人教版八年级下册数学期末试卷模拟训练(Word版含解析)(1).doc
《人教版八年级下册数学期末试卷模拟训练(Word版含解析)(1).doc》由会员分享,可在线阅读,更多相关《人教版八年级下册数学期末试卷模拟训练(Word版含解析)(1).doc(29页珍藏版)》请在咨信网上搜索。
人教版八年级下册数学期末试卷模拟训练(Word版含解析)(1) 一、选择题 1.若二次根式有意义,则的取值范围是( ). A. B. C. D. 2.下列几组数中,能作为直角三角形三边长度的是( ) A.2,3,4 B.4,5,6 C.6,8,11 D.5,12,13 3.平移、旋转与轴对称都是图形之间的一些主要变换,为了得到▱ABCD(如图),下列说法错误的是( ) A.将线段AB沿BC的方向平移BC长度可以得到▱ABCD B.将△ABC绕边AC的中点O旋转180°可以得到▱ABCD C.将△AOB绕点O旋转180°可以得到▱ABCD D.将△ABC沿AC翻折可以得到▱ABCD 4.某校有17名同学报名参加信息学竞赛,测试成绩各不相同,学校取前8名参加决赛,小童已经知道了自己的成绩,他想知道自己能否参加决赛,还需要知道这17名同学测试成绩的( ) A.中位数 B.平均数 C.众数 D.方差 5.如图,四边形ABCD中,E,F分别是边AD,BC的中点,G,H分别是对角线BD,AC的中点,若四边形EGFH为矩形,则四边形ABCD需满足的条件是( ) A.AC=BD B.AC⊥BD C.AB=DC D.AB⊥DC 6.如图,在菱形中,,的垂直平分线交对角线于点,为垂足,连结,则等于( ) A. B. C. D. 7.如图,在等腰Rt△ACD中,∠ACD=90°,AC=DC,且AD=2,以边AD、AC、CD为直径画半圆,其中所得两个月形图案AGCE和DHCF(图中阴影部分)的面积之和等于( ) A. B. C. D. 8.如图所示,已知点C(2,0),直线与两坐标轴分别交于A、B两点,D、E分别是AB、OA上的动点,当的周长取最小值时,点D的坐标为( ) A.(2,1) B.(3,2) C.(,2) D.(,) 二、填空题 9.若式子在实数范围内有意义,则的取值范围是________. 10.若菱形的两条对角线长分别是8cm和10cm,则该菱形的面积是________. 11.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有____m. 12.如图:已知在矩形中,为对角线的交点,,于点,,则的长为___________. 13.若直线y=kx+b与直线y=2x﹣3平行且经过点A(1,﹣2),则kb=_____. 14.在矩形中,,的平分线交所在的直线于点,若,则的长为__________. 15.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交ll于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点作y轴的垂线交l2于点A4,…依次进行下去.则点A4的坐标为__;点的坐标为_____;点A2021的坐标为____. 16.如图,正方形边长为,点在边上,交于点,,则的长度是_______. 三、解答题 17.计算: (1); (2). 18.一轮船在大海中航行,它先向正北方向航行千米,接着它又掉头向正东方向航行千米. (1)此时轮船离出发点多少千米? (2)若轮船每航行千米需耗油升,那么在此过程中轮船共耗油多少升? 19.下图各正方形网格中,每个小正方形的边长都是1,每个小正方形的顶点都称为格点. (1)在图①中,画出一条以格点为端点,长度为的线段. (2)在图②中,以格点为顶点,画出三边长分别为3,,的三角形. 20.如图所示,的对角线的垂直平分线与边,分别相交于点,.求证:四边形是菱形. 21.阅读下列材料,然后回答问题: 在进行二次根式的化简与运算时,有时会碰上如,这样的式子其实我们还可以进一步化简.例如:,这种化简的步骤叫做分母有理化. (1)请参照上述方法化简: (2)猜想: (用含n的式子表示) (3)化简: 22.某种子站销售一种玉米种子,单价为5元千克,为惠民促销,推出以下销售方案:付款金额(元)与购买种子数量(千克)之间的函数关系如图所示. (1)当时,求与之间的的函数关系式: (2)徐大爷付款20元能购买这种玉米种子多少千克? 23.在平行四边形中,以为腰向右作等腰,,以为斜边向左作,且三点,,在同一直线上. (1)如图①,若点与点重合,且,,求四边形的周长; (2)如图②,若点在边上,点为线段上一点,连接,点为上一点,连接,且,,求证:; (3)如图③,若,,,是中点,是上一点,在五边形内作等边,连接、,直接写出的最小值. 24.如图,平面直角坐标系中,O为原点,直线y=x+1分别交x轴、y轴于点A、B,直线y=﹣x+5分别交x轴、y轴于点C、D,直线AB、CD相交于点E. (1)请直接写出A、D的坐标; (2)P为直线CD上方直线AE上一点,横坐标为m,线段PE长度为d,请求出d与m的关系式; (3)在(2)的条件下,连接PC、PD,若∠CPD=135°,求点P的坐标. 25.如图,菱形纸片的边长为翻折使点两点重合在对角线上一点分别是折痕.设. (1)证明:; (2)当时,六边形周长的值是否会发生改变,请说明理由; (3)当时,六边形的面积可能等于吗?如果能,求此时的值;如果不能,请说明理由. 26.如图1,若是的中位线,则,解答下列问题: (1)如图2,点是边上一点,连接、 ①若,则 ; ②若,,连接,则 , , . (2)如图3,点是外一点,连接、,已知:,,,求的值; (3)如图4,点是正六边形内一点,连接、、,已知:,,,求的值. 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据被开方数大于等于0列不等式求解即可. 【详解】 解:由题意得,x-2≥0, 解得x≥2. 故选:B. 【点睛】 本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义. 2.D 解析:D 【分析】 利用勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可. 【详解】 解:A、22+32≠42,故不是直角三角形,故错误; B、42+52≠62,故不是直角三角形,故错误; C、62+82≠112,故不是直角三角形,故错误; D、52+122=132,故是直角三角形,故正确. 故选D. 【点睛】 本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断. 3.D 解析:D 【解析】 【分析】 利用平移变换,旋转变换,翻折变换的性质一一判断即可. 【详解】 解:A、将线段AB沿BC的方向平移BC长度可以得到▱ABCD,正确,本选项不符合题意. B、将△ABC绕边AC的中点O旋转180°可以得到▱ABCD,正确,本选项不符合题意. C、将△AOB绕点O旋转180°可以得到▱ABCD,正确,本选项不符合题意. D、将△ABC沿AC翻折不可以得到▱ABCD,本选项符合题意. 故选:D. 【点睛】 本题考查旋转变换,平移变换,翻折变换等知识,解题的关键是理解旋转变换,翻折变换,平移变换的性质. 4.A 解析:A 【解析】 【分析】 由于比赛取前8名参加决赛,共有17名选手参加,根据中位数的意义分析即可. 【详解】 解:由于总共有17个人,且他们的分数互不相同,第9名的成绩是中位数, 要判断是否进入前8名,故应知道自己的成绩和中位数. 故选:A. 【点睛】 本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数. 5.D 解析:D 【分析】 由题意易得GF∥EH∥CD,GE∥FH∥AB,则有四边形EGFH为平行四边形,由矩形的性质可得∠GFH=90°,然后可得∠GFB+∠HFC=90°,最后问题可求解. 【详解】 解:∵E,F分别是边AD,BC的中点,G,H分别是对角线BD,AC的中点, ∴GF∥EH∥CD,GE∥FH∥AB, ∴四边形EGFH为平行四边形,∠GFB=∠DCB,∠HFC=∠ABC, 若四边形EGFH为矩形,则有∠GFH=90°, ∴∠GFB+∠HFC=90°, ∴∠DCB+∠ABC=90°, ∴AB⊥DC; 故选D. 【点睛】 本题主要考查矩形的性质与判定及三角形中位线,熟练掌握矩形的性质与判定及三角形中位线是解题的关键. 6.D 解析:D 【解析】 【分析】 连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF. 【详解】 解:如图,连接BF, 在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC, ∠ABC=180°-∠BAD=180°-80°=100°, ∵EF是线段AB的垂直平分线, ∴AF=BF,∠ABF=∠BAC=40°, ∴∠CBF=∠ABC-∠ABF=100°-40°=60°, ∵在△BCF和△DCF中, , ∴△BCF≌△DCF(SAS), ∴∠CDF=∠CBF=60°, 故选:D. 【点睛】 本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键. 7.D 解析:D 【解析】 【分析】 由等腰三角形的性质及勾股定理可求解AC=CD=2,进而可求得S△ACD=2,再利用阴影部分的面积=以AC为直径的圆的面积+△ACD的面积-以AD为直径的半圆的面积计算可求解. 【详解】 解:在等腰Rt△ACD中,∠ACD=90°,AC=DC,AD=2, ∴AC2+DC2=AD2=8, ∴AC=CD=2, ∴S△ACD=AC•DC=2, ∴ =π+2-π =2, 故选:D. 【点睛】 本题主要考查了等腰直角三角形,勾股定理,理清阴影部分的面积=以AC为直径的圆的面积+△ACD的面积-以AD为直径的半圆的面积是解题的关键. 8.D 解析:D 【分析】 如图,点C关于OA的对称点,点C关于直线AB的对称点,求出点的坐标,连接与AO交于点E,与AB交于点D,此时△DEC周长最小,再求出直线DE的解析式,联立两条直线的解析式即可求出交点D的坐标. 【详解】 如图,点C关于OA的对称点,点C关于直线AB的对称点 ∵直线AB的解析式为 ∴直线的解析式为 由 解得 ∴直线AB与直线的交点坐标为 ∵K是线段的中点 ∴ 连接与AO交于点E,与AB交于点D,此时△DEC周长最小 设直线DE的解析式为 可得 解得 ∴直线DE的解析式为 联立直线DE和直线直线可得 解得 ∴点D的坐标为 故答案为:D. 【点睛】 本题考查了一次函数的几何问题,掌握一次函数的性质是解题的关键. 二、填空题 9. 【解析】 【分析】 利用分式和二次根式有意义的条件确定关于的不等式,从而确定答案. 【详解】 解:根据题意得:且, ∴, 解得:, 故答案为:. 【点睛】 考查了二次根式及分式有意义的条件,属于基础题,比较简单. 10.40 【解析】 【分析】 根据菱形的面积公式计算即可. 【详解】 解:这个菱形的面积为: ×8×10=40cm2, 故答案为:40 【点睛】 本题主要考查菱形的面积公式,熟知菱形的面积等于两条对角线乘积的一半是解题关键. 11.A 解析:4 【解析】 【详解】 解:解如图所示:在RtABC中,BC=3,AC=5, 由勾股定理可得:AB2+BC2=AC2 设旗杆顶部距离底部AB=x米,则有32+x2=52, 解得x=4 故答案为:4. 【点睛】 本题考查勾股定理. 12. 【分析】 先证明是等边三角形,再利用等边三角形的性质求解再求解 再利用勾股定理即可得到答案. 【详解】 解: 矩形,为对角线的交点,, 是等边三角形, , 故答案为: 【点睛】 本题考查的是矩形的性质,等边三角形的判定与性质,含的直角三角形的性质,勾股定理的应用,掌握以上知识是解题的关键. 13.A 解析:-8 【分析】 由平行线的关系得出k=2,再把点A(1,﹣2)代入直线y=2x+b,求出b,即可得出结果. 【详解】 解:∵直线y=kx+b与直线y=2x﹣3平行, ∴k=2, ∴直线y=2x+b, 把点A(1,﹣2)代入得:2+b=﹣2, ∴b=﹣4, ∴kb=﹣8. 故答案为:﹣8. 【点睛】 本题主要考查了一次函数图像的性质,求一次函数的解析式,解题的关键在于能够熟练掌握相关知识进行求解. 14.5或1 【分析】 当点在上时,根据平行线的性质和角平分线的定义可得,可得的长;当点在的延长线上时,同理可求出的长. 【详解】 解:如图1,当点在上时, 四边形是矩形, ,, , 平分, , , , , ; 如图2,当点在的延长线上时,同理, . 故答案为:5或1. 【点睛】 本题主要考查了矩形的性质,等腰直角三角形的性质等知识,解题的关键是正确画出两种图形. 15.(4,﹣4) (﹣8,8) (21010,21011) 【分析】 根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出 解析:(4,﹣4) (﹣8,8) (21010,21011) 【分析】 根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合6=1×4+2;2021=505×4+1即可找出点A2021的坐标. 【详解】 解:观察,发现规律: A1(1,2), A2(-2,2), A3(-2,-4), A4(4,-4), A5(4,8),…, ∴“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”, ∵6=1×4+2, A6(﹣8,8) ∵2021=505×4+1, ∴A2021的坐标为(21010,21011). 故答案为:(4,﹣4); (﹣8,8);(21010,21011). 【点睛】 本题考查了一次函数图象上点的坐标特征以及规律型中坐标的变化,解题的关键是找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”. 16.【分析】 先根据勾股定理求得AC的长,继而求得CE的长,证得CP=CE,即可求解. 【详解】 ∵正方形边长为, ∴AC=2, ∵, ∴AE=AD=2, ∴CE=AC=AE=, ∵AD∥PC, ∴, 解析: 【分析】 先根据勾股定理求得AC的长,继而求得CE的长,证得CP=CE,即可求解. 【详解】 ∵正方形边长为, ∴AC=2, ∵, ∴AE=AD=2, ∴CE=AC=AE=, ∵AD∥PC, ∴, 又∵,且, ∴, ∴CP=CE=, ∴BP=BC- CP=2-()=. 故答案为:. 【点睛】 本题考查了正方形的性质,勾股定理,等腰三角形的性质和判定,求得CP=CE=是解题的关键. 三、解答题 17.(1);(2) 【分析】 (1)根据二次根式乘法法则及零指数幂计算即可; (2)先把各二次根式化为最简二次根式,然后合并同类二次根式即可. 【详解】 解:(1) =+2+1 =+3; (2) =3- 解析:(1);(2) 【分析】 (1)根据二次根式乘法法则及零指数幂计算即可; (2)先把各二次根式化为最简二次根式,然后合并同类二次根式即可. 【详解】 解:(1) =+2+1 =+3; (2) =3-2-2, =-2. 【点睛】 此题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算;注意乘法运算公式的运用. 18.(1)17千米;(2)9.2升 【分析】 (1)根据题意画出航行图,然后利用勾股定理求解即可; (2)根据轮船航行的距离以及轮船每航行1千米需耗油0.4升进行求解即可. 【详解】 解:(1)如图所示 解析:(1)17千米;(2)9.2升 【分析】 (1)根据题意画出航行图,然后利用勾股定理求解即可; (2)根据轮船航行的距离以及轮船每航行1千米需耗油0.4升进行求解即可. 【详解】 解:(1)如图所示,O为轮船出发点,A为轮船掉头的地点,B是轮船掉头后向正东方向航行15千米后的地点 ∵一轮船在大海中航行,它先向正北方向航行8千米,接着它又掉头向正东方向航行15千米, ∴OA=8千米,AB=15千米,∠BAO=90°, ∴千米, ∴此时轮船离出发点17千米, 答:此时轮船离出发点17千米; (2)由题意得在此过程中轮船共耗油升, 答:在此过程中轮船共耗油9.2升. 【点睛】 本题主要考查了勾股定理在航海中的应用,解题的关键在于能够熟练掌握勾股定理. 19.(1)见解析;(2)见解析 【解析】 【分析】 (1)根据 实际上直角边长为2和2的直角三角形的斜边长,即可解答; (2) 实际上是直角边长为2和2的直角三角形的斜边长,实际上是直角边长为2和1的直 解析:(1)见解析;(2)见解析 【解析】 【分析】 (1)根据 实际上直角边长为2和2的直角三角形的斜边长,即可解答; (2) 实际上是直角边长为2和2的直角三角形的斜边长,实际上是直角边长为2和1的直角三角形的斜边长,即可解答. 【详解】 (1)本题中 实际上直角边长为2和2的直角三角形的斜边长,如图①线段即为所求线段; (2)本题中 实际上是直角边长为2和2的直角三角形的斜边长,实际上是直角边长为2和1的直角三角形的斜边长,据此可找出如图②中的三角形即为所求. 【点睛】 本题主要考查了勾股定理,解题的关键是确定直角三角形的直角边长后根据边长画出所求的线段和三角形. 20.见解析 【分析】 根据题意先证明,即可证明四边形为平行四边形,根据可得结果. 【详解】 证明:∵四边形是平行四边形 ∴,, ∴, ∵是的垂直平分线, ∴, 在与中, ∴, ∴, ∴四边形为平行四边形 解析:见解析 【分析】 根据题意先证明,即可证明四边形为平行四边形,根据可得结果. 【详解】 证明:∵四边形是平行四边形 ∴,, ∴, ∵是的垂直平分线, ∴, 在与中, ∴, ∴, ∴四边形为平行四边形, 又∵, ∴四边形为菱形. 【点睛】 本题主要考查了菱形的判定,平行四边形的判定与性质,熟知判定定理以及性质是解题的关键. 21.(1);(2);(3) 【解析】 【分析】 (1)根据材料运用方法进行分母有理化即可; (2)根据题意总结规律即可; (3)先分母有理化,再根据式子的规律即可求解. 【详解】 解:(1) = =; 解析:(1);(2);(3) 【解析】 【分析】 (1)根据材料运用方法进行分母有理化即可; (2)根据题意总结规律即可; (3)先分母有理化,再根据式子的规律即可求解. 【详解】 解:(1) = =; (2) = = 故答案为:; (3) = = = 【点睛】 本题主要考查了分母有理化,解题的关键是根据材料能正确的进行分母有理化. 22.(1);(2)4.5千克. 【分析】 (1)当x≥2时函数为一次函数,用待定系数法求函数解析式; (2)把y=20代入(1)中解析式求解即可. 【详解】 解:(1)当时,设与之间的的函数关系式为, 解析:(1);(2)4.5千克. 【分析】 (1)当x≥2时函数为一次函数,用待定系数法求函数解析式; (2)把y=20代入(1)中解析式求解即可. 【详解】 解:(1)当时,设与之间的的函数关系式为, 将点,带入解析式得 解得 ∴. (2)将时,带入中解得千克. 答:徐大爷付款20元能购买这种玉米种子4.5千克. 【点睛】 本题考查一次函数的应用,关键是用待定系数法求函数解析式. 23.(1);(2)证明见解析;(3). 【分析】 (1)由平行四边形的性质得到AD//BC,∠ABC=∠ADC= 60°,再根据F、D、A 三点共线得到∠ABC=∠FAB= 60°,再分别求出线段的BF 解析:(1);(2)证明见解析;(3). 【分析】 (1)由平行四边形的性质得到AD//BC,∠ABC=∠ADC= 60°,再根据F、D、A 三点共线得到∠ABC=∠FAB= 60°,再分别求出线段的BF、FD、BD长度即可; (2)连接QE,延长FP至点H,使得PH = FQ,由“SAS”可证△FAB≌△QAE,△FBP≌△QEH,可得EP= BP; (3)连接MC,以MC为边作等边三角形MEC,过点C作CP⊥AD于P,连接EH,并延长EH交CP于G,过点E作AD的垂线交BC于R,交AD 于Q,由“SAS”可证△M EH≌△MCN,可得 ∠MEH =∠MCN,可证EHBC,则点H在过点E平行BC的直线上运动,作点C关于EH 的对称点C´,连接BC´, 即的BC´长度为BH + CH的最小值,利用勾股定理列出方程组可求解. 【详解】 解:(1)如图①,在平行四边形ABCD中,∠ADC=60° ∴AD//BC,∠AВC= ∠ADC = 60 ° ∵ F、 D、A三点共线 ∴FD∥BC ∴ ∠ABC= ∠FAB = 60° ∵E、D重合,AB= AE,AD= 2 ∴AD= AE= AB= 2= BC= CD ∴∠ADB=30° 在Rt△FBD,∠AFB= 90°,∠ABF= 90°- 60° = 30° ∴AF= 1 ∴ ∴四边形CBFD的周长; (2)如图②,连接QE,延长FP至点H,使得 PH = FQ,连接EH,则PH + PQ= FQ+ PQ ∴FP= QH ∵∠AFB = 90° ∴∠2+∠3= 90° ∵∠2+ ∠1 = 90° ∴∠1 = ∠3 ∴AF= AQ 在平行四边形ABCD中,F、A、 D共线, ∴AB∥CD,∠C+ ∠D= 180 ° ∴∠5= ∠D ∵∠C+ ∠QAE = 180 ∴∠4= ∠D ∴∠4= ∠5 ∵ AB= AE ∴ △FAB≌△QAE(SAS) ∴∠AQE= ∠AFB= 90°,FB= QE ∴∠6+ ∠1 = 90°, ∠2= ∠6 ∴△FBP≌△QEH (SAS) ∴BP= ЕН,∠H = ∠7 ∴∠7= ∠8 ∴∠H= ∠8 ∴ЕН = ЕР ∴ EР = BP (3)如图③,连接MC,以MC为边作等边三角形MEC,过点C作CP⊥AD于P,连接EH,并延长EH交CP于G,过点E作AD的垂线交BC于R,交AD于Q ∵△M EC和△MNH是等边三角形, ∴ME= MC,MN = MH,∠EMC=∠HMN=60° ∴∠EMH =∠CMN ∴△MEH≌△MCN (SAS) ∴∠MEH =∠MCN ∵四边形ABCD是平行四边形,∠ABC= 60° ∴∠ADC=∠ABC=60°,∠BCD=120°,AD= BC= 8,AB= CD= 6,AD∥ BC ∴∠BCE+∠MCD=∠BCD-∠ECM = 120°- 60° = 60° ∵∠MЕН+∠CEH=∠MEC=60° ∴∠CEH = ∠ЕСВ ∴EН// BC ∴点H在过点E平行BC的直线上运动, 作点C关于EH的对称点C´,连接BC´,即BC´的长度为BH + CH的最小值 ∵∠ADC=60°,CD⊥AD ∴∠PCD= 30, ∴, ∵点M是AD的中点 ∴AM=MD=4 ∴MP= 1 ∴ ∴ ∵RQ⊥AD,CP⊥AD,AD∥BC,EG// BC ∴RQ⊥BC,PC⊥ AD,RQ⊥EG, PC⊥ EG ∴四边形CPQR是矩形,四边形ERCG是矩形 ∴ ,, 设, 在Rt△ERC中 在Rt△QEM中 ∴ 解得或(舍去) ∴解得 , ∴ ∵C关于EH的对称点是C´ ∴ ∴ ∴ ∴BH + CH的最小值为. 【点睛】 本题是四边形综合题,考查了平行四边形的性质,等腰三角形的性质,矩形的性质与判定,全等三角形的性质与判定,勾股定理等知识,确定H的运动轨迹是解题的关键. 24.(1)A(﹣1,0),D(0,5);(2)d=(m﹣2);(3)点P的坐标为(3,4). 【解析】 【分析】 (1)分别令直线y=x+1,直线y=-x+5x0,y=0,即可求得A点坐标和D点坐标; 解析:(1)A(﹣1,0),D(0,5);(2)d=(m﹣2);(3)点P的坐标为(3,4). 【解析】 【分析】 (1)分别令直线y=x+1,直线y=-x+5x0,y=0,即可求得A点坐标和D点坐标; (2))过点P作PM⊥x轴,交CD于F,M是垂足,先求出P、F的坐标,即可求出PE=2m4,再通过已知和辅助线判断△PEF是等腰直角三角形,从而得出PE=PF,即可得出结论; (3)先过点C作CN⊥DP,交DP的延长线于点N,连接OP,ON,过O作OG⊥ON,交PD的延长线于G,然后证明△ODG≌△OCN,再证明△OCN≌△OPN,得出OP=5,在直角三角形OMP中用勾股定理求解即可. 【详解】 解:(1)∵直线y=x+1分别交x轴、y轴于点A、B, ∴令x=0,则y=1,令y=0,则x=﹣1, ∴A(﹣1,0),B(0,1), 又∵直线y=﹣x+5分别交x轴、y轴于点C、D, ∴令x=0,则y=5,令y=0,则x=5, ∴C(5,0),D(0,5) ∴A(﹣1,0),D(0,5); (2)过点P作PM⊥x轴,交CD于F,M是垂足,如图所示, 由(1)知OA=OB,OC=OD, ∴∠ABO=∠DCO=45°, ∴△AEC为等腰直角三角形, ∴∠PEF=90°, 又∵∠DCO=45°, ∴∠EFP=∠MFC=45°, ∴△PEF为等腰直角三角形, ∴PE=EF=PF, ∵P在直线y=x+1上,P的横坐标为m, ∴P(m,m+1), F在直线y=﹣x+5上,F的横坐标为m, ∴F(m,﹣m+5), ∴PF=m+1﹣(﹣m+5)=m+1+m﹣5=2m﹣4, ∴d=PE=PF=(2m﹣4)=(m﹣2); (3)过点C作CN⊥DP,交DP的延长线于点N,连接OP,ON, 过O作OG⊥ON,交PD的延长线于G,如图所示, ∵∠DOC=∠CND=90°, ∴∠ODN+∠OCN=180°, 又∵∠ODG+∠ODN=180°, ∴∠ODG=∠OCN, ∵∠DOG=90°﹣∠DON,∠CON=90°﹣∠DON, ∴∠DOG=∠CON, 在△ODG和△OCN中, ∴△ODG≌△OCN(ASA), ∴OG=ON, ∴∠ONG=∠OGN=45°, ∴∠CNO=∠PNO=45°, ∵∠CPD=135°,CN⊥DP, ∴∠CPN=45°, ∴∠PCN=45°, ∴NP=NC, 在△OCN和△OPN中, , ∴△OCN≌△OPN(SAS), ∴OP=OC=5, 在Rt△OPM中, OP2=OM2+MP2, ∴52=m2+(m+1)2, 解得:m=3或m=﹣4(舍去), ∴m+1=4, ∴点P的坐标为(3,4). 【点睛】 此题考查了一次函数与坐标轴的交点,勾股定理,坐标与图形性质,等腰直角三角形的判定与性质,关键是通过作辅助线证明三角形全等,把条件转化到直角三角形OPM中. 25.(1)见解析;(2)不变,见解析;(3)能,或 【分析】 (1)由折叠的性质得到BE=EP,BF=PF,得到BE=BF,根据菱形的性质得到AB∥CD∥FG,BC∥EH∥AD,于是得到结论; (2)由 解析:(1)见解析;(2)不变,见解析;(3)能,或 【分析】 (1)由折叠的性质得到BE=EP,BF=PF,得到BE=BF,根据菱形的性质得到AB∥CD∥FG,BC∥EH∥AD,于是得到结论; (2)由菱形的性质得到BE=BF,AE=FC,推出△ABC是等边三角形,求得∠B=∠D=60°,得到∠B=∠D=60°,于是得到结论; (3)记AC与BD交于点O,得到∠ABD=30°,解直角三角形得到AO=1,BO=,求得S四边形ABCD=2,当六边形AEFCHG的面积等于时,得到S△BEF+S△DGH=,设GH与BD交于点M,求得GM=x,根据三角形的面积列方程即可得到结论. 【详解】 解:折叠后落在上, 平分 , 四边形为菱形,同理四边形为菱形, 四边形为平行四边形, . 不变. 理由如下:由得 四边形为菱形, 为等边三角 , 为定值. 记与交于点. 当六边形的面积为时, 由得 记与交于点 , 同理 即 化简得 解得, ∴当或时,六边形的面积为. 【点睛】 此题是四边形的综合题,主要考查了菱形的性质,等边三角形的判定和性质,三角形的面积公式,菱形的面积公式,解本题的关键是用x表示出相关的线段,是一道基础题目. 26.(1)①4;②2,3,10;(2);(3)36 【分析】 (1)①由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可求S△PDE=S△BDE=1,即可求解;②由三角形的中位线定理可得DE 解析:(1)①4;②2,3,10;(2);(3)36 【分析】 (1)①由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可求S△PDE=S△BDE=1,即可求解;②由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可得S△PBD=S△APD=2,S△APE=S△PEC=3,即可求解; (2)连接AP,由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可得S△PBD=S△APD=4,S△APE=S△PEC=5,可求S△ADE,即可求解; (3)先证△NFK是等边三角形,可得NF=NK=NK=FG=KJ,可得S△PGF=S△PFN=7,S△PKJ=S△PKN=8,即可求解. 【详解】 解:(1)如图2,连接BE, ∵DE是△ABC的中位线, ∴DE∥BC,AE=EC,AD=BD, ∴S△PDE=S△BDE=1, ∴S△ABE=2, ∴S△ABC=4, 故答案为:4; ②∵DE是△ABC的中位线, ∴DE∥BC,AE=EC,AD=BD, ∴S△PBD=S△APD=2,S△APE=S△PEC=3, ∴S△ABC=10; 故答案为:2,3,10; (2)如图3,连接AP, ∵DE是△ABC的中位线, ∴DE∥BC,AE=EC,AD=BD,S△ABC=4S△ADE, ∴S△PBD=S△APD=5,S△APE=S△PEC=5, ∴S△ADE=S△APD+S△APE﹣S△PDE=4, ∴S△ABC=4S△ADE=16; (3)如图4,延长GF,JK交于点N,连接GJ,连接PN, ∵六边形FGHIJK是正六边形, ∴FG=FK=KJ,∠GFK=∠JKF=120°,S六边形FGHIJK=2S四边形FGJK, ∴∠NFK=∠NKF=60°, ∴△NFK是等边三角形, ∴NF=NK=FK=FG=KJ, ∴S△PGF=S△PFN=7,S△PKJ=S△PKN=8,FK是△NGJ的中位线, ∴S△NFK=S△PFN+S△PKN﹣S△PFK=6, ∵FK是△NGJ的中位线, ∴S△NGJ=4S△NFK=24; ∴S四边形FGJK=24﹣6=18, ∴S六边形FGHIJK=36. 【点睛】 本题是四边形综合题,考查了等边三角形的判定和性质,三角形的中位线定理,正六边形的性质等知识,熟练运用三角形中位线定理是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版八 年级 下册 数学 期末试卷 模拟 训练 Word 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文