八年级下册数学期末试卷测试卷(word版-含解析).doc
《八年级下册数学期末试卷测试卷(word版-含解析).doc》由会员分享,可在线阅读,更多相关《八年级下册数学期末试卷测试卷(word版-含解析).doc(29页珍藏版)》请在咨信网上搜索。
八年级下册数学期末试卷测试卷(word版,含解析) 一、选择题 1.若在实数范围内有意义,则a可以是( ) A.﹣22 B.﹣1 C. D.0 2.下列给出的四组数中,能构成直角三角形三边的一组是( ) A.3,4,5 B.5,12,14 C.6,8,9 D.8,13,15 3.下列不能判定四边形ABCD是平行四边形的条件是( ) A.AB∥CD,AD∥BC B.OA=OC,OB=OD C.AB∥CD,AD=BC D.AB=CD,AD=BC 4.某商场招聘员工一名,现有甲、乙、丙三人竞聘,通过计算机、语言和商品知识三项测试,他们各自成绩(百分制)如下表所示,若商场需要招聘负责将商品拆装上架的人员,对计算机、语言和商品知识分别赋权2,3,5,那么从成绩看,应该录取( ) 应试者 计算机 语言 商品知识 甲 60 70 80 乙 80 70 60 丙 70 80 60 A.甲 B.乙 C.丙 D.任意一人都可 5.如图,在四边形中,,,,,且,则四边形的面积是( ) A. B. C. D. 6.如图,在菱形中,,的垂直平分线交对角线于点,为垂足,连结,则等于( ) A. B. C. D. 7.如图,以Rt△ABC(AC⊥BC)的三边为边,分别向外作正方形,它们的面积分别为S1﹑S2﹑S3,若S1+S2+S3=12,则S1的值是( ) A.4 B.5 C.6 D.7 8.甲、乙两车分别从A,B两地同时出发,沿同一条公路相向而行,相遇时甲、乙所走路程的比为,甲、乙两车离AB中点C的路程千米与甲车出发时间时的关系图象如图所示,则下列说法错误的是( ) A.A,B两地之间的距离为180千米 B.乙车的速度为36千米时 C.a的值为 D.当乙车到达终点时,甲车距离终点还有30千米 二、填空题 9.△ABC的三条边长、、满足,,则△ABC____直角三角形(填“是”或“不是”) 10.如图,在菱形ABCD中,对角线BD=4,AC=3BD,则菱形ABCD的面积为 _____. 11.直角三角形的直角边长分别为,,斜边长为,则__________. 12.如图,在矩形ABCD中,对角线AC,BD相交于点O.若AB=5,AD=12,则OC=______. 13.将一次函数的图象绕原点顺时针旋转90°,所得图象对应的函数解析式是______. 14.如图,在平面直角坐标系中,矩形的顶点、的坐标分别为,,点是的中点,点在上运动,点是坐标平面内的任意一点.若以、、、为顶点的四边形是边长为5的菱形时,则点的坐标为__________. 15.已知直线与轴,轴分别交于点,,点是射线上的动点,点在第一象限,四边形是平行四边形.若点关于直线的对称点恰好落在轴上,则点的坐标为______. 16.如图,在矩形ABCD中,BC=4,CD=3,将△ABE沿BE折叠,使点A恰好落在对角线BD上的点F处,则DE的长是________. 三、解答题 17.计算: (1); (2). 18.如图,在O处的某海防哨所发现在它的北偏东60°方向相距1000米的A处有一艘快艇正在向正南方向航行,经过若干小时后快艇到达哨所东南方向的B处,发现B在O的南偏东45°的方向上.问:此时快艇航行了多少米(即AB的长)? 19.如图,方格纸中每个小正方形的边长均为1,线段和线段的端点均在小正方形的顶点上. (1)在方格纸中画以为一边的正方形,点和点均在小正方形的顶点上; (2)在方格纸中画以为一边的菱形,点和点均在小正方形的顶点上,菱形的面积为20,连接,并直接写出线段的长. 20.如图,在矩形ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证: (1)△ABE≌DCF; (2)四边形AEFD是平行四边形;探究:连结DE,若DE平分∠AEC,直接写出此时四边形AEFD的形状. 21.观察、发现:====﹣1 (1)试化简: ; (2)直接写出:= ; (3)求值:+++…+ . 22.根据天气预报,某地将持续下雨7天,然后放晴.开始下雨的48小时内,某水库记录了水位变化,结果如下: 时间x/h 0 12 24 36 48 … 水位y/m 40 40.3 40.6 40.9 41.2 … 在不泄洪的条件下,假设下雨的这7天水位随时间的变化都满足这种关系. (1)在不泄洪的条件下,写出一个函数解析式描述水位y随时间x的变化规律; (2)当水库的水位达到43m时,为了保护大坝安全,必须进行泄洪. ①下雨几小时后必须泄洪? ②雨天泄洪时,水位平均每小时下降0.05m,求开始泄洪后,水库水位y与时间x之间的函数关系式;并计算泄洪几小时后水位可以降到下雨前的初始高度? 23.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF. (1)求证:四边形BFEP为菱形; (2)当E在AD边上移动时,折痕的端点P、Q也随着移动. ①当点Q与点C重合时, (如图2),求菱形BFEP的边长; ②如果限定P、Q分别在线段BA、BC上移动,直接写出菱形BFEP面积的变化范围. 24.如图,已知直线AB的函数解析式为,与y轴交于点A,与x轴交于点B.点P为线段AB上的一个动点(点P不与A,B重合),连接OP,以PB,PO为邻边作▱OPBC.设点P的横坐标为m,▱OPBC的面积为S. (1)点A的坐标为 ,点B的坐标为 ; (2)①当▱OPBC为菱形时,S= ; ②求S与m的函数关系式,并写出m的取值范围; (3)BC边的最小值为 . 25.如图1,在矩形ABCD中,AB=a,BC=6,动点P从B出发沿射线BC方向移动,作△PAB关于直线PA的对称△PAB′. (1)如图2,当点P在线段BC上运动时,直线PB′与CD相交于点M,连接AM,若∠PAM=45°,请直接写出∠B′AM和∠DAM的数量关系; (2)在(1)的条件下,请求出此时a的值: (3)当a=8时, ①如图3,当点B′落在AC上时,请求出此时PB的长; ②当点P在BC的延长线上时,请直接写出△PCB′是直角三角形时PB的长度. 【参考答案】 一、选择题 1.D 解析:D 【分析】 二次根式有意义的条件为二次根式中的被开方数是非负数. 【详解】 解:若在实数范围内有意义,则a≥0, ∴a的值可以是0,不可以是﹣22,﹣1或, ∴A,B,C选项不合题意. 故选:D. 【点睛】 本题考查了二次根式有意义的条件,解题的关键是利用二次根式中的被开方数是非负数. 2.A 解析:A 【分析】 分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形. 【详解】 解:A.∵32+42=52,∴能构成直角三角形三边; B.∵52+122≠142,∴不能构成直角三角形三边; C.∵62+82≠92,∴不能构成直角三角形三边; D.∵82+132≠152,∴不能构成直角三角形三边. 故选A. 【点睛】 本题考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断. 3.C 解析:C 【解析】 【分析】 由平行四边形的判定分别对各个选项进行判断即可. 【详解】 解:如图所示: A、∵AB∥CD,AD∥BC, ∴四边形ABCD是平行四边形,故本选项不符合题意; B、∵OA=OC,OB=OD, ∴四边形ABCD是平行四边形,故本选项不符合题意; C、∵AB∥CD,AD=BC, ∴四边形ABCD是等腰梯形,故本选项符合题意; D、∵AB=CD,AD=BC, ∴四边形ABCD是平行四边形,故本选项不符合题意, 故选:C. 【点睛】 本题考查了平行四边形的判定以及平行线的判定与性质,熟记平行四边形的判定方法是解题的关键. 4.A 解析:A 【解析】 【分析】 分别按照2,3,5的赋权计算甲,乙,丙的平均数,再录取最高分即可. 【详解】 解:根据题意,甲的最终成绩为(分, 乙的最终成绩为(分, 丙的最终成绩为(分, 所以应该录取甲, 故选:. 【点睛】 本题考查的是加权平均数的含义与计算,理解赋权2,3,5的含义是解题的关键. 5.B 解析:B 【分析】 利用勾股定理求出AC2的值,再由勾股定理的逆定理判定△ACD也为直角三角形,则S四边形ABCD=S△ABC+S△ACD. 【详解】 解:如图,连接AC. 在Rt△ABC中,AC2=AB2+BC2=2, ∵AC2+CD2=AD2, ∴△CDA也为直角三角形, ∴S四边形ABCD=S△ABC+S△ACD=AB×BC+AC×CD=. 故四边形ABCD的面积是.故选B. 【点睛】 本题考查勾股定理及其逆定理的应用.解答此题的关键是作出辅助线,构造出直角三角形,求出AC的长. 6.D 解析:D 【解析】 【分析】 连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF. 【详解】 解:如图,连接BF, 在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC, ∠ABC=180°-∠BAD=180°-80°=100°, ∵EF是线段AB的垂直平分线, ∴AF=BF,∠ABF=∠BAC=40°, ∴∠CBF=∠ABC-∠ABF=100°-40°=60°, ∵在△BCF和△DCF中, , ∴△BCF≌△DCF(SAS), ∴∠CDF=∠CBF=60°, 故选:D. 【点睛】 本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键. 7.C 解析:C 【解析】 【分析】 根据正方形的面积公式结合勾股定理就可发现大正方形的面积是两个小正方形的面积和,即可得出答案. 【详解】 解:∵由勾股定理得:AC2+BC2=AB2, ∴S3+S2=S1, ∵S1+S2+S3=12, ∴2S1=12, ∴S1=6, 故选:C. 【点睛】 题考查了勾股定理和正方形面积的应用,注意:分别以直角三角形的边作相同的图形,则两个小图形的面积等于大图形的面积. 8.D 解析:D 【分析】 根据两车相遇时甲、乙所走路程的比为2:3及两车相遇所用时间,即可求出A、B两地之间的距离;根据乙车的速度=相遇时乙车行驶的路程÷两车相遇所用时间,进而求出乙车的速度;根据甲车的速度=相遇时甲车行驶的路程÷两车相遇所用时间即可求出甲车的速度,然后根据时间=两地之间路程的一半÷甲车的速度,进而求出a值;根据时间=两地之间路程÷乙车的速度求出乙车到达终点所用时间,再求出该时间内甲车行驶的路程,用两地间的距离与甲车行驶的路程之差即可得出结论. 【详解】 解:A、A、B两地之间的距离为18×2÷=180(千米),所以A正确; B、乙车的速度为180÷3=36(千米/小时),所以B正确; C、甲车的速度为180=24(千米/小时), a的值为180÷2÷24=3.75,所以C正确; D、乙车到达终点的时间为180÷36=5(小时), 甲车行驶5小时的路程为24×5=120(千米), 当乙车到达终点时,甲车距离终点距离为180﹣120=60(千米),所以D错误. 故选:D 【点睛】 本题考查了一次函数的实际应用,结合函数的图象并逐一求出选项的内容判断正误是解题的关键 二、填空题 9.A 解析:不是 【解析】 【分析】 根据二次根式有意义的条件以及绝对值的非负性,得出的值,运用勾股定理逆定理验证即可. 【详解】 解:∵, ∴,, ∴, 则, ∴, ∴△ABC不是直角三角形, 故答案为:不是. 【点睛】 本题考查了二次根式有意义的条件,绝对值的非负性,勾股定理逆定理等知识点,根据题意得出的值是解本题的关键. 10.A 解析:24 【解析】 【分析】 先求出AC,由菱形的面积公式可求解. 【详解】 解:∵BD=4,AC=3BD, ∴AC=12, ∴菱形ABCD的面积===24, 故答案为:24. 【点睛】 本题考查了菱形的性质,利用菱形的性质求解面积是解题的关键.对角线互相垂直的四边形的面积等于对角线积的一半. 11.289 【解析】 【分析】 根据勾股定理计算即可. 【详解】 根据勾股定理得:斜边的平方=x2=82+152=289. 故答案为:289. 【点睛】 本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答本题的关键. 12.B 解析:5 【分析】 根据勾股定理得出BD,进而利用矩形的性质得出OC即可. 【详解】 解:∵四边形ABCD是矩形, ∴∠BAD=90°,AC=BD,OC=OA, 在Rt△ABD中,BD=, ∴OC=AC==. 故答案为:6.5. 【点睛】 此题考查矩形的性质和勾股定理,解答此题的关键是由矩形的性质和根据勾股定理得出BD解答. 13. 【分析】 利用直线与两坐标轴的交点坐标,求得旋转后的对应点坐标,然后根据待定系数法即可求得. 【详解】 解:在一次函数中,令,则,令,则, ∴直线经过点, 将一次函数的图像绕点顺时针旋转90°, 则的对应点,的对应点为, 设对应的函数解析式为:, 将点代入得: ,解得, ∴旋转后对应的函数解析式为:, 故答案为:. 【点睛】 此题主要考查了一次函数图像与几何变换,掌握旋转的性质是解题关键. 14.D 解析:或或 【分析】 因为点是坐标平面内的任意一点.若以、、、为顶点的四边形是边长为5的菱形时,始终有△ODP是腰长为5的等腰三角形,而△ODP是腰长为5的等腰三角形有三种情况,要分类讨论求解即可. 【详解】 解:由题意,若以、、、为顶点的四边形是边长为5的菱形时,始终有△ODP是腰长为5的等腰三角形,而当△ODP是腰长为5的等腰三角形时,有三种情况: (1)如答图①所示,PD=OD=5,点P在点D的左侧. 过点P作PE⊥x轴于点E,则PE=4. 在Rt△PDE中,由勾股定理得:DE=, ∴OE=OD-DE=5-3=2, ∴此时点P坐标为(2,4); (2)如答图②所示,OP=OD=5. 过点P作PE⊥x轴于点E,则PE=4. 在Rt△POE中,由勾股定理得:OE=, ∴此时点P坐标为(3,4); (3)如答图③所示,PD=OD=5,点P在点D的右侧. 过点P作PE⊥x轴于点E,则PE=4. 在Rt△PDE中,由勾股定理得:DE= ∴OE=OD+DE=5+3=8, ∴此时点P坐标为(8,4). 综上所述,点P的坐标为:(2,4)或(3,4)或(8,4); 故答案为:(2,4)或(3,4)或(8,4); 【点睛】 本题考查了分类讨论思想在几何图形中的应用,符合题意的等腰三角形有三种情形,注意不要遗漏. 15.或. 【分析】 先根据题意求得,,,分点在第二象限和第一象限两种情况讨论,根据点关于直线的对称点恰好落在轴上,根据含30度角的直角三角形的性质,在第一象限时候,证明是等边三角形,在第二象限时候证明是 解析:或. 【分析】 先根据题意求得,,,分点在第二象限和第一象限两种情况讨论,根据点关于直线的对称点恰好落在轴上,根据含30度角的直角三角形的性质,在第一象限时候,证明是等边三角形,在第二象限时候证明是等边三角形,利用等边三角形的性质,分别求得点的坐标. 【详解】 与轴,轴分别交于点,, 令,,, 令,,, , , , ,, , ①如图,当点在第二象限时,设交轴于点,交于点,交轴于点, 四边形是平行四边形, ,,, , , , ,, , , , , 点关于直线的对称点为点, , , , 是等边三角形, , , , 点为的中点, ,, , ②如图,当点在第二象限时,延长交轴于点, 则, 点关于直线的对称点为点 ,, , 是等边三角形, , , , ,, , , , . 综合①②可知C的坐标为或. 故答案为: 或. 【点睛】 本题考查了一次函数图像的性质,平行四边形的性质,等边三角形的性质,含30度角的直角三角形的性质,勾股定理,轴对称的性质,此题方法比较多,利用等边三角形的性质是解题的关键. 16.【分析】 由为矩形,得到为直角,且三角形与三角形全等,利用全等三角形对应角、对应边相等得到,,,利用勾股定理求出的长,由求出的长,在中,设,表示出,利用勾股定理列出关于x的方程,求出方程的解得到x 解析: 【分析】 由为矩形,得到为直角,且三角形与三角形全等,利用全等三角形对应角、对应边相等得到,,,利用勾股定理求出的长,由求出的长,在中,设,表示出,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出的长. 【详解】 解:∵矩形, ∴, 由折叠可得, ∴,,, 在中,,, 根据勾股定理得:,即, 设,则有, 根据勾股定理得:, 解得:,则. 故答案为:. 【点睛】 此题考查了翻折变换,矩形的性质,以及勾股定理,熟练掌握定理及性质是解本题的关键. 三、解答题 17.(1);(2) 【分析】 (1)先化简每个二次根式,再合并同类二次根式即可; (2)先计算并化简括号内的,合并结果,再算除法. 【详解】 解:(1) = = =; (2) = = = = 【点睛】 解析:(1);(2) 【分析】 (1)先化简每个二次根式,再合并同类二次根式即可; (2)先计算并化简括号内的,合并结果,再算除法. 【详解】 解:(1) = = =; (2) = = = = 【点睛】 本题主要考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 18.快艇航行了(500+500)米. 【分析】 先根据题意得到∠AOE=60°,∠BOF=45°,从而得到∠AOC=30°,∠BOC=45°,再利用含30度角的直角三角形的性质和勾股定理求解即可. 【详 解析:快艇航行了(500+500)米. 【分析】 先根据题意得到∠AOE=60°,∠BOF=45°,从而得到∠AOC=30°,∠BOC=45°,再利用含30度角的直角三角形的性质和勾股定理求解即可. 【详解】 解:如图:在直角△AOC中,∠AOC=30°,OA=1000米, ∴AC=OA=500米, ∴米, ∵∠FOB=45°, ∴∠COB=45°, ∴OC=BC=米 ∴AB=500+(米). 答:快艇航行了(500+)米. 【点睛】 本题主要考查了勾股定理,方位角,等腰直角三角形的性质与判定,含30度角的直角三角形的性质,解题的关键在于能够熟练掌握相关知识进行求解. 19.(1)见解析;(2)见解析, 【解析】 【分析】 (1)根据正方形的定义画出图形即可; (2)画出底为,高为的菱形即可,利用勾股定理求出. 【详解】 解:(1)如图,正方形即为所求; (2)如图,菱 解析:(1)见解析;(2)见解析, 【解析】 【分析】 (1)根据正方形的定义画出图形即可; (2)画出底为,高为的菱形即可,利用勾股定理求出. 【详解】 解:(1)如图,正方形即为所求; (2)如图,菱形即为所求,. 【点睛】 本题考查作图-应用与设计作图,勾股定理,菱形的性质,正方形的性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型. 20.(1)见解析;(2)证明见解析;探究:菱形 【分析】 (1)根据矩形性质直接根据边角边证明△ABE≌DCF即可; (2)证明AE∥DF,AE=DF,可得结论; 探究:证明FD=FE,可得结论. 【详 解析:(1)见解析;(2)证明见解析;探究:菱形 【分析】 (1)根据矩形性质直接根据边角边证明△ABE≌DCF即可; (2)证明AE∥DF,AE=DF,可得结论; 探究:证明FD=FE,可得结论. 【详解】 .证明:(1)∵四边形ABCD为矩形, ∴AB=DC,∠B=∠DCF, ∵BE=CF, ∴△ABE≌DCF; (2)∵△ABE≌DCF, ∴∠AEB=∠F,AE=DF, ∴AE∥DF, ∴AE=DF, ∴四边形AEFD是平行四边形. (3)此时四边形AEFD是菱形. 理由:如图1中,连接DE. ∵DE平分∠AEC, ∴∠AED=∠DEF, ∵AD∥EF, ∴∠ADE=∠DEF, ∴∠ADE=∠AED, ∴AD=AE, ∵四边形AEFD是平行四边形, ∴四边形AEFD是菱形. 【点睛】 本题属于四边形综合题,考查了矩形的性质,平行四边形的判定和性质,菱形的判定等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 21.(1);(2)(3)9 【解析】 【详解】 试题分析:(1)仔细阅读,发现规律:分母有理化,然后仿照规律计算即可求解; (2)根据规律直接写出结果; (3)根据规律写出结果,找出部分互为相反数的特点 解析:(1);(2)(3)9 【解析】 【详解】 试题分析:(1)仔细阅读,发现规律:分母有理化,然后仿照规律计算即可求解; (2)根据规律直接写出结果; (3)根据规律写出结果,找出部分互为相反数的特点,然后计算即可. 试题解析:(1)原式===; (2)原式==; 故答案为 (3)由(2)可知: 原式=﹣1++﹣+…+﹣ =﹣1+ =9. 22.(1);(2)①120小时;② (120≤x<168),y=(x>168),泄洪56小时后,水位降到下雨前的初始高度 【分析】 (1)观察数据的变化符合一次函数,设出一次函数的解析式,拥待定系数法即 解析:(1);(2)①120小时;② (120≤x<168),y=(x>168),泄洪56小时后,水位降到下雨前的初始高度 【分析】 (1)观察数据的变化符合一次函数,设出一次函数的解析式,拥待定系数法即可求出解析式; (2)①取y=43,算出对应的x即可; ②开始泄洪后的水位为水库的量减去泄洪的量,分别用x表示出对应的值,即可写出y与x的关系式,取y=40,求出x即可. 【详解】 解:(1)观察发现x和y满足一次函数的关系,设y=kx+b, 代入(0,40)(12,40.3)得: , 解得:, ∴; (2)①当y=43时,有, 解得x=120, ∴120小时时必须泄洪; ②在下雨的7天内,即120≤x<168时, , 7天后,即x>168时,此时没有下雨,水位每小时下降米, , 当y=40时,有:, 解得x=180(不合,舍去), 或者,则x=176, 176﹣120=56, ∴泄洪56小时后,水位降到下雨前的初始高度. 【点睛】 本题主要考查一次函数的应用,关键是要会用待定系数法求出一次函数的解析式,根据解析式求出y满足一定条件时对应的x的值. 23.(1)证明过程见解析;(2)①边长为cm,②. 【分析】 (1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=E 解析:(1)证明过程见解析;(2)①边长为cm,②. 【分析】 (1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论; (2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD-DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=cm即可; ②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案. 【详解】 解:(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ, ∴点B与点E关于PQ对称, ∴PB=PE,BF=EF,∠BPF=∠EPF, 又∵EF∥AB, ∴∠BPF=∠EFP, ∴∠EPF=∠EFP, ∴EP=EF, ∴BP=BF=EF=EP, ∴四边形BFEP为菱形; (2)①∵四边形ABCD是矩形, ∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°, ∵点B与点E关于PQ对称, ∴CE=BC=5cm, 在Rt△CDE中,DE==4cm, ∴AE=AD﹣DE=5cm-4cm=1cm; 在Rt△APE中,AE=1,AP=3-PB=3﹣PE, ∴,解得:EP=cm, ∴菱形BFEP的边长为cm; ②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm,BP=cm, , 当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm, , ∴菱形的面积范围:. 【点睛】 本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识,求出PE是本题的关键. 24.(1)(0,4),(﹣3,0);(2)①3;②S=4m+12,﹣3<m<0;(3) 【解析】 【分析】 (1)在中,令x=0得y=4,令y=0得x=﹣3,即可得A(0,4),B(﹣3,0), (2) 解析:(1)(0,4),(﹣3,0);(2)①3;②S=4m+12,﹣3<m<0;(3) 【解析】 【分析】 (1)在中,令x=0得y=4,令y=0得x=﹣3,即可得A(0,4),B(﹣3,0), (2)①当▱OPBC为菱形时,BP=OP,可得P是△AOB斜边上的中点,即得S△BOP=S△AOB=3,故S菱形OPBC=2S△BOP=6; ②过P作PH⊥OB于H,由点P的横坐标为m,且P在线段AB上,直线AB为,可得P(m,m+4),﹣3<m<0,从而S△BOP=OB•PH=2m+6,即得S=2S△BOP=4m+12,﹣3<m<0; (3)根据四边形OPBC是平行四边形,得BC=OP,BC最小即是OP最小,故OP⊥AB时,BC最小,在Rt△AOB中,AB==5,由S△AOB=OA•OB=AB•OP,可得OP=,即得BC最小为. 【详解】 解:(1)在中,令x=0得y=4,令y=0得x=﹣3, ∴A(0,4),B(﹣3,0), 故答案为:(0,4),(﹣3,0); (2)①当▱OPBC为菱形时,BP=OP, ∴∠PBO=∠POB, ∴90°﹣∠PBO=90°﹣∠POB,即∠BAO=∠POA, ∴PA=OP, ∴PA=OP=PB,即P是△AOB斜边上的中点, ∴S△BOP=S△AOB=×OA•OB=3, ∴S菱形OPBC=2S△BOP=6, 故答案为:3; ②过P作PH⊥OB于H,如图: ∵点P的横坐标为m,且P在线段AB上,直线AB为, ∴P(m,m+4),﹣3<m<0, ∴PH=m+4, ∴S△BOP=OB•PH=×3(m+4)=2m+6, ∴S=2S△BOP=4m+12,﹣3<m<0; (3)∵四边形OPBC是平行四边形, ∴BC=OP, BC最小即是OP最小, ∴OP⊥AB时,BC最小,如图: 在Rt△AOB中,AB==5, ∵S△AOB=OA•OB=AB•OP, ∴OP==, ∴BC最小为, 故答案为:. 【点睛】 本题考查一次函数综合应用,涉及三角形面积、平行四边形、菱形等知识,解题的关键是用m的代数式表示P点纵坐标和相关线段的长度. 25.(1);(2);(3)①;②PB的长度为8或或. 【分析】 (1)证明Rt△MAD≌Rt△MAB′(AAS),即可得到∠B′AM=∠DAM; (2)由Rt△MAD≌Rt△MAB′(AAS),得到AD 解析:(1);(2);(3)①;②PB的长度为8或或. 【分析】 (1)证明Rt△MAD≌Rt△MAB′(AAS),即可得到∠B′AM=∠DAM; (2)由Rt△MAD≌Rt△MAB′(AAS),得到AD=AB′=AB=a,即可求得a=6; (3)①利用勾股定理求出AC,在Rt△PB′C中利用勾股定理即可解决问题; ②分三种情形分别求解即可,如图2-1中,当∠PCB′=90°时.如图2-2中,当∠PCB′=90°时.如图2-3中,当∠CPB′=90°时,利用勾股定理即可解决问题. 【详解】 解:(1)∵四边形ABCD是矩形, ∴∠D=∠B=∠BAD=90°, ∵△PAB′与△PAB关于直线PA的对称, ∴△PAB≌△PAB′, ∴AB′=AB,∠AB′P=∠B=90°,∠B′AP=∠BAP, ∵∠PAM=45°,即∠B′AP +∠B′AM =45°, ∴∠DAM +∠BAP =45°, ∴∠DAM=∠B′AM, ∵AM=AM, ∴Rt△MAD≌Rt△MAB′(AAS), ∴∠B′AM=∠DAM; (2)∵由(1)知:Rt△MAD≌Rt△MAB′, ∴AD=AB′=AB=a, ∵AD=BC=6, ∴a=6; (3)①在Rt△ABC中,∠ABC=90°, 由勾股定理得:AC==10, 设PB=x,则PC=6−x, 由对称知:PB′=PB=x,∠AB′P=∠B=90°, ∴∠PB′C=90°, 又∵AB′=AB=8, ∴B′C=2, 在Rt△PB′C中, , ∴(6−x)2=22+x2, 解得:x=, 即PB=; ②∵△PAB′与△PAB关于直线PA的对称, ∴△PAB≌△PAB′, ∴AB′=AB,∠AB′P=∠B=90°,PB′=PB, 设PB′=PB=t, 如图2-1中,当∠PCB'=90°,B'在CD上时, ∵四边形ABCD是矩形, ∴∠D=90°,AB′=AB=CD=8,AD=BC=6, ∴DB′, ∴CB′=CD−DB′=8−2, 在Rt△PCB'中,∵B'P2=PC2+B'C2, ∴t2= (8−2)2+(6−t)2, ∴t=; 如图2-2中,当∠PCB'=90°,B'在CD的延长线上时, 在Rt△ADB'中,DB′, ∴CB′=8+2, 在Rt△PCB'中,则有:(8−2)2+(t−3)2=t2, 解得t=; 如图2-3中,当∠CPB'=90°时, ∵∠B=∠B′=∠BPB′=90°,AB=AB′, ∴四边形AB'PB为正方形, ∴BP=AB=8, ∴t=8, 综上所述,PB的长度为8或或; 【点睛】 本题考查了轴对称的性质,矩形的性质,正方形的判定和性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 数学 期末试卷 测试 word 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文