八年级下册数学期末试卷检测(提高-Word版含解析).doc
《八年级下册数学期末试卷检测(提高-Word版含解析).doc》由会员分享,可在线阅读,更多相关《八年级下册数学期末试卷检测(提高-Word版含解析).doc(27页珍藏版)》请在咨信网上搜索。
八年级下册数学期末试卷检测(提高,Word版含解析) 一、选择题 1.要使等式=0成立的x的值为( ) A.3 B.﹣1 C.3或﹣1 D.以上都不对 2.以长度分别为下列各组数的线段为边,其中能构成直角三角形的是( ) A.4,5,6 B.1,1,2 C.6,8,10 D.5,12,14 3.四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是( ) A.若AO=OC,则ABCD是平行四边形 B.若AC=BD,则ABCD是平行四边形 C.若AO=BO,CO=DO,则ABCD是平行四边形 D.若AO=OC,BO=OD,则ABCD是平行四边形 4.小明最近次数学测验的成绩如下:,,,,.则这次成绩的方差为( ) A. B. C. D. 5.三角形的三边长分别为6,8,10,则它的最长边上的高为( ) A.4.8 B.8 C.6 D.2.4 6.如图,在菱形中,,的垂直平分线交对角线于点,垂足为,连接,则的大小为( ) A. B. C. D. 7.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AC=4,则BC的长是( ) A.2 B.3 C.2 D.3 8.如图,直线l:y=﹣x++3与x轴交于点A,与经过点B(﹣2,0)的直线m交于第一象限内一点C,点E为直线l上一点,点D为点B关于y轴的对称点,连接DC、DE、BE,若∠DEC=2∠DCE,∠DBE=∠DEB,则CD2的值为( ) A.20+4 B.44+4 C.20+4或44﹣4 D.20﹣4或44+4 二、填空题 9.若a,b都是实数,且,则ab+1的平方根为 _____. 10.如图,菱形的对角线、相交于点,点、分别为边、的中点,连接,若,,则菱形的面积为______. 11.如图一根竹子长为8米,折断后竹子顶端落在离竹子底端4米处,折断处离地面高度是________米. 12.矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形周长的和是86cm,矩形的对角线长是13cm,那么该矩形的周长为_____. 13.小明从家步行到学校需走的路程为2000米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行20分钟时,距离学校还有__米. 14.如图所示,在四边形ABCD中,顺次连接四边中点E、F、G、H,构成一个新的四边形,请你对四边形ABCD添加一个条件,使四边形EFGH成一个菱形,这个条件是__________. 15.如图所示,直线与两坐标轴分别交于、两点,点是的中点,、分别是直线、轴上的动点,当周长最小时,点的坐标为_____. 16.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______. 三、解答题 17.计算: (1)2﹣6×; (2)(﹣2)2﹣(﹣2)(+2); (3)(1+)•(2﹣); (4). 18.一架梯子长13米,斜靠在一面墙上,梯子底端离墙5米. (1)这个梯子的顶端距地面有多高? (2)如果梯子的顶端下滑了7米到C,那么梯子的底端在水平方向滑动了几米? 19.如图,网格中的,若小方格边长为,请你根据所学的知识, (1)判断是什么形状?并说明理由; (2)求的面积. 20.如图,在矩形ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证: (1)△ABE≌DCF; (2)四边形AEFD是平行四边形;探究:连结DE,若DE平分∠AEC,直接写出此时四边形AEFD的形状. 21.阅读下面的材料,解答后面提出的问题: 黑白双雄,纵横江湖;双剑合壁,天下无敌,这是武侠小说中的常见描述,其意思是指两个人合在一起,取长补短,威力无比,在二次根式中也有这种相辅相成的“对子”,如:(2+)(2-)=1,(+)(-)=3, 它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:==,==7+4.像这样通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化. 解决问题: (1)4+的有理化因式是 ,将分母有理化得 ; (2)已知x=,y=,则= ; (3)已知实数x,y满足(x+)(y+)-2017=0,则x= ,y= . 22.在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度与燃烧时间的关系如图所示.其中甲蜡烛燃烧前的高度是,乙蜡烛燃烧前的高度是,请根据图象所提供的信息解答下列问题: (1)甲、乙两根蜡烛从点燃到燃尽所用的时间分别是 ; (2)分别求甲、乙两根蜡烛燃烧时,与之间的函数关系式; (3)当为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等(不考虑都燃尽时的情况)?在什么时间段内甲蜡烛比乙蜡烛高?在什么时间段内甲蜡烛比乙蜡烛低? 23.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF. (1)求证:四边形BFEP为菱形; (2)当E在AD边上移动时,折痕的端点P、Q也随着移动. ①当点Q与点C重合时, (如图2),求菱形BFEP的边长; ②如果限定P、Q分别在线段BA、BC上移动,直接写出菱形BFEP面积的变化范围. 24.如图,在平面直角坐标系中,矩形OABC的两条边分别在坐标轴上,,. (1)求AC所在的直线MN的解析式; (2)把矩形沿直线DE对折,使点C落在点A处,DE与AC相交于点F,求点D的坐标; (3)在直线MN上是否存在点P,使以点P,A,B三点为顶点的三角形是等腰三角形?若存在,请求出P点的坐标;若不存在,请说明理由. 25.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。 (1)如图1,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段AC,同时我们还发现损矩形中有公共边的两个三角形角的特点,在公共边的同侧的两个角是相等的。如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC。请再找一对这样的角来 = (2)如图2,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连结BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由。 (3)在第(2)题的条件下,若此时AB=,BD=,求BC的长。 【参考答案】 一、选择题 1.A 解析:A 【分析】 根据二次根式有意义的条件求解即可. 【详解】 且 解得 或 或(舍) 故选A 【点睛】 本题考查了二次根式有意义的条件,以及与0相乘的数等于0,掌握二次根式有意义的条件是解题的关键. 2.C 解析:C 【分析】 利用勾股定理的逆定理逐一进行判断即可. 【详解】 A.,故该选项不符合题意; B.,故该选项不符合题意; C.,故该选项符合题意; D.,故该选项不符合题意. 故选C. 【点睛】 本题主要考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解本题的关键. 3.D 解析:D 【解析】 【分析】 根据平行四边形的判定条件进行逐一判断即可. 【详解】 解:∵AO=OC,BO=OD, ∴四边形的对角线互相平分 ∴D能判定ABCD是平行四边形. 若AO=BO,CO=DO,证明AC=BD,并不能证明四边形ABCD是平行四边形,故C错误, 若AO=OC,条件不足,无法明四边形ABCD是平行四边形,故A错误, 若AC=BD,条件不足,无法明四边形ABCD是平行四边形,故B错误, 故选D. 【点睛】 本题主要考查了平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定条件. 4.C 解析:C 【解析】 【分析】 先求出平均数,再利用方差公式计算即可. 【详解】 解:, . 故选:. 【点睛】 本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用来表示,计算公式是:.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 5.A 解析:A 【分析】 根据已知先判定其形状,再根据三角形的面积公式求得其高. 【详解】 解:∵三角形的三边长分别为6,8,10,符合勾股定理的逆定理62+82=102, ∴此三角形为直角三角形,则10为直角三角形的斜边, 设三角形最长边上的高是h, 根据三角形的面积公式得:×6×8=×10h, 解得h=4.8. 故选A 【点睛】 考查了勾股定理的逆定理,解答此题的关键是先判断出三角形的形状,再根据三角形的面积公式解答.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形. 6.A 解析:A 【解析】 【分析】 根据菱形的性质可知,根据垂直平分线的性质可知,即可求得,进而求得,根据对称性可知,即可求得. 【详解】 四边形是菱形, , , 垂直平分, , , 菱形是轴对称图形,是它的一条对称轴,关于对称, . 故选A. 【点睛】 本题考查了菱形的性质,垂直平分线的性质,轴对称的性质,掌握以上性质是解题的关键. 7.C 解析:C 【解析】 【分析】 由矩形的性质可得,由题意可得为等边三角形,再由勾股定理即可求解. 【详解】 解:在矩形ABCD中,, ∵∠AOB=60° ∴为等边三角形 ∴ 在中, 故选C 【点睛】 此题考查了矩形的性质,等边三角形的判定以及勾股定理,熟练掌握相关基本性质是解题的关键. 8.C 解析:C 【分析】 过点D作DF⊥l于点F,延长FD交y轴于点G,求出DF的解析式,联立方程组,求出点F的坐标,分点E在点F的上方和下方两种情况结合勾股定理求出结论即可. 【详解】 解:过点D作DF⊥l于点F,延长FD交y轴于点G, ∵点B(﹣2,0),且点D为点B关于y轴的对称点, ∴D(2,0) ∴BD=4 又∠DBE=∠DEB, ∴DE=BD=4 对于直线l:y=﹣x++3,当x=0时,y=+3;当y=0时,x=+3 ∴OH=+3,AO=+3 ∴ ∴ ∴ ∴ 又 ∴, ∴ ∴ 设直线DF所在直线解析式为 把,D(2,0)代入得, 解得, ∴直线DF所在直线解析式为 联立, 解得, ∴F(,) ∴ 在Rt△DFE中, ∴ ①当E在F下方时,如图1,在E点下方直线l上取一点M,使EM=DE=4,连接DM, ∵EM=DE ∴ 又∵ ∴ 又∵ ∴ ∴DC=DM 在Rt△DFM中, ∴ ②当点E在F的上方时,如图2,在E点下方直线l上取一点M,使EM=DE=4,连接DM, ∵EM=DE ∴ 又∵, ∴ ∴DC=DM ∴ 在Rt△DFM中, ∴ 综上所述,或 故选:C 【点睛】 本题是一次函数的综合题;灵活应用勾股定理,熟练掌握待定系数法求函数解析式是解题的关键. 二、填空题 9.±5 【解析】 【分析】 根据二次根式有意义的条件可得: ,再解可得a的值,然后可得b的值,进而可得ab+1的平方根. 【详解】 解:由题意得:, 解得:a=3, 则b=8, ∴ab+1=25, 25的平方根为±5, 故答案为:±5. 【点睛】 本题主要考查了二次根式的概念,平方根的运算,熟悉掌握二次根式的非负性是解题的关键. 10.A 解析: 【解析】 【分析】 根据MN是△ABC的中位线,根据三角形中位线定理求的AC的长,然后根据菱形的性质求解. 【详解】 解:∵M、N是AB和BC的中点,即MN是△ABC的中位线, ∴AC=2MN=2, ∵, 所以菱形的面积为 , 故答案为: 【点睛】 本题考查了三角形的中位线定理和菱形的性质,理解中位线定理求的AC的长是关键. 11.3 【解析】 【分析】 竹子折断后刚好构成一直角三角形,设竹子折断处离地面x米,则斜边为(8-x)米.利用勾股定理解题即可. 【详解】 解:设竹子折断处离地面x米,则斜边为(8-x)米, 根据勾股定理得:x2+42=(8-x)2 解得:x=3. ∴折断处离地面高度是3米, 故答案为:3. 【点睛】 此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题. 12.A 解析:34cm 【分析】 根据四个小三角形的周长和为86,列式得,再由矩形的对角线相等解题即可. 【详解】 解:如图,矩形ABCD中,, 由题意得,, 故答案为:34cm. 【点睛】 本题考查矩形的性质,是重要考点,掌握相关知识是解题关键. 13.240 【分析】 当8≤t≤23时,设s=kt+b,将(8,800)、(23,2000)代入求得s=kt+b,,求出t=20时s的值,从而得出答案. 【详解】 解:当8≤t≤23时,设s=kt+b, 将(8,800)、(23,2000)代入,得: , 解得:, ∴s=80t+160; 当t=20时,s=1760, ∵2000﹣1760=240, ∴当小明从家出发去学校步行20分钟时,到学校还需步行240米. 故答案为:240. 【点睛】 本题主要考查一次函数的应用,解题的关键是理解题意,从实际问题中抽象出一次函数的模型,并熟练掌握待定系数法求一次函数的解析式. 14.A 解析:答案不唯一,例AC=BD 等 【分析】 连接AC、BD,先证明四边形ABCD是平行四边形,再根据菱形的特点添加条件即可. 【详解】 连接AC, ∵点E、F分别是AB、BC的中点, ∴EF是△ABC的中位线, ∴EF∥AC,EF=AC, 同理HG∥AC,HG=AC, ∴EF∥HG,EF=HG, ∴四边形EFGH是平行四边形, 连接BD,同理EH=FG,EF∥FG, 当AC=BD时,四边形EFGH是平行四边形, 故答案为:答案不唯一,例AC=BD 等. 【点睛】 此题考查三角形中位线性质,平行四边形的判定及性质,菱形的判定. 15.【分析】 作点C关于AB的对称点F,关于AO的对称点G,连接DF,EG,由轴对称的性质,可得DF=DC,EC=EG,故当点F,D,E,G在同一直线上时,△CDE的周长=CD+DE+CE=DF+DE 解析: 【分析】 作点C关于AB的对称点F,关于AO的对称点G,连接DF,EG,由轴对称的性质,可得DF=DC,EC=EG,故当点F,D,E,G在同一直线上时,△CDE的周长=CD+DE+CE=DF+DE+EG=FG,此时△DEC周长最小,然后求出F、G的坐标从而求出直线FG的解析式,再求出直线AB和直线FG的交点坐标即可得到答案. 【详解】 解:如图,作点C关于AB的对称点F,关于AO的对称点G,连接FG分别交AB、OA于点D、E, 由轴对称的性质可知,CD=DF,CE=GE,BF=BC,∠FBD=∠CBD, ∴△CDE的周长=CD+CE+DE=FD+DE+EG, ∴要使三角形CDE的周长最小,即FD+DE+EG最小, ∴当F、D、E、G四点共线时,FD+DE+EG最小, ∵直线y=x+2与两坐标轴分别交于A、B两点, ∴B(-2,0), ∴OA=OB, ∴∠ABC=∠ABD=45°, ∴∠FBC=90°, ∵点C是OB的中点, ∴C(,0), ∴G点坐标为(1,0),, ∴F点坐标为(-2,), 设直线GF的解析式为, ∴, ∴, ∴直线GF的解析式为, 联立, 解得, ∴D点坐标为(,) 故答案为:(,). 【点睛】 本题主要考查了轴对称-最短路线问题,一次函数与几何综合,解题的关键是利用对称性在找到△CDE周长的最小时点D、点E位置,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点. 16.5 【详解】 试题解析:∵∠AFB=90°,D为AB的中点, ∴DF=AB=2.5, ∵DE为△ABC的中位线, ∴DE=BC=4, ∴EF=DE-DF=1.5, 故答案为1.5. 【点睛】 直角三 解析:5 【详解】 试题解析:∵∠AFB=90°,D为AB的中点, ∴DF=AB=2.5, ∵DE为△ABC的中位线, ∴DE=BC=4, ∴EF=DE-DF=1.5, 故答案为1.5. 【点睛】 直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半. 三、解答题 17.(1)3﹣3;(2)﹣4;(3)﹣1+;(4)﹣ 【分析】 (1)直接利用二次根式的性质以及立方根的性质,进而合并同类二次根式得出答案; (2)直接利用乘法公式化简,再合并得出答案; (3)直接利用 解析:(1)3﹣3;(2)﹣4;(3)﹣1+;(4)﹣ 【分析】 (1)直接利用二次根式的性质以及立方根的性质,进而合并同类二次根式得出答案; (2)直接利用乘法公式化简,再合并得出答案; (3)直接利用二次根式的混合运算法则计算得出答案; (4)直接利用二次根式的性质化简,进而得出答案. 【详解】 解:(1)2﹣6× =6 =6 =; (2)(﹣2)2﹣(﹣2)(+2) =5+4-4-(13-4) =9-4-9 =-4; (3)(1+)•(2﹣) =2- =-1+; (4) = = =. 【点睛】 本题主要考查了二次根式的混合运算以及立方根的性质,正确化简二次根式是解题关键. 18.(1)12米;(2)7米 【分析】 (1)由题意易得AB=CD=13米,OB=5米,然后根据勾股定理可求解; (2)由题意得CO= 5米,然后根据勾股定理可得求解. 【详解】 解:(1)由题意得,A 解析:(1)12米;(2)7米 【分析】 (1)由题意易得AB=CD=13米,OB=5米,然后根据勾股定理可求解; (2)由题意得CO= 5米,然后根据勾股定理可得求解. 【详解】 解:(1)由题意得,AB=CD=13米,OB=5米, 在Rt,由勾股定理得: AO2=AB2-OB2=132-52=169-25=144, 解得AO=12米, 答:这个梯子的顶端距地面有12米高; (2)由题意得,AC=7米, 由(1)得AO=12米, ∴CO=AO-AC=12-7=5米, 在Rt,由勾股定理得: OD2=CD2-CO2=132-52=169-25=144, 解得OD=12米 ∴BD=OD-OB=12-5=7米, 答:梯子的底端在水平方向滑动了7米. 【点睛】 本题主要考查勾股定理,熟练掌握勾股定理是解题的关键. 19.(1)直角三角形,理由见解析;(2)5 【解析】 【分析】 (1)根据网格及勾股定理分别求出AB2、BC2、AC2的长,得出,再根据勾股定理的逆定理判断出三角形ABC的形状; (2)判断出AB和AC 解析:(1)直角三角形,理由见解析;(2)5 【解析】 【分析】 (1)根据网格及勾股定理分别求出AB2、BC2、AC2的长,得出,再根据勾股定理的逆定理判断出三角形ABC的形状; (2)判断出AB和AC分别为底和高,利用公式直接计算出面积. 【详解】 解:(1)∵, , , , 为直角三角形; (2)由(1)可知: ; 的面积为. 【点睛】 本题考查了勾股定理,勾股定理逆定理,三角形的面积,充分利用网格是解题关键. 20.(1)见解析;(2)证明见解析;探究:菱形 【分析】 (1)根据矩形性质直接根据边角边证明△ABE≌DCF即可; (2)证明AE∥DF,AE=DF,可得结论; 探究:证明FD=FE,可得结论. 【详 解析:(1)见解析;(2)证明见解析;探究:菱形 【分析】 (1)根据矩形性质直接根据边角边证明△ABE≌DCF即可; (2)证明AE∥DF,AE=DF,可得结论; 探究:证明FD=FE,可得结论. 【详解】 .证明:(1)∵四边形ABCD为矩形, ∴AB=DC,∠B=∠DCF, ∵BE=CF, ∴△ABE≌DCF; (2)∵△ABE≌DCF, ∴∠AEB=∠F,AE=DF, ∴AE∥DF, ∴AE=DF, ∴四边形AEFD是平行四边形. (3)此时四边形AEFD是菱形. 理由:如图1中,连接DE. ∵DE平分∠AEC, ∴∠AED=∠DEF, ∵AD∥EF, ∴∠ADE=∠DEF, ∴∠ADE=∠AED, ∴AD=AE, ∵四边形AEFD是平行四边形, ∴四边形AEFD是菱形. 【点睛】 本题属于四边形综合题,考查了矩形的性质,平行四边形的判定和性质,菱形的判定等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 21.(1),;(2)10 ;(3),. 【解析】 【详解】 (1) ∵,∴ 的有理化因式为 ; ∵,∴ 分母有理化得: . (2). ∵ , ∴ (3) ∵(x+)(y+)-2017=0 ∴, ∴ 解析:(1),;(2)10 ;(3),. 【解析】 【详解】 (1) ∵,∴ 的有理化因式为 ; ∵,∴ 分母有理化得: . (2). ∵ , ∴ (3) ∵(x+)(y+)-2017=0 ∴, ∴ ∴ ∴ , 整理得: ∴ ,x=y 将x=y代入可得:, .故答案为,. 点睛:此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解本题的关键. 22.(1),;(2),;(3)当时,甲、乙两根蜡烛在燃烧过程中的高度相等;当时,甲蜡烛比乙蜡烛高,当时,甲蜡烛比乙蜡烛低. 【分析】 (1)根据函数图象可以解答本题; (2)先设出甲、乙两根蜡烛燃烧时, 解析:(1),;(2),;(3)当时,甲、乙两根蜡烛在燃烧过程中的高度相等;当时,甲蜡烛比乙蜡烛高,当时,甲蜡烛比乙蜡烛低. 【分析】 (1)根据函数图象可以解答本题; (2)先设出甲、乙两根蜡烛燃烧时,y与x之间的函数解析式,然后根据函数图象中的数据即可求得相应的函数解析式; (3)根据题意,令(2)中的两个函数解析式的值相等,即可解答本题. 【详解】 解:(1)由图象可知, 甲、乙两根蜡烛燃烧前的高度分别是从点燃到烧尽所用小时分别是 故答案为:; (2)设甲蜡烛燃烧时,y与x之间的函数解析式 即甲蜡烛燃烧时,y与x之间的函数解析式 设乙蜡烛燃烧时,y与x之间的函数解析式 即乙蜡烛燃烧时,y与x之间的函数解析式y=-10x+25; ∴,; (3)由得即当时,甲、乙两根蜡烛在燃烧过程中的高度相等;观察图像可知,当时,甲蜡烛比乙蜡烛高,当时,甲蜡烛比乙蜡烛低. 【点睛】 本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用数形结合的思想解答. 23.(1)证明过程见解析;(2)①边长为cm,②. 【分析】 (1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=E 解析:(1)证明过程见解析;(2)①边长为cm,②. 【分析】 (1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论; (2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD-DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=cm即可; ②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案. 【详解】 解:(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ, ∴点B与点E关于PQ对称, ∴PB=PE,BF=EF,∠BPF=∠EPF, 又∵EF∥AB, ∴∠BPF=∠EFP, ∴∠EPF=∠EFP, ∴EP=EF, ∴BP=BF=EF=EP, ∴四边形BFEP为菱形; (2)①∵四边形ABCD是矩形, ∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°, ∵点B与点E关于PQ对称, ∴CE=BC=5cm, 在Rt△CDE中,DE==4cm, ∴AE=AD﹣DE=5cm-4cm=1cm; 在Rt△APE中,AE=1,AP=3-PB=3﹣PE, ∴,解得:EP=cm, ∴菱形BFEP的边长为cm; ②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm,BP=cm, , 当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm, , ∴菱形的面积范围:. 【点睛】 本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识,求出PE是本题的关键. 24.(1);(2);(3)存在,,,, 【解析】 【分析】 (1)根据矩形的性质确定点、的坐标,利用待定系数法求出直线的解析式; (2)连接,根据折叠的性质得到,设,根据勾股定理列出方程,解方程求出的值 解析:(1);(2);(3)存在,,,, 【解析】 【分析】 (1)根据矩形的性质确定点、的坐标,利用待定系数法求出直线的解析式; (2)连接,根据折叠的性质得到,设,根据勾股定理列出方程,解方程求出的值即可; (3)分、、三种情况,根据等腰三角形的性质和勾股定理计算即可. 【详解】 解:(1)设直线的解析式是. ,, ,. 点、都在直线上, , 解得:, 直线的解析式为; (2)连接,由折叠可知, 设,则, 在中,, , 解得:, 点的坐标为,; (3)存在, ,, . 点在直线上, 设, ①当时,点是线段的中垂线与直线的交点, 则; ②当时,, 整理得:, 解得,, ,,,; ③当时,, 整理得,, 则, , , ,. 综上所述,符合条件的点有: ,,,,,,. 【点睛】 本题考查的是矩形与折叠、勾股定理、待定系数法求函数解析式、等腰三角形的性质,灵活运用待定系数法求出函数解析式是解题的关键,解答时,注意分情况讨论思想的运用. 25.(1)∠ABD=∠ACD;(2)四边形ACEF为正方形,理由见解析;(3)5. 【解析】 【分析】 (1)以AD为公共边,有∠ABD=∠ACD; (2)证明△ADC是等腰直角三角形,得AD=CD,则 解析:(1)∠ABD=∠ACD;(2)四边形ACEF为正方形,理由见解析;(3)5. 【解析】 【分析】 (1)以AD为公共边,有∠ABD=∠ACD; (2)证明△ADC是等腰直角三角形,得AD=CD,则AE=CF,根据对角线相等的菱形是正方形可得结论; (3)如图2,作辅助线构建直角三角形,证明△ABC≌△CHE,得CH=AB=3,根据平行线等分线段定理可得BG=GH=4,从而得结论. 【详解】 解:(1)由图1得:△ABD和△ADC有公共边AD,在AD同侧有∠ABD和∠ACD,此时∠ABD=∠ACD; (2)四边形ACEF为正方形,理由是: ∵∠ABC=90°,BD平分∠ABC, ∴∠ABD=∠CBD=45° ∴∠DAC=∠CBD=45° ∵四边形ACEF是菱形, ∴AELCF, ∴∠ADC=90°, ∴△ADC是等腰直角三角形, ∴AD=CD,.AE=CF, ∴菱形ACEF是正方形; (3)如图2,过D作DG⊥BC于G,过E作EH⊥BC,交BC的延长线于H, ∵∠DBG=45°, ∴△BDG是等腰直角三角形,BD=4, ∵BG=4,四边形ACEF是正方形, ∴AC=CE,∠ACE=90°,AD=DE, 易得△ABC≌△CHE, ∴CH=AB=3,AB//DG//EH,AD=DE, ∴BG=GH=4, ∴CG=4-3=1, ∴BC=BG+CG=4+1=5. 【点睛】 本题是四边形的综合题,也是新定义问题,考查了损矩形和损矩形的直径的概念,平行线等分线段定理,菱形的性质,正方形的判定等知识,认真阅读理解新定义,第3问有难度,作辅助线构建全等三角形是关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 数学 期末试卷 检测 提高 Word 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文