人教版八年级上学期压轴题强化数学综合试卷带答案.doc
《人教版八年级上学期压轴题强化数学综合试卷带答案.doc》由会员分享,可在线阅读,更多相关《人教版八年级上学期压轴题强化数学综合试卷带答案.doc(18页珍藏版)》请在咨信网上搜索。
人教版八年级上学期压轴题强化数学综合试卷带答案 1.已知,如图1,射线分别与直线相交于两点,的平分线与直线相交于点,射线交于点,设,,且. (1) ______°,______°;直线与的位置关系是______; (2)如图2,若点是射线上任意一点,且,试找出与之间存在的数量关系,证明你的结论; (3)若将图中的射线绕着端点逆时针方向旋转(如图3),分别与相交于点和时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由. 2.如图,在平面直角坐标系中,A(a,0),B(0,b),且|a+4|+b2﹣86+16=0. (1)求a,b的值; (2)如图1,c为y轴负半轴上一点,连CA,过点C作CD⊥CA,使CD=CA,连BD.求证:∠CBD=45°; (3)如图2,若有一等腰Rt△BMN,∠BMN=90°,连AN,取AN中点P,连PM、PO.试探究PM和PO的关系. 3.阅读材料1: 对于两个正实数,由于,所以,即,所以得到,并且当时, 阅读材料2: 若,则 ,因为,,所以由阅读材料1可得:,即的最小值是2,只有时,即=1时取得最小值. 根据以上阅读材料,请回答以下问题: (1)比较大小 (其中≥1); -2(其中<-1) (2)已知代数式变形为,求常数的值 (3)当= 时,有最小值,最小值为 (直接写出答案). 4.已知ABC中,∠BAC=60°,以AB和BC为边向外作等边ABD和等边BCE. (1)连接AE、CD,如图1,求证:AE=CD; (2)若N为CD中点,连接AN,如图2,求证:CE=2AN (3)若AB⊥BC,延长AB交DE于M,DB=,如图3,则BM=_______(直接写出结果) 5.若整式A只含有字母x,且A的次数不超过3次,令,其中a,b,c,d为整数,在平面直角坐标系中,我们定义:M为整式A的关联点,我们规定次数超过3次的整式没有关联点.例如,若整式,则a=0,b=2,c=-5,d=4,故A的关联点为(-5,-11). (1)若,试求出A的关联点坐标; (2)若整式B是只含有字母x的整式,整式C是B与的乘积,若整式C的关联点为(6,15),求整式B的表达式. (3)若整式D=x-2,整式E是只含有字母x的一次多项式,整式F是整式D与整式E的平方的乘积,若整式F的关联点为(-32,0),请直接写出整式E的表达式. 6.如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE. (1)求∠CAM的度数; (2)若点D在线段AM上时,求证:△ADC≌△BEC; (3)当动D在直线AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由. 7.在Rt△中,,∠,点是上一点. (1)如图,平分∠,求证; (2)如图,点在线段上,且∠,∠,求证; (3)如图3,BM⊥AM,M是△ABC的中线AD延长线上一点,N在AD上,AN=BM,若DM=2,则MN= (直接写出结果). 8.问题引入: (1)如图1,在中,点O是和平分线的交点,若,则______(用表示):如图2,,,,则______(用表示); 拓展研究: (2)如图3,,,,猜想度数(用表示),并说明理由; (3)BO、CO分别是的外角、的n等分线,它们交于点O,,,,请猜想______(直接写出答案). 【参考答案】 2.(1)30,30,AB//CD;(2)+=180°,证明见解析;(3)不变,. 【分析】(1)利用非负数的性质可知:α=β=40°,推出∠EMF=∠MFN即可解决问题; (2)结论:∠FMN+∠ 解析:(1)30,30,AB//CD;(2)+=180°,证明见解析;(3)不变,. 【分析】(1)利用非负数的性质可知:α=β=40°,推出∠EMF=∠MFN即可解决问题; (2)结论:∠FMN+∠GHF=180°.只要证明GH∥PN即可解决问题; (3)结论:的值不变,=2.如图3中,作∠PEM1的平分线交M1Q的延长线于R.只要证明∠R=∠FQM1,∠FPM1=2∠R即可; 【详解】解:(1)∵, ∴60-2α=0,β-30=0, ∴α=β=30°, ∴∠PFM=∠MFN=30°,∠EMF=30°, ∴∠EMF=∠MFN, ∴AB∥CD; (2)结论:∠FMN+∠GHF=180°, 理由如下:如图2中, ∵AB∥CD, ∴∠MNF=∠PME, ∵∠MGH=∠MNF, ∴∠PME=∠MGH, ∴GH∥PN, ∴∠GHM=∠FMN, ∵∠GHF+∠GHM=180°, ∴∠FMN+∠GHF=180°; (3)的值不变,=2. 理由如下:如图3中,作∠PEM1的平分线交M1Q的延长线于R, ∵AB∥CD, ∴∠PEM1=∠PFN, ∵∠PER=∠PEM1,∠PFQ=∠PFN, ∴∠PER=∠PFQ, ∴ER∥FQ, ∴∠FQM1=∠R, 设∠PER=∠REB=x,∠PM1R=∠RM1B=y, 则有:,可得∠EPM1=2∠R, ∴∠EPM1=2∠FQM1, ∴=2. 【点睛】本题考查几何变换综合题、平行线的判定和性质、角平分线的定义、非负数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造平行线解决问题. 3.(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析 【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可 解析:(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析 【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可; (2)如图1(见解析),作于E.易证,由三角形全等的性质得,再证明是等腰直角三角形即可; (3)如图2(见解析),延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C.证出和,再利用全等三角形的性质证明是等腰直角三角形即可. 【详解】(1) 由绝对值的非负性和平方数的非负性得: 解得:; (2)如图1,作于E 是等腰直角三角形, ; (3)如图2,延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C ∴ ∵在四边形MCOB中, 是等腰直角三角形 ∴ 是等腰直角三角形 . 【点睛】本题考查了绝对值的非负数和平方数的非负性、三角形全等的判定定理与性质、等腰直角三角形的判定与性质,熟练掌握这些定理与性质是解题关键. 4.(1);(2);(3)0,3. 【分析】(1)根据求差法比较大小,由材料1可知将结果用配方法变形即可得出结论. (2)根据材料(2)的方法,把代数式变形为,解答即可; (3)先将变形为,由材料 解析:(1);(2);(3)0,3. 【分析】(1)根据求差法比较大小,由材料1可知将结果用配方法变形即可得出结论. (2)根据材料(2)的方法,把代数式变形为,解答即可; (3)先将变形为,由材料(2)可知时(即x=0,)有最小值. 【详解】解:(1),所以; 当时,由阅读材料1可得,, 所以; (2) , 所以; (3) ∵x≥0, ∴ 即:当时,有最小值, ∴当x=0时,有最小值为3. 【点睛】本题主要考查了分式的混合运算和配方法的应用.读懂材料并加以运用是解题的关键. 5.(1)见解析 (2)见解析 (3) 【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论; (2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AN 解析:(1)见解析 (2)见解析 (3) 【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论; (2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AND,进而判断出∠BAC=∠ACF,即可判断出△ABC≌△CFA,即可得出结论; (3)先判断出△ABC≌△HEB(ASA),得出,,再判断出△ADM≌△HEM (AAS),得出AM=HM,即可得出结论. (1) 解:∵△ABD和△BCE是等边三角形, ∴BD=AB,BC=BE,∠ABD=∠CBE=60°, ∴∠ABD+∠ABC=∠CBE+∠ABC, ∴∠DBC=∠ABE, ∴△ABE≌△DBC(SAS), ∴AE=CD; (2) 解:如图,延长AN使NF=AN,连接FC, ∵N为CD中点, ∴DN=CN, ∵∠AND=∠FNC, ∴△ADN≌△FCN(SAS), ∴CF=AD,∠NCF=∠AND, ∵∠DAB=∠BAC=60° ∴∠ACD +∠ADN=60° ∴∠ACF=∠ACD+∠NCF=60°, ∴∠BAC=∠ACF, ∵△ABD是等边三角形, ∴AB=AD, ∴AB=CF, ∵AC=CA, ∴△ABC≌△CFA (SAS), ∴BC=AF, ∵△BCE是等边三角形, ∴CE=BC=AF=2AN; (3) 解: ∵△ABD是等边三角形, ∴,∠BAD=60°, 在Rt△ABC中,∠ACB=90°-∠BAC=30°, ∴, 如图,过点E作EH // AD交AM的延长线于H, ∴∠H=∠BAD=60°, ∵△BCE是等边三角形, ∴BC=BE,∠CBE=60°, ∵∠ABC=90°, ∴∠EBH=90°-∠CBE=30°=∠ACB, ∴∠BEH=180°-∠EBH-∠H=90°=∠ABC, ∴△ABC≌△HEB (ASA), ∴,, ∴AD=EH, ∵∠AMD=∠HME, ∴△ADM≌△HEM (AAS), ∴AM=HM, ∴ ∵,, ∴. 故答案为:. 【点睛】此题是三角形综合题,主要考查了等边三角形的性质,含30°角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键. 6.(1) (2) (3)或 【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标; (2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关 解析:(1) (2) (3)或 【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标; (2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关联点为,列出关于 , 的等式,解出、的值即可; (3)设,根据题意求出,进而表达出,,,的值,再根据的关联点为,列出关于,的等式,解出、的值即可. (1) 解:(1), ,,,, ,, 的关联点坐标为:, 故笞案为:; (2) 整式是只含有字母的整式,整式是与的乘积, 是二次多项式,且的次数不能超过次, 中的次数为次, 设 , , ,,,, 整式的关联点为, ,, 解得:,, ; (3) 根据题意:设, , ,,,, 整式 的关联点为, ,, ,, , 把代入得: , 解得: , 或, 或. 【点睛】本题主要考查整式的乘法,掌握整式的乘法是解决问题的关键. 7.(1)30°;(2)见解析;(3)是定值,理由见解析 【分析】(1)根据等边三角形的性质可以直接得出结论; (2)根据等边三角形的性质就可以得出,,,由等式的性质就可以,根据就可以得出; (3 解析:(1)30°;(2)见解析;(3)是定值,理由见解析 【分析】(1)根据等边三角形的性质可以直接得出结论; (2)根据等边三角形的性质就可以得出,,,由等式的性质就可以,根据就可以得出; (3)分情况讨论:当点在线段上时,如图1,由(2)可知,就可以求出结论;当点在线段的延长线上时,如图2,可以得出而有而得出结论;当点在线段的延长线上时,如图3,通过得出同样可以得出结论. 【详解】解:(1)是等边三角形, . 线段为边上的中线, , . 故答案为:30°; (2)与都是等边三角形, ,,, , . 在和中, , ; (3)是定值,, 理由如下: ①当点在线段上时,如图1, 由(2)可知,则, 又, , 是等边三角形,线段为边上的中线, 平分,即, . ②当点在线段的延长线上时,如图2, 与都是等边三角形, ,,, , , 在和中, , , , 同理可得:, . ③当点在线段的延长线上时,如图3, 与都是等边三角形, ,,, , , 在和中, , , , 同理可得:, , ,, . 综上,当动点在直线上时,是定值,. 【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键. 8.(1)见解析 (2)见解析 (3)8 【分析】(1)如图1中,作DH⊥AB于H.证明△ADC≌△ADH即可解决问题. (2)如图2中,过点C作CM⊥CE交AD的延长线于M,连接BM.证明△A 解析:(1)见解析 (2)见解析 (3)8 【分析】(1)如图1中,作DH⊥AB于H.证明△ADC≌△ADH即可解决问题. (2)如图2中,过点C作CM⊥CE交AD的延长线于M,连接BM.证明△ACE≌△BCM(SAS),推出AE=BM,再利用直角三角形30度角的性质即可解决问题. (3)如图3中,作CH⊥MN于H.证明得到,进一步证明即可解决问题. (1) 证明:如图1中,作DH⊥AB于H. ∵∠ACD=∠AHD=90°,AD=AD,∠DAC=∠DAH, ∴△ADC≌△ADH(ASA), ∴AC=AH,DC=DH, ∵CA=CB,∠C=90°, ∴∠B=45°, ∵∠DHB=90°, ∴∠HDB=∠B=45°, ∴HD=HB, ∴BH=CD, ∴AB=AH+BH=AC+CD. (2) 如图2中,作CM⊥CE交AD的延长线于M,连接BM. , , , , , ∵∠ACB=∠ECM=90°, , , ∵CA=CB,CE=CM, ∴△ACE≌△BCM(SAS), ∴AE=BM, ∵在Rt△EMB中,∠MEB=30°, ∴BE=2BM=2AE. (3) 解:如图3中,作CH⊥MN于H. , , , , , , , ,, , , , , 是的中线, , ,, , , , . 【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 9.(1), (2),理由见解析 (3) 【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案; (2)根据三角形内角和定理得,而,代入化简即可; (3)由(2)同理可得答案. 解析:(1), (2),理由见解析 (3) 【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案; (2)根据三角形内角和定理得,而,代入化简即可; (3)由(2)同理可得答案. (1) 解:点是和平分线的交点, , , 在中, , , , , 故答案为:; 在中,, , , , , 故答案为:; (2) 解:,理由如下: ,,, , , , , ; (3) 解:在中,, , , , , 故答案为:. 【点睛】本题主要考查了三角形内角和定理,角平分线的定义,解题的关键是采取类比的方法,同时渗透了整体思想.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版八 年级 上学 压轴 强化 数学 综合 试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文