平行四边形,②矩形,③菱形,④正方形,一定是“菠菜四边形”的是________(填序号); (2)如图1,四边形ABCD为“菠菜四边形”,且∠BAD=∠BCD=90°,AD=AB,AE⊥CD于点E,若AE=4,求四边形ABCD的面积; (3)①如图2,四边形ABCD为“菠菜四边形”,且AB=AD,记四边形ABCD,△BOC,△AOD的面积依次为S,,,若.求证:ADBC; ②在①的条件下,延长BA、CD交于点E,记BC=m,DC=n,求证:. 6.方法探究: 已知二次多项式,我们把代入多项式,发现,由此可以推断多项式中有因式(x+3).设另一个因式为(x+k),多项式可以表示成,则有,因为对应项的系数是对应相等的,即,解得,因此多项式分解因式得:.我们把以上分解因式的方法叫“试根法”. 问题解决: (1)对于二次多项式,我们把x= 代入该式,会发现成立; (2)对于三次多项式,我们把x=1代入多项式,发现,由此可以推断多项式中有因式(),设另一个因式为(),多项式可以表示成,试求出题目中a,b的值; (3)对于多项式,用“试根法”分解因式. 7.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上一点,且DE=CE,连接BD,CD. (1)判断与的位置关系和数量关系,并证明; (2)如图2,若将△DCE绕点E旋转一定的角度后,BD与AC的位置关系和数量关系是否发生变化?并证明; (3)如图3,将(2)中的等腰直角三角形都换成等边三角形,其他条件不变,求BD与AC夹角的度数. 8.问题引入: (1)如图1,在中,点O是和平分线的交点,若,则______(用表示):如图2,,,,则______(用表示); 拓展研究: (2)如图3,,,,猜想度数(用表示),并说明理由; (3)BO、CO分别是的外角、的n等分线,它们交于点O,,,,请猜想______(直接写出答案). 【参考答案】 2.(1)a=2,b=1;(2)t=或t=8;(3)∠ABP=105°. 【分析】(1)将a2+b2﹣4a﹣2b+5=0用配方法得出(a﹣2)2+(b﹣1)2=0,利用非负数的性质,即可得出结论; 解析:(1)a=2,b=1;(2)t=或t=8;(3)∠ABP=105°. 【分析】(1)将a2+b2﹣4a﹣2b+5=0用配方法得出(a﹣2)2+(b﹣1)2=0,利用非负数的性质,即可得出结论; (2)先由运动得出BD=|8﹣2t|,再由全等三角形的性质的出货BD=OE,建立方程求解即可得出结论. (3)先判断出△OAP≌△BAQ(SAS),得出OP=BQ,∠ABQ=∠AOP=30°,∠AQB=∠APO=15°,再求出∠OAP=135°,进而判断出△OAQ≌△BAQ(SAS),得出∠OQA=∠BQA=15°,OQ=BQ,再判断出△OPQ是等边三角形,得出∠OQP=60°,进而求出∠BQP=30°,再求出∠PBQ=75°,即可得出结论. 【详解】解:(1)∵a2+b2﹣4a﹣2b+5=0, ∴(a﹣2)2+(b﹣1)2=0, ∴a﹣2=0,b﹣1=0, ∴a=2,b=1; (2)由(1)知,a=2,b=1, 由运动知,OD=2t,OE=t, ∵OB=8, ∴DB=|8﹣2t| ∵△BAD≌△OAE, ∵DB=OE, ∴|8﹣2t|=t, 解得,t=(如图1)或t=8(如图2); (3)如图3, 过点A作AQ⊥AP,使AQ=AP,连接OQ,BQ,PQ, 则∠APQ=45°,∠PAQ=90°, ∵∠OAB=90°, ∴∠PAQ=∠OAB, ∴∠OAB+∠BAP=∠PAQ+∠BAP, 即:∠OAP=∠BAQ, ∵OA=AB,AD=AD, ∴△OAP≌△BAQ(SAS), ∴OP=BQ,∠ABQ=∠AOP=30°,∠AQB=∠APO=15°, 在△AOP中,∠AOP=30°,∠APO=15°, ∴∠OAP=180°﹣∠AOP﹣∠APO=135°, ∴∠OAQ=360°﹣∠OAP﹣∠PAQ=135°﹣90°=135°=∠OAP, ∵OA=AB,AD=AD, ∴△OAQ≌△BAQ(SAS), ∴∠OQA=∠BQA=15°,OQ=BQ, ∵OP=BQ, ∴OQ=OP, ∵∠APQ=45°,∠APO=15°, ∴∠OPQ=∠APO+∠APQ=60°, ∴△OPQ是等边三角形, ∴∠OQP=60°, ∴∠BQP=∠OQP﹣∠OQA﹣∠BQA=60°﹣15°﹣15°=30°, ∵BQ=PQ, ∴∠PBQ=(180°﹣∠BQP)=75°, ∴∠ABP=∠ABQ+∠PBQ=30°+75°=105°. 【点睛】本题是三角形综合题,主要考查了配方法、非负数的性质、三角形内角和定理、等边三角形的判定和性质、全等三角形的判定及性质,构造出全等三角形是解题的关键. 3.(1)证明见解析 (2),证明见解析 (3)6 【分析】(1)由角平分线的定义可知,再根据等量代换得出AC =AE,由此可直接利用“SAS”证明; (2)在BE上截取BM=CF,连接AM.由 解析:(1)证明见解析 (2),证明见解析 (3)6 【分析】(1)由角平分线的定义可知,再根据等量代换得出AC =AE,由此可直接利用“SAS”证明; (2)在BE上截取BM=CF,连接AM.由所作辅助线易证,得出,.由题意易判断为等边三角形,即可求出,即说明为等边三角形,得出,由此即得出; (3)延长BA,CF交于点N.由题意可知为等腰直角三角形,即,.根据平行线的性质和等边对等角即得出BE为的角平分线,从而可求出,进而可求出.由角平分线的性质可得出,从而可求出.又易证,即得出. (1) ∵AF平分∠CAE, ∴. ∵AB=AC,AB=AE, ∴AC =AE. 又∵AF=AF, ∴. (2) 证明:∵, ∴,. 如图,在BE上截取BM=CF,连接AM. 在和中,, ∴, ∴,. ∵,, ∴为等边三角形, ∴. ∵, ∴,即, ∴为等边三角形, ∴, ∴. 即AF,EF,BF之间存在的关系为:; (3) 如图,延长BA,CF交于点N. ∵,, ∴为等腰直角三角形, ∴,. ∵AE∥BC, ∴. ∵, ∴, ∴. 由(1)可知, ∴, ∴,即. ∵为的角平分线, ∴. ∵, ∴,即. 在和中,, ∴, ∴. 故答案为:6. 【点睛】本题为三角形综合题,考查等边三角形的判定和性质,等腰直角三角形的判定和性质,三角形全等的判定和性质,角平分线的定义和性质,平行线的性质以及三角形内角和定理,综合性强,较难.解题关键是学会添加常用的辅助线,构造全等三角形解决问题. 4.(1)AE=AB+DE (2)AE=AB+DE+BD (3) 【分析】(1)在AE上取一点F,使AF=AB,及可以得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△ 解析:(1)AE=AB+DE (2)AE=AB+DE+BD (3) 【分析】(1)在AE上取一点F,使AF=AB,及可以得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△CEF≌△CED.就可以得出结论; (3)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG.可以求得CF=CG,△CFG是等边三角形,就有FG=CG=BD,进而得出结论; (3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG.根据两点之间线段最短解决问题即可. (1) AE=AB+DE; 理由:在AE上取一点F,使AF=AB, ∵AC平分∠BAE, ∴∠BAC=∠FAC. 在△ACB和△ACF中, , ∴△ACB≌△ACF(SAS), ∴BC=FC,∠ACB=∠ACF. ∵C是BD边的中点. ∴BC=CD, ∴CF=CD. ∵∠ACE=90°, ∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90° ∴∠ECF=∠ECD. 在△CEF和△CED中, , ∴△CEF≌△CED(SAS), ∴EF=ED. ∵AE=AF+EF, ∴AE=AB+DE, 故答案为:AE=AB+DE; (2) 猜想:AE=AB+DE+BD. 证明:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG. ∵C是BD边的中点, ∴CB=CD=BD. ∵AC平分∠BAE, ∴∠BAC=∠FAC. 在△ACB和△ACF中, ∴△ACB≌△ACF(SAS), ∴CF=CB, ∴∠BCA=∠FCA. 同理可证:CD=CG, ∴∠DCE=∠GCE. ∵CB=CD, ∴CG=CF ∵∠ACE=120°, ∴∠BCA+∠DCE=180°-120°=60°. ∴∠FCA+∠GCE=60°. ∴∠FCG=60°. ∴△FGC是等边三角形. ∴FG=FC=BD. ∵AE=AF+EG+FG. ∴AE=AB+DE+BD. (3) 作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG,如图所示: ∵C是BD边的中点, ∴CB=CD=BD=, ∵△ACB≌△ACF(SAS), ∴CF=CB=, ∴∠BCA=∠FCA, 同理可证:CD=CG=, ∴∠DCE=∠GCE, ∵CB=CD, ∴CG=CF, ∵∠ACE=120°, ∴∠BCA+∠DCE=180°-120°=60°, ∴∠FCA+∠GCE=60°, ∴∠FCG=60°, ∴△FGC是等边三角形, ∴FC=CG=FG=, ∵AE≤AF+FG+EG, ∴当A、F、G、E共线时AE的值最大,最大值为. 故答案为:. 【点睛】本题考查了四边形的综合题,角平分线的性质的运用,全等三角形的判定及性质的运用,等边三角形的性质的运用,勾股定理的运用,解答时证明三角形全等是关键. 5.(1)当M、N运动6秒时,点N追上点M;(2)①,△AMN是等边三角形;②当或时,△AMN是直角三角形;(3) 【详解】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的 解析:(1)当M、N运动6秒时,点N追上点M;(2)①,△AMN是等边三角形;②当或时,△AMN是直角三角形;(3) 【详解】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多6cm,列出方程求解即可; (2)①根据题意设点M、N运动t秒后,可得到等边三角形△AMN,然后表示出AM,AN的长,由于∠A等于60°,所以只要AM=AN三角形ANM就是等边三角形; ②分别就∠AMN=90°和∠ANM=90°列方程求解可得; (3)首先假设△AMN是等腰三角形,可证出△ACM≌△ABN,可得CM=BN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值. 【解答】解:(1)设点M、N运动x秒后,M、N两点重合, x×1+6=2x, 解得:x=6, 即当M、N运动6秒时,点N追上点M; (2)①设点M、N运动t秒后,可得到等边三角形△AMN,如图1, AM=t,AN=6﹣2t, ∵AB=AC=BC=6cm, ∴∠A=60°,当AM=AN时,△AMN是等边三角形, ∴t=6﹣2t, 解得t=2, ∴点M、N运动2秒后,可得到等边三角形△AMN. ②当点N在AB上运动时,如图2, 若∠AMN=90°, ∵BN=2t,AM=t, ∴AN=6﹣2t, ∵∠A=60°, ∴2AM=AN,即2t=6﹣2t, 解得; 如图3,若∠ANM=90°, 由2AN=AM得2(6﹣2t)=t, 解得. 综上所述,当t为或时,△AMN是直角三角形; (3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形, 由(1)知6秒时M、N两点重合,恰好在C处, 如图4,假设△AMN是等腰三角形, ∴AN=AM, ∴∠AMN=∠ANM, ∴∠AMC=∠ANB, ∵AB=BC=AC, ∴△ACB是等边三角形, ∴∠C=∠B, 在△ACM和△ABN中, ∵∠AMC=∠ANB,∠C=∠B,AC=AB, ∴△ACM≌△ABN(AAS), ∴CM=BN, ∴t﹣6=18﹣2t, 解得t=8,符合题意. 所以假设成立,当M、N运动8秒时,能得到以MN为底的等腰三角形. 【点睛】本题是三角形综合题,主要考查了等边三角形的判定与性质,含30°角的直角三角形的性质,全等三角形的判定与性质,将动点问题转化为线段的长是解题的关键. 6.(1)③ ④ (2)16 (3)①见解析;②见解析 【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论; (2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则, 解析:(1)③ ④ (2)16 (3)①见解析;②见解析 【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论; (2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则,求出,得出,有全等的出AE=AF=3,,求出,求出,代入求解即可; (3)记面积为,则,,根据已知条件可得,进而可得,得出 由平分线的性质结合等腰三角形的性质可得BD平分,过点D作于点H,作于点N,则DH=DN,则,由此即可得出结论. (1) 根据菱形于正方形的定义值,一定是菠菜四边形的是菱形与正方形, 故答案为:③④ (2) 如图,过A作,交CB的延长线于F, ∴ 四边形AFCE是矩形 则 四边形AFCE是正方形, 即四边形ABCD的面积为16 (3) ①记, ∴ ∵ ∴ ∴ ∵ ∴ ∴ ∴ ∴ 如图:作, ∴ ∴ AMAD ∴四边形AMND为平行四边形 ∴ADMN ∴ADBC ②∵ADBC ∴ 又∵AD=AB ∴ ∴ ∴BD平分 如图: ∵ ∴ ∴ 又∵ ∴ ∴ 【点睛】本题考查全等三角形的性质与判定,三角形的面积,角平分线的性质,对于同第登高的三角形的面积相等的推到是关键. 7.(1)±2 (2)a=0,b=-3; (3) 【分析】(1)将x=±2代入即可; (2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可; ( 解析:(1)±2 (2)a=0,b=-3; (3) 【分析】(1)将x=±2代入即可; (2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可; (3)多项式有因式(x-2),设另一个因式为(x2+ax+b),则x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,再由系数关系求a、b即可. (1) 解:当x=±2时,x2-4=0, 故答案为:±2; (2) 解:由题意可知x3-x2-3x+3=(x-1)(x2+ax+b), ∴x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b, ∴1-a=1,b=-3, ∴a=0,b=-3; (3) 解:当x=2时,x3+4x2-3x-18=8+16-6-18=0, ∴多项式有因式(x-2), 设另一个因式为(x2+ax+b), ∴x3+4x2-3x-18=(x-2)(x2+ax+b), ∴x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b, ∴a-2=4,2b=18, ∴a=6,b=9, ∴x3+4x2-3x-18=(x-2)(x2+6x+9)=(x-2)(x+3)2. 【点睛】本题考查因式分解的意义,理解“试根法”的本质,多项式乘多项式的正确展开是解题的关键. 8.(1), ;(2), ;(3). 【分析】(1)先判断出,再判定,再判断, (2)先判断出,再得到同理(1)可得结论; (3)先判断出,再判断出,最后计算即可. 【详解】解:(1)与的位置关 解析:(1), ;(2), ;(3). 【分析】(1)先判断出,再判定,再判断, (2)先判断出,再得到同理(1)可得结论; (3)先判断出,再判断出,最后计算即可. 【详解】解:(1)与的位置关系是:,数量关系是. 理由如下: 如图1,延长交于点. 于, . ,, , ,,. , . AE⊥BC ∴, , . (2)与的位置关系是:,数量关系是. 如图,线段AC与线段BD交于点F,线段AE与线段BD交于点G, , , 即. ,, , ,. AE⊥BC ∴, 又∵ , . (3)如图,线段AC与线段BD交于点F, 和是等边三角形, ,,,, , , 在和中, , ∴, , 与的夹角度数为. 【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,等边三角形的性质,判断垂直的方法,解本题的关键是判断. 9.(1), (2),理由见解析 (3) 【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案; (2)根据三角形内角和定理得,而,代入化简即可; (3)由(2)同理可得答案. 解析:(1), (2),理由见解析 (3) 【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案; (2)根据三角形内角和定理得,而,代入化简即可; (3)由(2)同理可得答案. (1) 解:点是和平分线的交点, , , 在中, , , , , 故答案为:; 在中,, , , , , 故答案为:; (2) 解:,理由如下: ,,, , , , , ; (3) 解:在中,, , , , , 故答案为:. 【点睛】本题主要考查了三角形内角和定理,角平分线的定义,解题的关键是采取类比的方法,同时渗透了整体思想.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 003 人教版八 年级 上册 压轴 强化 数学 综合 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文