数学八年级下册数学期末试卷专题练习(word版.doc
《数学八年级下册数学期末试卷专题练习(word版.doc》由会员分享,可在线阅读,更多相关《数学八年级下册数学期末试卷专题练习(word版.doc(28页珍藏版)》请在咨信网上搜索。
数学八年级下册数学期末试卷专题练习(word版 一、选择题 1.若二次根式在实数范围内有意义,则x的取值范围是( ) A.x≠﹣3 B.x≥﹣3 C.x≤﹣3 D.x>﹣3 2.下列几组数中,能作为直角三角形三边长度的是( ) A.2,3,4 B.4,5,6 C.6,8,11 D.5,12,13 3.四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是( ) A.若AO=OC,则ABCD是平行四边形 B.若AC=BD,则ABCD是平行四边形 C.若AO=BO,CO=DO,则ABCD是平行四边形 D.若AO=OC,BO=OD,则ABCD是平行四边形 4.一次数学测试后,随机抽取八年级三班6名学生的成绩如下:80,85,86,88,88,95.关于这组数据的错误说法是( ) A.极差是15 B.中位数是86 C.众数是88 D.平均数是87 5.如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法: ①若AC=BD,则四边形EFGH为矩形; ②若AC⊥BD,则四边形EFGH为菱形; ③若四边形EFGH是平行四边形,则AC与BD互相平分; ④若四边形EFGH是正方形,则AC与BD互相垂直且相等. 其中正确的个数是( ) A.1 B.2 C.3 D.4 6.如图,在菱形ABCD中,∠D=140°,则∠1的大小为( ) A.15° B.20° C.25° D.30° 7.如图,在△ABC中,BC=2,∠C=45°,若D是AC的三等分点(AD>CD),且AB=BD,则AB的长为( ) A. B. C. D. 8.甲乙两人在同一条笔直的公路上步行从A地去往B地,已知甲、乙两人保持各自的速度匀速步行,且甲先出发,甲乙两人的距离(千米)与甲步行的时间(小时)的函数关系图像如图所示,下列说法: ①乙的速度为千米/时; ②乙到终点时甲、乙相距千米; ③当乙追上甲时,两人距地千米; ④两地距离为千米. 其中错误的个数为( ) A.1个 B.2个 C.3个 D.4个 二、填空题 9.使得二次根式有意义的的取值范围是______. 10.在菱形中,对角线则菱形的面积为__________ 11.如图,一木杆在离地面处折断,木杆顶端落在离木杆底端处,则木杆折断之前的高___(). 12.如图,长方形中,,,将此长方形折叠,使点B与点D重合,折痕为,则的面积是__________. 13.一次函数的图象与正比例函数的图象平行且经过点,则_______. 14.如图,已知四边形ABCD是平行四边形,请你添加一个条件使它成为菱形.这个条件为_____. 15.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交ll于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点作y轴的垂线交l2于点A4,…依次进行下去.则点A4的坐标为__;点的坐标为_____;点A2021的坐标为____. 16.如图所示在中,,若折叠,使点A与点C重合,折痕为,则_______. 三、解答题 17.计算 (1) (2) 18.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力.如图所示,有一台风中心沿东西方向由A向B移动,已知点C为一海港,且点C与直线上的两点A,B的距离分别为:,以台风中心为圆心周围以内为受影响区域. (1)请计算说明海港C会受到台风的影响; (2)若台风的速度为,则台风影响该海港持续的时间有多长? 19.如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点按下列要求画图. (1)在图①中画一条线段AB,使AB=,线段AB的端点在格点上; (2)在图②中画一个斜边长为的等腰直角三角形DCE,其中∠DCE=90°,三角形的顶点在格点上. 20.如图(1),中,,,的外角平分线交于点,过点分别作直线,的垂线,,为垂足. (1)求证:四边形是正方形. (2)若已知,,请求的面积; (3)如图(2),连接,与,分别交于点,,求证:. 21.阅读材料:规定初中考试不能使用计算器后,小明是这样解决问题的:已知a=,求的值. 他是这样分析与解的:∵a==, ∴, ∴ ∴, ∴=2(=. 请你根据小明的分析过程,解决如下问题: (1)若a=,直接写出的值是 . (2)使用以上方法化简: 22.寒假将至,某健身俱乐部面向大中学生推出优惠活动,活动方案如下: 方案一:购买一张学生寒假专享卡,每次健身费用按六折优惠; 方案二:不购买学生寒假专享卡,每次健身费用按八折优惠. 设某学生健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.在平面直角坐标系中的函数图象如图所示. (1)求k1和b的值,并说明它们的实际意义; (2)求k2的值; (3)八年级学生小华计划寒假前往该俱乐部健身8次,应选择哪种方案所需费用更少?请说明理由. (4)小华的同学小琳也计划在该俱乐部健身,若她准备300元的健身费用,最多可以健身多少次? 23.如图①,C为线段BD上的一点,BC≠CD,分别以BC,BD为边在BD的上方作等边△ABC和等边△CDE,连接AE,F,G,H分别是BC,AE,CD的中点,连接FG,GH,FH. (1)△FGH的形状是 ; (2)将图①中的△CDE绕点C顺时针旋转,其他条件不变,(1)的结论是否成立?结合图②说明理由; (3)若BC=,CD=4,将△CDE绕点C旋转一周,当A,E,D三点共线时,直接写出△FGH的周长. 24.已知:直线与轴、轴分别相交于点和点,点在线段上.将沿折叠后,点恰好落在边上点处. (1)直接写出点、点的坐标: (2)求的长; (3)点为平面内一动点,且满足以、、、为顶点的四边形为平行四边形,请直接回答: ①符合要求的点有几个? ②写出一个符合要求的点坐标. 25.如图1,若是的中位线,则,解答下列问题: (1)如图2,点是边上一点,连接、 ①若,则 ; ②若,,连接,则 , , . (2)如图3,点是外一点,连接、,已知:,,,求的值; (3)如图4,点是正六边形内一点,连接、、,已知:,,,求的值. 【参考答案】 一、选择题 1.D 解析:D 【分析】 直接利用二次根式有意义的条件结合分式有意义的条件分析得出答案. 【详解】 解:二次根式在实数范围内有意义,则且, 解得:. 故选:D. 【点睛】 本题主要考查了二次根式有意义的条件以及分式有意义的条件,解题的关键是正确把握相关有意义的条件. 2.D 解析:D 【分析】 利用勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可. 【详解】 解:A、22+32≠42,故不是直角三角形,故错误; B、42+52≠62,故不是直角三角形,故错误; C、62+82≠112,故不是直角三角形,故错误; D、52+122=132,故是直角三角形,故正确. 故选D. 【点睛】 本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断. 3.D 解析:D 【解析】 【分析】 根据平行四边形的判定条件进行逐一判断即可. 【详解】 解:∵AO=OC,BO=OD, ∴四边形的对角线互相平分 ∴D能判定ABCD是平行四边形. 若AO=BO,CO=DO,证明AC=BD,并不能证明四边形ABCD是平行四边形,故C错误, 若AO=OC,条件不足,无法明四边形ABCD是平行四边形,故A错误, 若AC=BD,条件不足,无法明四边形ABCD是平行四边形,故B错误, 故选D. 【点睛】 本题主要考查了平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定条件. 4.B 解析:B 【解析】 【分析】 平均数只要求出数据之和再除以总个数即可;对于中位数,按从小到大的顺序排列,只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数是出现频数最大的数据. 【详解】 解:A、极差是95-80=15,故A正确; B、中位数是=87,故B错误; C、88出现了2次,则众数是88,故C正确; D、平均数是=87,故D正确. 故选:B. 【点睛】 本题重点考查平均数,中位数,众数及极差的概念及求法. 5.A 解析:A 【分析】 ①由菱形的判定定理即可判断;②由矩形的判定定理,即可判断;③若四边形EFGH是平行四边形,与AC、BD是否互相平分无任何关系;④根据中位线性质解题. 【详解】 解:由题意得:四边形EFGH平行四边形, ①若AC=BD,则四边形EFGH是菱形,故①错误; ②若AC⊥BD,则四边形EFGH是矩形,故②错误; ③若四边形EFGH是平行四边形,不能判定AC、BD是否互相平分,故③错误; ④点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点 若四边形EFGH是正方形, AC与BD互相垂直且相等,故④正确. 故选:A. 【点睛】 本题考查矩形、正方形、菱形等特殊四边形的判定与性质,是重要考点,难度较易,掌握相关知识是解题关键. 6.B 解析:B 【解析】 【分析】 由菱形的性质得到DA=DC,∠DAC=∠1,由等腰三角形的性质得到∠DAC=∠DCA=∠1,根据三角形的内角和定理求出∠DAC,即可得到∠1. 【详解】 解:∵四边形ABCD是菱形, ∴DA=DC,∠DAC=∠1, ∴∠DAC=∠DCA=∠1, 在△ABD中, ∵∠D=140°,∠D+∠DAC+∠DCA=180°, ∴∠DAC=∠DCA=(180°﹣∠D)=×(180°﹣140°)=20°, 故选B. 【点睛】 本题主要考查了菱形的性质,角平分线的性质,等腰三角形的性质,解题的关键在于能够熟练掌握相关知识进行求解. 7.B 解析:B 【解析】 【分析】 作BE⊥AC于E,根据等腰三角形三线合一性质可得AE=DE,根据∠C=45°,得出∠EBC=180°-∠C-∠BEC=180°-45°-90°=45°,可得BE=CE,利用勾股定理求出CE=BE=2,根据D是AC的三等分点得出AE=DE==CD,求出CD=1,利用勾股定理即可. 【详解】 解:作BE⊥AC于E, ∵AB=BD, ∴AE=DE, ∵∠C=45°, ∴∠EBC=180°-∠C-∠BEC=180°-45°-90°=45°, ∴BE=CE, 在Rt△BEC中, ∴, ∴CE=BE=2, ∵D是AC的三等分点, ∴CD=,AD=AC-CD=, ∴AE=DE==CD, ∴CE=CD+DE=2CD=2, ∴CD=1, ∴AE=1, 在Rt△ABE中,根据勾股定理. 故选B. 【点睛】 本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键. 8.A 解析:A 【分析】 ①由函数图象数据可以求出甲的速度,再由追击问题的数量关系建立方程就可以求出乙的速度; ②由函数图象的数据由乙到达终点时走的路程-甲走的路程就可以求出结论; ③乙或甲行驶的路程就是乙追上甲时,两人距A地的距离; ④求出乙到达终点的路程就是A,B两地距离. 【详解】 解:①由题意,得 甲的速度为:12÷4=3千米/时; 设乙的速度为a千米/时,由题意,得 (7-4)a=3×7, 解得:a=7. 即乙的速度为7千米/时, 故①正确; ②乙到终点时甲、乙相距的距离为: (9-4)×7-9×3=8千米, 故②正确; ③当乙追上甲时,两人距A地距离为: 7×3=21千米. 故③正确; ④A,B两地距离为: 7×(9-4)=35千米, 故④错误. 综上所述:错误的只有④. 故选:A. 【点睛】 本题考查了从函数图象获取信息,行程问题的追击题型的等量关系的运用,一元一次方程的运用,解答时分析清楚函数图象的数据之间的关系是关键. 二、填空题 9. 【解析】 【分析】 根据二次根式有意义的条件,被开方数为非负数,即可求得的的取值范围. 【详解】 二次根式有意义, , 解得, 故答案为:. 【点睛】 本题考查了二次根式有意义的条件,理解二次根式有意义的条件是解题的关键. 10.A 解析:14 【解析】 【分析】 根据菱形的面积=两条对角线长乘积的一半进行计算即可. 【详解】 如图所示: ∵菱形ABCD中,对角线AC=4cm,BD=7cm, ∴菱形ABCD的面积ACBD×4×7=14(cm2); 故答案为:14. 【点睛】 本题考查了菱形的性质,熟记菱形的面积=两条对角线长乘积的一半是解题的关键. 11.4 【解析】 【分析】 由题意得,在直角三角形中,知道两直角边,运用勾股定理即可求出斜边,从而得出这根木杆折断之前的高度. 【详解】 解:∵一木杆在离地面1.5m处折断,木杆顶端落在离木杆底端2m处, ∴折断的部分长为 =2.5, ∴折断前高度为2.5+1.5=4(m). 故答案为4. 【点睛】 本题考查勾股定理的应用,主要考查学生对勾股定理在实际生活中的运用能力. 12.E 解析: 【分析】 首先翻折方法得到ED=BE,再设出未知数,分别表示出线段AE,ED,BE的长度,然后在Rt△ABE中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积. 【详解】 解:∵长方形折叠,使点B与点D重合, ∴ED=BE,∠A, 设AE=xcm,则ED=BE=(9﹣x)cm, 在Rt△ABE中, , ∴, 解得:x=4, ∴△ABE的面积为:3×4×=6(), 故答案为. 【点睛】 本题考查了折叠的性质,长方形的性质,勾股定理的运用;解题的关键是熟练掌握折叠的性质,找准折叠前后相等的角和边. 13.A 解析:﹣4 【分析】 根据两条平行直线的解析式的k值相等求出k的值,然后把点A的坐标代入解析式求出b值即可. 【详解】 解:∵y=kx+b的图象与正比例函数y=2x的图象平行, ∴k=2, ∵y=kx+b的图象经过点A(1,﹣2), ∴2+b=﹣2, 解得b=﹣4, 故答案为:﹣4. 【点睛】 本题考查了两条直线相交或平行问题:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标. 14.A 解析:AB=BC(答案不唯一) 【分析】 因为四边形ABCD是平行四边形,所以可添加条件为:邻边相等;对角线互相垂直. 【详解】 添加AB=BC,根据“有一组邻边相等的平行四边形是菱形”可使它成为菱形. 故填:AB=BC. 【点睛】 本题考查菱形的判定,以平行四边形为基础,按照菱形判定定理解题即可. 15.(4,﹣4) (﹣8,8) (21010,21011) 【分析】 根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出 解析:(4,﹣4) (﹣8,8) (21010,21011) 【分析】 根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合6=1×4+2;2021=505×4+1即可找出点A2021的坐标. 【详解】 解:观察,发现规律: A1(1,2), A2(-2,2), A3(-2,-4), A4(4,-4), A5(4,8),…, ∴“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”, ∵6=1×4+2, A6(﹣8,8) ∵2021=505×4+1, ∴A2021的坐标为(21010,21011). 故答案为:(4,﹣4); (﹣8,8);(21010,21011). 【点睛】 本题考查了一次函数图象上点的坐标特征以及规律型中坐标的变化,解题的关键是找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”. 16.【分析】 过A作AG⊥CD,交CD的延长线于G,连接AF,CE,由折叠的性质得到AF=CF,AE=CE,AC⊥EF,AO=OC,利用直角三角形的性质求出DG,利用勾股定理得到,列出方程,解之即可. 解析: 【分析】 过A作AG⊥CD,交CD的延长线于G,连接AF,CE,由折叠的性质得到AF=CF,AE=CE,AC⊥EF,AO=OC,利用直角三角形的性质求出DG,利用勾股定理得到,列出方程,解之即可. 【详解】 解:过A作AG⊥CD,交CD的延长线于G,连接AF,CE, 由折叠可知:AF=CF,AE=CE,AC⊥EF,AO=OC, ∵四边形ABCD是平行四边形, ∴AB=CD=8,BC=AD=4, 又∵∠BAD=60°, ∴∠DAG=30°, ∴DG=AD=2, 设DF=x,则AF=CF=8-x, ∴, ∴, 解得:x=,即DF=, 故答案为:. 【点睛】 本题考查了平行四边形的性质,折叠问题,勾股定理,直角三角形的性质,解题的关键是利用折叠得到相等的边,利用勾股定理列出方程求解. 三、解答题 17.(1);(2) 【分析】 (1)根据二次根式的四则运算法则求解即可; (2)根据完全平方公式和平方差公式,对式子进行求解. 【详解】 解:(1) (2) 【点睛】 此题考查了二次根式的四 解析:(1);(2) 【分析】 (1)根据二次根式的四则运算法则求解即可; (2)根据完全平方公式和平方差公式,对式子进行求解. 【详解】 解:(1) (2) 【点睛】 此题考查了二次根式的四则运算,涉及了平方差公式和完全平方公式,解题的关键是掌握二次根式的性质以及运算法则. 18.(1)计算见解析;(2)台风影响该海港持续的时间为7小时 【分析】 (1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,进而得出海港C是否受台风影响; (2)利用勾股 解析:(1)计算见解析;(2)台风影响该海港持续的时间为7小时 【分析】 (1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,进而得出海港C是否受台风影响; (2)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间. 【详解】 解:(1)如图,过点C作于点D ∵ ∴ ∴是直角三角形 ∴ ∴ ∴ ∵以台风中心为圆心周围以内为受影响区域 ∴海港C会受台风影响; (2)当时, 台风在上运动期间会影响海港C 在中 在中 ∴ ∵台风的速度为20千米/小时 ∴(小时) 答:台风影响该海港持续的时间为7小时. 【点睛】 本题考查了勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答. 19.(1)见解析;(2)见解析 【解析】 【分析】 (1)利用勾股定理求出AB=时的两条直角边,再在图中作出即可; (2)利用勾股定理求出斜边长DE=时的两条直角边,再在图中作出DE,再根据等腰直角三角 解析:(1)见解析;(2)见解析 【解析】 【分析】 (1)利用勾股定理求出AB=时的两条直角边,再在图中作出即可; (2)利用勾股定理求出斜边长DE=时的两条直角边,再在图中作出DE,再根据等腰直角三角形DCE,得到DC=CE=,再在图中作出图形即可. 【详解】 解:(1)∵AB= 又 ∴如图①所示,线段AB即为所求; (2)∵斜边长为的等腰直角三角形DCE 又 ∴如图②所示,斜边长DE= 又∵, ∴DC=CE= ∴如图②中,等腰直角三角形DCE即为所求. 【点睛】 本题考查勾股定理.根据线段的长找出相对应直角三角形的两条直角边是本题的关键. 20.(1)见解析;(2)15;(3)见解析 【分析】 (1)作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD是矩形,再由角平分线的性质得出AB=AD,即可得出四边形ABC 解析:(1)见解析;(2)15;(3)见解析 【分析】 (1)作AG⊥EF于G,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD是矩形,再由角平分线的性质得出AB=AD,即可得出四边形ABCD是正方形; (2)根据全等三角形的判定得△AGF≌△ADF,进而推出EF=GE+GF=BE+DF,设AG=x,则正方形ABCD边长BC=CD=x,在Rt△ECF中,由勾股定理得AG=6,根据三角形面积公式得S△AEF=15; (3)如图(2),由(1)、(2)得∠EAF=∠BAD=×90°=45°,根据相似三角形的判定得△AMN∽△DMA,根据相似的性质可得结论. 【详解】 (1)证明:作于,如图(1)所示: 则, ∵,, ∴, ∴四边形是矩形, 又∵,外角平分线交于点, ∴,, ∴, ∴四边形是正方形; (2)解:由(1)知,,,, 又,, ∴,, ∴,, ∴, 设,则正方形边长, 由(2)知,, ∴, , . ∴在中,由勾股定理得 , 解得:,(舍去). ∴, ∴. (3)证明:如图(2), 由(1)、(2)易知,,, ∴, 即, 在和中, , ∴, ∴, ∴. 【点睛】 本题考查了正方形的判定与性质、全等三角形的判定与性质、角平分线的性质、勾股定理、矩形的判定、翻折变换的性质等知识;本题综合性强,有一定难度. 21.(1)5;(2)5. 【解析】 【详解】 试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案. 试题解析:(1)∵a=, ∴4a2-8a+1 =4×()2-8×()+1 =5; (2) 解析:(1)5;(2)5. 【解析】 【详解】 试题分析: 根据平方差公式,可分母有理化,根据整体代入,可得答案. 试题解析:(1)∵a=, ∴4a2-8a+1 =4×()2-8×()+1 =5; (2)原式=×(−1+−+−+…+−) =×(-1) =×10 =5. 点睛:本题主要考查了分母有理化,利用分母有理化化简是解答此题的关键. 22.(1),实际意义见解析;(2)20;(3)选择方案一所需费用更少,理由见解析;(4)小琳最多健身18次,理由见解析 【分析】 (1)把点(0,30),(10,180)代入y1=k1x+b,得到关于k 解析:(1),实际意义见解析;(2)20;(3)选择方案一所需费用更少,理由见解析;(4)小琳最多健身18次,理由见解析 【分析】 (1)把点(0,30),(10,180)代入y1=k1x+b,得到关于k1和b的二元一次方程组,求解即可; (2)根据方案一每次健身费用按六折优惠,可得打折前的每次健身费用,再根据方案二每次健身费用按八折优惠,求出k2的值; (3)将x=8分别代入y1、y2关于x的函数解析式,比较即可. (4)分别求解小琳选择方案一,方案二的健身次数,再比较即可得到答案. 【详解】 解:(1)∵过点(0,30),(10,180), ∴,解得:, 表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元, b=30表示的实际意义是:购买一张学生暑期专享卡的费用为30元; (2)由题意可得,打折前的每次健身费用为15÷0.6=25(元), 则k2=25×0.8=20; (3)选择方案一所需费用更少.理由如下: 由题意可知,y1=15x+30,y2=20x. 当健身8次时, 选择方案一所需费用:y1=15×8+30=150(元), 选择方案二所需费用:y2=20×8=160(元), ∵150<160, ∴选择方案一所需费用更少. (4)当时, 解得: 即小琳选择方案一时,可以健身18次, 当时,则 解得: 即小琳选择方案二时,可以健身15次, 所以小琳最多健身18次. 【点睛】 本题考查了一次函数的应用,最优化选择问题,解题的关键是理解两种优惠活动方案,求出y1、y2关于x的函数解析式. 23.(1)等边三角形;(2)成立,理由见解析;(3)或. 【分析】 (1)根据题意先判断出四边形ABCE和四边形ACDE都是梯形.得出FG为梯形ABCE的中位线,GH为梯形ACDE的中位线.从而得出,. 解析:(1)等边三角形;(2)成立,理由见解析;(3)或. 【分析】 (1)根据题意先判断出四边形ABCE和四边形ACDE都是梯形.得出FG为梯形ABCE的中位线,GH为梯形ACDE的中位线.从而得出,.即证明为等边三角形. (2)先判断出PF,PG是△ABC和△CDE的中位线,再判断出∠FPG=∠FCH,进而证明△FPG≌△FCH,得出结论FG=FH,∠PFG=∠CFH,最后证明出∠GFH=,即证明△FGH为等边三角形. (3)①当点E在AE上时,先求出CM,进而求出AM,即可求出AD,再判断出,进而求出BE=AD=2,,即可判断出,再求出BN、EN,进而求出BD,最后即可求出FH,即可得出结果;②当点D在AE的延长线上时同①的方法即可得出结果. 【详解】 (1)∵和都为等边三角形,且边长不相等. ∴,. ∴四边形ABCE和四边形ACDE都是梯形. 又∵F、G、H分别是BC、AE、CD中点, ∴FG为梯形ABCE的中位线,GH为梯形ACDE的中位线. ∴,. ∴,. ∴为等边三角形. 故答案为:等边三角形. (2)取AC的中点P,连接PF,PG, ∵△ABC和△CDE都是等边三角形, ∴AB=BC,CE=CD, ∠BAC= ∠ACB= ∠ECD= ∠B=60°. 又F,G,H分别是BC,AE,CD的中点, ∴FP=AB,FC=BC,CH=CD,PG=CE,PG∥CE,PF∥AB. ∴FP=FC,PG=CH,∠GPC+∠PCE=180°,∠FPC=∠BAC=60°,∠PFC=∠B=60°. ∴∠FPG=∠FPC+∠GPC=60°+∠GPC,∠GPC=180°-∠PCE. ∴∠FCH=360°-∠ACB-∠ECD-∠PCE=360°-60°-60°-(180°-∠GPC)=60°+∠GPC. ∴∠FPG=∠FCH. ∴△FPG≌△FCH(SAS). ∴FG=FH,∠PFG=∠CFH. ∴∠GFH=∠GFC+∠CFH=∠GFC+∠PFG=∠PFC=60°. ∴△FGH为等边三角形. 所以成立. (3)①当点D在AE上时,如图, ∵是等边三角形, ∴,. ∵是等边三角形, ∴,, 过点C作于M, ∴, 在中,根据勾股定理得,, 在中,根据勾股定理得,, ∴, ∵, ∴, ∴, 连接BE, 在和中, , ∴(SAS), ∴BE=AD=2, , ∵, ∴, ∴, 过点B作于N, ∴,在中,, ∴, ∴,DN=DE-EN=3, 连接BD, 根据勾股定理得:, ∵点H是CD中点,点F是BC中点, ∴FH是的中位线, ∴, 由(2)可知,△FGH为等边三角形. ∴△FGH的周长. ②当点D在AE的延长线上时,如图, 同理可求,所以△FGH的周长. 即满足条件的△FGH的周长位或. 【点睛】 本题考查等边三角形的判定和性质,全等三角形的判定和性质,勾股定理,含角的直角三角形的性质,三角形的中位线定理.属于几何变换综合题,综合性强,较难. 24.(1)A(-8,0)、B(0,6);(2)5;(3)①3个;②(-5,6)或(-11,-6)或(5,6). 【解析】 【分析】 (1)利用待定系数法解决问题即可. (2)由翻折不变性可知,OC=CD 解析:(1)A(-8,0)、B(0,6);(2)5;(3)①3个;②(-5,6)或(-11,-6)或(5,6). 【解析】 【分析】 (1)利用待定系数法解决问题即可. (2)由翻折不变性可知,OC=CD,OB=BD=6,∠ODB=∠BOC=90°,推出AD=AB-BD=4,设CD=OC=x,在Rt△ADC中,根据AD2+CD2=AC2,构建方程即可解决问题. (3)①根据平行四边形的定义画出图形即可判断. ②利用平行四边形的性质求解即可解决问题. 【详解】 解:(1)对于直线,令x=0,得到y=6, ∴B(0,6), 令y=0,得到x=, ∴A(,0); (2)∵A(,0),B(0,6), ∴OA=8,OB=6, ∵∠AOB=90°, ∴, 由翻折不变性可知,OC=CD,OB=BD=6,∠ODB=∠BOC=90°, ∴AD=AB-BD=4,设CD=OC=x, 在Rt△ADC中,∵∠ADC=90°, ∴AD2+CD2=AC2, ∴42+x2=(8-x)2, 解得:x=3, ∴OC=3,AC=OAOC=83=5. (3)①符合条件的点P有3个,如图所示: ②∵A(-8,0),C(-3,0),B(0,6), 当AB为对角线时,, 由平行四边形的性质,得, ∴P1(-5,6); 当AB为边时,,点P在第三象限时,有 点B向下平移6个单位,向左平移3个单位得到点C, ∴点A向下平移6个单位,向左平移3个单位得到点P2, ∴P2(-11,-6); 点P在第二象限时,有 , ∴P3(5,6); ∴点P的坐标为:(-5,6)或(-11,-6)或(5,6). 【点睛】 本题属于一次函数综合题,考查了待定系数法,解直角三角形,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题,属于中考常考题型. 25.(1)①4;②2,3,10;(2);(3)36 【分析】 (1)①由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可求S△PDE=S△BDE=1,即可求解;②由三角形的中位线定理可得DE 解析:(1)①4;②2,3,10;(2);(3)36 【分析】 (1)①由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可求S△PDE=S△BDE=1,即可求解;②由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可得S△PBD=S△APD=2,S△APE=S△PEC=3,即可求解; (2)连接AP,由三角形的中位线定理可得DE∥BC,AE=EC,AD=BD,可得S△PBD=S△APD=4,S△APE=S△PEC=5,可求S△ADE,即可求解; (3)先证△NFK是等边三角形,可得NF=NK=NK=FG=KJ,可得S△PGF=S△PFN=7,S△PKJ=S△PKN=8,即可求解. 【详解】 解:(1)如图2,连接BE, ∵DE是△ABC的中位线, ∴DE∥BC,AE=EC,AD=BD, ∴S△PDE=S△BDE=1, ∴S△ABE=2, ∴S△ABC=4, 故答案为:4; ②∵DE是△ABC的中位线, ∴DE∥BC,AE=EC,AD=BD, ∴S△PBD=S△APD=2,S△APE=S△PEC=3, ∴S△ABC=10; 故答案为:2,3,10; (2)如图3,连接AP, ∵DE是△ABC的中位线, ∴DE∥BC,AE=EC,AD=BD,S△ABC=4S△ADE, ∴S△PBD=S△APD=5,S△APE=S△PEC=5, ∴S△ADE=S△APD+S△APE﹣S△PDE=4, ∴S△ABC=4S△ADE=16; (3)如图4,延长GF,JK交于点N,连接GJ,连接PN, ∵六边形FGHIJK是正六边形, ∴FG=FK=KJ,∠GFK=∠JKF=120°,S六边形FGHIJK=2S四边形FGJK, ∴∠NFK=∠NKF=60°, ∴△NFK是等边三角形, ∴NF=NK=FK=FG=KJ, ∴S△PGF=S△PFN=7,S△PKJ=S△PKN=8,FK是△NGJ的中位线, ∴S△NFK=S△PFN+S△PKN﹣S△PFK=6, ∵FK是△NGJ的中位线, ∴S△NGJ=4S△NFK=24; ∴S四边形FGJK=24﹣6=18, ∴S六边形FGHIJK=36. 【点睛】 本题是四边形综合题,考查了等边三角形的判定和性质,三角形的中位线定理,正六边形的性质等知识,熟练运用三角形中位线定理是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 年级 下册 期末试卷 专题 练习 word
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文