人教版中学七年级下册数学期末学业水平卷(及解析).doc
《人教版中学七年级下册数学期末学业水平卷(及解析).doc》由会员分享,可在线阅读,更多相关《人教版中学七年级下册数学期末学业水平卷(及解析).doc(27页珍藏版)》请在咨信网上搜索。
人教版中学七年级下册数学期末学业水平卷(及解析) 一、选择题 1.下列四幅图中,和是同位角的是( ) A.①② B.③④ C.①②④ D.②③④ 2.下列车标图案,可以看成由图形的平移得到的是( ) A. B. C. D. 3.在平面直角坐标系中,点(﹣1,m2+1)一定在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列四个命题,①连接两点的线段叫做两点间的距离;②经过两点有一条直线,并且只有一条直线;③两点之间,线段最短;④线段的延长线与射线是同一条射线.其中说法正确的有( ) A.1个 B.2个 C.3个 D.4个 5.如图,,的角平分线的反向延长线和是角平分线交于点,,则等于( ) A.42° B.44° C.72° D.76° 6.下列等式正确的是( ) A. B. C. D. 7.如图,将直尺与含45°角的三角尺叠放在一起,其两边与直尺相交,若∠1=25°,则∠2的度数为( ) A.120° B.135° C.150° D.160° 8.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为……根据这个规律,第个点的坐标为( ) A. B. C. D. 九、填空题 9.计算:的结果为_____. 十、填空题 10.已知点,点关于x轴对称,则的值是____. 十一、填空题 11.如图,在△ABC中,∠ABC,∠ACB的角平分线相交于O点. 如果∠A=α,那么∠BOC的度数为____________. 十二、填空题 12.如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为_____. 十三、填空题 13.如图,将一张长方形纸片沿EF折叠后,点A,B分别落在A′,B′的位置.如果∠1=59°,那么∠2的度数是_____. 十四、填空题 14.一列数a1,a2,a3,…,an,其中a1=﹣1,a2=,a3=,…,an=,则a2=_____;a1+a2+a3+…+a2020=_____;a1×a2×a3×…×a2020=_____. 十五、填空题 15.在平面直角坐标系中,若点在第二象限,则的取值范围为_______. 十六、填空题 16.在平面直角坐标系中,已知点A(﹣4,0),B(0,3),对△AOB连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______ 十七、解答题 17.计算下列各式的值: (1) (2) 十八、解答题 18.已知,,求下列各式的值: (1); (2). 十九、解答题 19.如图,C、E分别在AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他又没有带量角器,只带了一副三角尺,于是他想了这样一个办法:首先连接CF,再找出CF的中点O,然后连接EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补. 请将小华的想法补充完整: ∵和交于点. ∴;( ) 而是的中点,那么,又已知, ∴( ), ∴,(全等三角形对应边相等) ∴,( ) ∴,( ) ∴和互补.( ) 二十、解答题 20.如图,,,.将 向右平移 个单位长度,然后再向上平移 个单位长度,可以得到 . (1)画出平移后的 , 的顶点 的坐标为 ;顶点 的坐标为 . (2)求 的面积. (3)已知点 在 轴上,以 ,, 为顶点的三角形面积为 ,则 点的坐标为 . 二十一、解答题 21.已知的平方根是,的立方根是4,的算术平方根是m. (1)求m的值; (2)如果,其中x是整数,且,求的值. 二十二、解答题 22.如图,这是由8个同样大小的立方体组成的魔方,体积为64. (1)求出这个魔方的棱长; (2)图中阴影部分是一个正方形ABCD,求出阴影部分的边长. 二十三、解答题 23.如图,直线,一副直角三角板中,. (1)若如图1摆放,当平分时,证明:平分. (2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数. (4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长. (5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间. 二十四、解答题 24.已知,点为平面内一点,于. (1)如图1,点在两条平行线外,则与之间的数量关系为______; (2)点在两条平行线之间,过点作于点. ①如图2,说明成立的理由; ②如图3,平分交于点平分交于点.若,求的度数. 二十五、解答题 25.模型与应用. (模型) (1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°. (应用) (2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为 . 如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为 . (3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CMnMn-1的角平分线MnO交于点O,若∠M1OMn=m°. 在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示) 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样的一对角叫做同位角进行分析即可. 【详解】 解:根据同位角的定义可知:图①②④中,∠1和∠2是同位角;图③中,∠1和∠2不是同位角; 故选C. 【点睛】 本题主要考查同位角的定义,熟记同位角的定义是解决此题的关键. 2.A 【分析】 根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解. 【详解】 解:A、可以由一个“基本图案”平移得到,故本选项符合题意; B、不是由一个“基本图案”平移得到,故本选项 解析:A 【分析】 根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解. 【详解】 解:A、可以由一个“基本图案”平移得到,故本选项符合题意; B、不是由一个“基本图案”平移得到,故本选项不符合题意; C、可以由一个“基本图案”旋转得到,故本选项不符合题意; D、可以由一个“基本图案”旋转得到,故本选项不符合题意. 故选:A. 【点睛】 本题主要考查了图形的平移和旋转,准确分析判断是解题的关键. 3.B 【分析】 应先判断出点的横纵坐标的符号,进而判断点所在的象限. 【详解】 解:因为点(﹣1,m2+1),横坐标﹣1<0,纵坐标m2+1一定大于0, 所以满足点在第二象限的条件. 故选:B. 【点睛】 本题主要考查平面直角坐标系里象限的坐标,熟练掌握每个象限的坐标符号特点是解题的关键. 4.B 【分析】 利用直线和射线的定义、以及线段的性质和两点之间距离意义,分别分析得出答案. 【详解】 解:①连接两点的线段长度叫做两点间的距离,故此选项错误. ②经过两点有一条直线,并且只有一条直线,故此选项正确. ③两点之间,线段最短,故此选项正确. ④线段的延长线是以B为端点延长出去的延长线部分,与射线不是同一条射线故此选项错误. 综上,②③正确. 故选:B. 【点睛】 本题考查了直线、射线、线段的性质和两点之间距离意义,解题的关键是准确理解定义. 5.B 【分析】 过F作FH∥AB,依据平行线的性质,可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,根据四边形内角和以及∠E-∠F=48°,即可得到∠E的度数. 【详解】 解:如图,过F作FH∥AB, ∵AB∥CD, ∴FH∥AB∥CD, ∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F, ∴可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH, ∴∠ECF=180°-β,∠BFC=∠BFH-∠CFH=α-β, ∴四边形BFCE中,∠E+∠BFC=360°-α-(180°-β)=180°-(α-β)=180°-∠BFC, 即∠E+2∠BFC=180°,① 又∵∠E-∠BFC=48°, ∴∠E =∠BFC+48°,② ∴由①②可得,∠BFC+48°+2∠BFC=180°, 解得∠BFC=44°, 故选:B. 【点睛】 本题主要考查了平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补. 6.C 【分析】 根据算术平方根、立方根的定义计算即可 【详解】 A、负数没有平方根,故错误 B、表示计算算术平方根,所以,故错误 C、,故正确 D、,故错误 故选:C 【点睛】 本题考查算术平方根、立方根的计算,熟知任何数都有立方根、负数没有平方根是关键 7.D 【分析】 如图,利用三角形的外角的性质求出∠3,再利用平行线的性质可得结论. 【详解】 解:如图, ∵∠4=45°,∠1=25°,∠4=∠1+∠3, ∴∠3=45°-25°=20°, ∵a∥b, ∴∠2+∠3=180°, ∴∠2=180°-20°=160°, 故选:D. 【点睛】 本题考查三角形外角的性质,平行线的性质等知识,解题的关键是学会添加常用辅助线,利用平行线的性质解决问题. 8.A 【分析】 根据图形和数字规律、直角坐标系的性质,首先根据题意,第个点的坐标为: 第个点的坐标为 第个点的坐标为: 再总结规律,通过计算即可得到答案. 【详解】 解:根据题意,第个点的坐标为: 解析:A 【分析】 根据图形和数字规律、直角坐标系的性质,首先根据题意,第个点的坐标为: 第个点的坐标为 第个点的坐标为: 再总结规律,通过计算即可得到答案. 【详解】 解:根据题意,第个点的坐标为: 第个点的坐标为 第个点的坐标为: 所以第个点的坐标为:, ∵, ∴第2025个数为: ∴第2021个数为第2025个数向上推4个数,即 故选:A. 【点睛】 本题考查了直角坐标系、图形和数字规律的知识;解题的关键是熟练掌握直角坐标系、图形和数字规律的性质,从而完成求解. 九、填空题 9.6 【分析】 根据算术平方根的定义即可求解. 【详解】 解:的结果为6. 故答案为6 【点睛】 考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数 解析:6 【分析】 根据算术平方根的定义即可求解. 【详解】 解:的结果为6. 故答案为6 【点睛】 考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数. 十、填空题 10.-6 【分析】 让两点的横坐标相等,纵坐标相加得0,即可得关于x,y的二元一次方程组,解值即可. 【详解】 解:∵点,点关于x轴对称, ∴; 解得:, ∴, 故答案为-6. 【点睛】 本题考查平面直 解析:-6 【分析】 让两点的横坐标相等,纵坐标相加得0,即可得关于x,y的二元一次方程组,解值即可. 【详解】 解:∵点,点关于x轴对称, ∴; 解得:, ∴, 故答案为-6. 【点睛】 本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数. 十一、填空题 11.90°+ 【解析】 ∵∠ABC、∠ACB的角平分线相交于点O, ∴∠OBC=∠ABC,∠OCB=∠ACB, ∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠A)=90°-∠A, 解析:90°+ 【解析】 ∵∠ABC、∠ACB的角平分线相交于点O, ∴∠OBC=∠ABC,∠OCB=∠ACB, ∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠A)=90°-∠A, ∵在△OBC中,∠BOC=180°-∠OBC-∠OCB, ∴∠BOC=180°-(90°-∠A)=90°+∠A=90°+. 十二、填空题 12.40° 【分析】 利用平行线的性质求出∠3即可解决问题. 【详解】 解: ∵直尺的两边互相平行, ∴∠1=∠3=50°, ∵∠2+∠3=90°, ∴∠2=90°﹣∠3=40°, 故答案为:40°. 解析:40° 【分析】 利用平行线的性质求出∠3即可解决问题. 【详解】 解: ∵直尺的两边互相平行, ∴∠1=∠3=50°, ∵∠2+∠3=90°, ∴∠2=90°﹣∠3=40°, 故答案为:40°. 【点睛】 本题考查了平行线的性质,直角三角形两锐角互余等知识,解题的关键是灵活运用所学知识解决问题. 十三、填空题 13.62° 【分析】 根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁 解析:62° 【分析】 根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.:求出即可. 【详解】 解:∵将一张长方形纸片沿EF折叠后, 点A、B分别落在A′、B′的位置,∠1=59°, ∴∠EFB′=∠1=59°, ∴∠B′FC=180°−∠1−∠EFB′=62°, ∵四边形ABCD是矩形, ∴AD∥BC, ∴∠2=∠B′FC=62°, 故答案为:62°. 【点睛】 本题考查了对平行线的性质和折叠的性质的应用,解此题的关键是求出∠B′FC的度数,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补. 十四、填空题 14., 1 【分析】 根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值. 【详解】 解:由题意可得, 当a1=﹣1时, a2===, a3=== 解析:, 1 【分析】 根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值. 【详解】 解:由题意可得, 当a1=﹣1时, a2===, a3===2, a4=﹣1,…, ∵2020÷3=673…1, ∴a1+a2+a3+…+a2020 =(﹣1++2)×673+(﹣1) =×673+(﹣1) =﹣ =, a1×a2×a3×…×a2020 =[(﹣1)××2]673×(﹣1) =(﹣1)673×(﹣1) =(﹣1)×(﹣1) =1, 故答案为:,,1. 【点睛】 本题考查有理数的运算,熟练掌握运算律及-1的指数幂运算是解题关键. 十五、填空题 15.-1<a<3 【分析】 根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可. 【详解】 解:∵点P(a-3,a+1)在第二象限, ∴, 解不等式①得,a<3, 解不等式②得,a> 解析:-1<a<3 【分析】 根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可. 【详解】 解:∵点P(a-3,a+1)在第二象限, ∴, 解不等式①得,a<3, 解不等式②得,a>-1, ∴-1<a<3. 故答案为:-1<a<3. 【点睛】 本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 十六、填空题 16.(8052,0). 【分析】 观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可. 【详解 解析:(8052,0). 【分析】 观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可. 【详解】 解:∵点A(﹣4,0),B(0,3), ∴OA=4,OB=3, ∴AB==5, ∴第(3)个三角形的直角顶点的坐标是; 观察图形不难发现,每3个三角形为一个循环组依次循环, ∴一次循环横坐标增加12, ∵2013÷3=671 ∴第(2013)个三角形是第671组的第三个直角三角形, 其直角顶点与第671组的第三个直角三角形顶点重合, ∴第(2013)个三角形的直角顶点的坐标是即. 故答案为:. 【点睛】 本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键. 十七、解答题 17.(1);(2) 【分析】 (1)先求绝对值,同时利用计算,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可. 【详解】 解:(1) (2) 【点睛】 本题考 解析:(1);(2) 【分析】 (1)先求绝对值,同时利用计算,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可. 【详解】 解:(1) (2) 【点睛】 本题考查的是实数的运算,考查,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键. 十八、解答题 18.(1)44;(2)48 【分析】 (1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值; (2)将a2+b2与ab的值代入原式计算即可求出值. 【详解】 解:(1)把 解析:(1)44;(2)48 【分析】 (1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值; (2)将a2+b2与ab的值代入原式计算即可求出值. 【详解】 解:(1)把两边平方得:, 把代入得:, ∴; (2)∵,, ∴===48. 【点睛】 此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 十九、解答题 19.对顶角相等;SAS;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补 【分析】 由“SAS”可证△COB≌△FOE,可得∠BCO=∠F,可证AB∥DF,可得结论. 【详解】 解析:对顶角相等;SAS;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补 【分析】 由“SAS”可证△COB≌△FOE,可得∠BCO=∠F,可证AB∥DF,可得结论. 【详解】 解:∵CF和BE相交于点O, ∴∠COB=∠EOF;(对顶角相等), 而O是CF的中点,那么CO=FO,又已知EO=BO, ∴△COB≌△FOE(SAS), ∴BC=EF,(全等三角形对应边相等), ∴∠BCO=∠F,(全等三角形的对应角相等), ∴AB∥DF,(内错角相等,两直线平行), ∴∠ACE和∠DEC互补.(两直线平行,同旁内角互补), 故答案为:对顶角相等;SAS;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补. 【点睛】 本题考查了全等三角形的判定和性质,平行线的判定和性质,掌握全等三角形的判定定理是解题的关键. 二十、解答题 20.(1)见解析,,;(2)5;(3) 或 【分析】 (1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可; (2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可; (3)设P点 解析:(1)见解析,,;(2)5;(3) 或 【分析】 (1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可; (2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可; (3)设P点得坐标为 ,因为以 ,,P为顶点得三角形得面积为 , 所以 ,求解即可. 【详解】 解:(1) 如图, 为所作. (0,3),(4,0); (2) 计算 的面积 . (3)设P点得坐标为(t,0), 因为以 ,, 为顶点得三角形得面积为 , 所以 ,解得 或 , 即 点坐标为 (3,0) 或(5,0). 【点睛】 本题主要考查了坐标与图形,平移作图,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解. 二十一、解答题 21.(1);(2). 【分析】 (1)根据9的平方根为±3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可; (2)先估算,得到其整数部分,则y为小数部分,分别求出x,y 解析:(1);(2). 【分析】 (1)根据9的平方根为±3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可; (2)先估算,得到其整数部分,则y为小数部分,分别求出x,y即可计算. 【详解】 (1)依题意得2a-1=9,11a+b-1=64, 解得a=5,b=10, ∴b-a=5,其算术平方根为, ∴m= (2)x+y=10+ ∵2<<3, ∴12<10+<13, ∴x=12,y=10+-12=-2 ∴x-y=12-(-2)= 【点睛】 此题主要考查平方根的应用,解题的关键是熟知平方根的性质及实数的估算. 二十二、解答题 22.(1)棱长为4;(2)边长为:(或) 【分析】 (1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案. 【详解】 解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4. 解析:(1)棱长为4;(2)边长为:(或) 【分析】 (1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案. 【详解】 解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4. (2)因为正方体的棱长为4,所以AB=. 【点睛】 本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键. 二十三、解答题 23.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性 解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案; (4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可. 【详解】 (1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°, ∵ED平分∠PEF, ∴∠PEF=2∠PED=2∠DEF=2×60°=120°, ∵PQ∥MN, ∴∠MFE=180°−∠PEF=180°−120°=60°, ∴∠MFD=∠MFE−∠DFE=60°−30°=30°, ∴∠MFD=∠DFE, ∴FD平分∠EFM; (2)如图2,过点E作EK∥MN, ∵∠BAC=45°, ∴∠KEA=∠BAC=45°, ∵PQ∥MN,EK∥MN, ∴PQ∥EK, ∴∠PDE=∠DEK=∠DEF−∠KEA, 又∵∠DEF=60°. ∴∠PDE=60°−45°=15°, 故答案为:15°; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ, ∴∠LFA=∠BAC=45°,∠RHG=∠QGH, ∵FL∥MN,HR∥PQ,PQ∥MN, ∴FL∥PQ∥HR, ∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA, ∵∠FGQ和∠GFA的角平分线GH、FH相交于点H, ∴∠QGH=∠FGQ,∠HFA=∠GFA, ∵∠DFE=30°, ∴∠GFA=180°−∠DFE=150°, ∴∠HFA=∠GFA=75°, ∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°, ∴∠GFL=∠GFA−∠LFA=150°−45°=105°, ∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°, ∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°; (4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A, ∴D′A=DF,DD′=EE′=AF=5cm, ∵DE+EF+DF=35cm, ∴DE+EF+D′A+AF+DD′=35+10=45(cm), 即四边形DEAD′的周长为45cm; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°, 分三种情况: BC∥DE时,如图5,此时AC∥DF, ∴∠CAE=∠DFE=30°, ∴3t=30, 解得:t=10; BC∥EF时,如图6, ∵BC∥EF, ∴∠BAE=∠B=45°, ∴∠BAM=∠BAE+∠EAM=45°+45°=90°, ∴3t=90, 解得:t=30; BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R, ∵∠DRM=∠EAM+∠DFE=45°+30°=75°, ∴∠BKA=∠DRM=75°, ∵∠ACK=180°−∠ACB=90°, ∴∠CAK=90°−∠BKA=15°, ∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°, ∴3t=120, 解得:t=40, 综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行. 【点睛】 本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键. 二十四、解答题 24.(1)∠A+∠C=90°;(2)①见解析;②105° 【分析】 (1)根据平行线的性质以及直角三角形的性质进行证明即可; (2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥ 解析:(1)∠A+∠C=90°;(2)①见解析;②105° 【分析】 (1)根据平行线的性质以及直角三角形的性质进行证明即可; (2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°. 【详解】 解:(1)如图1,AM与BC的交点记作点O, ∵AM∥CN, ∴∠C=∠AOB, ∵AB⊥BC, ∴∠A+∠AOB=90°, ∴∠A+∠C=90°; (2)①如图2,过点B作BG∥DM, ∵BD⊥AM, ∴DB⊥BG, ∴∠DBG=90°, ∴∠ABD+∠ABG=90°, ∵AB⊥BC, ∴∠CBG+∠ABG=90°, ∴∠ABD=∠CBG, ∵AM∥CN,BG∥DM, ∴∠C=∠CBG, ∠ABD=∠C; ②如图3,过点B作BG∥DM, ∵BF平分∠DBC,BE平分∠ABD, ∴∠DBF=∠CBF,∠DBE=∠ABE, 由(2)知∠ABD=∠CBG, ∴∠ABF=∠GBF, 设∠DBE=α,∠ABF=β, 则∠ABE=α,∠ABD=2α=∠CBG, ∠GBF=∠AFB=β, ∠BFC=3∠DBE=3α, ∴∠AFC=3α+β, ∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°, ∴∠FCB=∠AFC=3α+β, △BCF中,由∠CBF+∠BFC+∠BCF=180°得: 2α+β+3α+3α+β=180°, ∵AB⊥BC, ∴β+β+2α=90°, ∴α=15°, ∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°. 【点睛】 本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用. 二十五、解答题 25.(1)证明见解析;(2)900° ,180°(n-1);(3)(180n-180-2m)° 【详解】 【模型】 (1)证明:过点E作EF∥CD, ∵AB∥CD, ∴EF∥AB, ∴∠1+∠MEF 解析:(1)证明见解析;(2)900° ,180°(n-1);(3)(180n-180-2m)° 【详解】 【模型】 (1)证明:过点E作EF∥CD, ∵AB∥CD, ∴EF∥AB, ∴∠1+∠MEF=180°, 同理∠2+∠NEF=180° ∴∠1+∠2+∠MEN=360° 【应用】 (2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°; 由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1), 故答案是:900° , 180°(n-1); (3)过点O作SR∥AB, ∵AB∥CD, ∴SR∥CD, ∴∠AM1O=∠M1OR 同理∠C MnO=∠MnOR ∴∠A M1O+∠CMnO=∠M1OR+∠MnOR, ∴∠A M1O+∠CMnO=∠M1OMn=m°, ∵M1O平分∠AM1M2, ∴∠AM1M2=2∠A M1O, 同理∠CMnMn-1=2∠CMnO, ∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°, 又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1), ∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)° 点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 中学 年级 下册 数学 期末 学业 水平 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文