26.1-二次函数y=ax2+bx+c的图象与性质.ppt
《26.1-二次函数y=ax2+bx+c的图象与性质.ppt》由会员分享,可在线阅读,更多相关《26.1-二次函数y=ax2+bx+c的图象与性质.ppt(38页珍藏版)》请在咨信网上搜索。
oyxX=1y=3x221y=3(x-1)2+2y=3(x-1)2 二次函数的图象和性质1工作总结必须有情况的概述和叙述,有的比较简单,有的比较详细。这部分工作总结必须有情况的概述和叙述,有的比较简单,有的比较详细。这部分内容主要是对工作的主客观条件、有利和不利条件以及工作的环境和基础等进行内容主要是对工作的主客观条件、有利和不利条件以及工作的环境和基础等进行分析。建设单位工作总结篇分析。建设单位工作总结篇1今年以来,我在工作中得到了领导的大力支今年以来,我在工作中得到了领导的大力支持和在座各位同事的大力帮助,现把今年的工作情况做一个总结,向领导和同事持和在座各位同事的大力帮助,现把今年的工作情况做一个总结,向领导和同事们做一汇报:一、在总公司党委和我公司党总支的指导下,深刻领会们做一汇报:一、在总公司党委和我公司党总支的指导下,深刻领会“三个代三个代表表”理论的涵义,不断加深对理论的涵义,不断加深对“三个代表三个代表”重要思想的核心、本质的理解。结合当前重要思想的核心、本质的理解。结合当前我国及我市改革开放的经济形势和我公司的实际现状,认识到,作为一个党员、我国及我市改革开放的经济形势和我公司的实际现状,认识到,作为一个党员、一名企业的管理干部,我的行为和工作必须要以一名企业的管理干部,我的行为和工作必须要以“三个代表三个代表”重要思想为最高行为重要思想为最高行为准则,要从做好自身的本职工作、有效的解决本企业中生产、经营、管理等工作准则,要从做好自身的本职工作、有效的解决本企业中生产、经营、管理等工作中存在的各种问题,提高企业的运行质量和经济效益,用实践来检验我们对中存在的各种问题,提高企业的运行质量和经济效益,用实践来检验我们对“三个三个代表代表”重要思想的理解和认识,从中找出工作中存在的差距和不足,从而改进今后重要思想的理解和认识,从中找出工作中存在的差距和不足,从而改进今后的工作。通过党组织对我多年的教育和帮助,使我从思想上明确了本职工作与政的工作。通过党组织对我多年的教育和帮助,使我从思想上明确了本职工作与政治理论学习的关系,认识到,只有认真学习马列主义、毛泽东思想、邓小平理论,治理论学习的关系,认识到,只有认真学习马列主义、毛泽东思想、邓小平理论,“三个代表三个代表”重要思想和一系列讲话精神,认真贯彻执行、深刻领会党的路线、方重要思想和一系列讲话精神,认真贯彻执行、深刻领会党的路线、方1、抛物线、抛物线y=a(x-h)2+k的图像与的图像与性质:性质:1.当当a0时,开口时,开口 ,当当a0时,开口时,开口 ,2.对称轴是对称轴是 ;3.顶点坐标是顶点坐标是 。向上向上向下向下(h,k)直线直线X=h2、一般地,抛物线、一般地,抛物线y=a(x-h)2+k与与y=ax2的的 相同,相同,不不同同y=ax2y=a(x-h)2+k形状形状位置位置y=ax2y=ax2+k y=a(x h)2y=a(x h)2 +k上下平移上下平移左右平移左右平移上上下下平平移移左左右右平平移移向上向上(1,-2)向下向下向下向下(3,7)(2,-6)向上向上直线直线x=-3直线直线x=1直线直线x=3直线直线x=2(-3,5)y=ax2+bx+c 一般地,我们可以用配方法求一般地,我们可以用配方法求抛物线抛物线y=ax2+bx+c(a0)的顶的顶点与对称轴点与对称轴y=ax2+bx+c1、函数、函数y=ax2+bx+c的图象的图象的的顶点坐标顶点坐标:.对称轴对称轴:直线直线函数函数y=ax2+bx+c、当当a0时时.:当当.最小值最小值=.函数函数y=ax2+bx+c、当当a0时时当当.最大值最大值=.例例1.通通过过配配方方,写写出出下下列列抛抛物物线线的的开开口口方方向向、对对称称轴轴和和顶顶点点坐标坐标(1)y2x24x;(2)y2x23x;(3)y3x26x7;(4)yx24x52求求下下列列函函数数的的最最大大值值或或最最小小值值:(1)yx23x4;(2)y12xx2;(3)y ;(4)y1005x2;例例2.已知抛物线已知抛物线的对称轴是的对称轴是x=2,求,求b的值。的值。例例3.已知二次函数已知二次函数的最大值是的最大值是4,求,求c的值。的值。例例4.已知抛物线已知抛物线y=ax2+bx+c中,中,最高点的坐标,最高点的坐标为为 ,求,求a、b、c的值。的值。练习练习1、已知抛物线已知抛物线y=ax2+bx+c与抛物线与抛物线 y=-2x2 形状相同形状相同,且顶点坐标为且顶点坐标为(1,-5)的函数解析式为的函数解析式为 .2、若抛物线若抛物线ya(x-m)2+n的图的图象与函数象与函数y2x2的图象的形状的图象的形状相同相同,且顶点为且顶点为(-3,2),则函数的则函数的解析式为解析式为 .3、已知抛物线已知抛物线y=ax2+bx+c与抛物线与抛物线y=x2 形状相同形状相同,但开但开口方向相反口方向相反,且顶点坐标为且顶点坐标为 (-1,5)的函数解析式为的函数解析式为 .例例5.已知二次函数已知二次函数(1)m当取何值时,函数图当取何值时,函数图象关于象关于y轴对称?轴对称?(2)m当取何值时,函数图当取何值时,函数图象与象与y轴交点纵坐标为轴交点纵坐标为1?例例5.已知二次函数已知二次函数(3)m当取何值时,函数最当取何值时,函数最小值为小值为-2?1.抛物线抛物线y4x2-11x3与与y轴轴的交点坐标是的交点坐标是 ;与与x轴的交点坐标是轴的交点坐标是 ;2.抛物线抛物线y-6x2-x+2与与y轴的轴的交点坐标是交点坐标是 ;与;与x轴轴的交点坐标是的交点坐标是 ;练习练习:例例6.已知二次函数已知二次函数1.求它的图象的顶点坐标。求它的图象的顶点坐标。2.x取何值时取何值时,y随随x增大而增大增大而增大?3.x取何值时取何值时,y随随x增大而减小增大而减小?4.x取何值时取何值时,y0?x取何值时取何值时,y0?怎样画出函数怎样画出函数y=ax2+bx+c的图象的图象?.画二次函数的图象取点时画二次函数的图象取点时先确先确定顶点,定顶点,再在顶点的两旁再在顶点的两旁对称对称地取地取相同数量的点,一般取相同数量的点,一般取57个点即可。个点即可。例例7:用总长为:用总长为60m的篱的篱笆墙围成矩形场地,矩形笆墙围成矩形场地,矩形面积面积S随矩形一边长随矩形一边长L的的变化而变化,当变化而变化,当L多少时,多少时,场地的面积场地的面积S最大?最大??已知直角三角形两条直已知直角三角形两条直角边的和等于角边的和等于8,两条直,两条直角边各为多少时,这个角边各为多少时,这个直角三角形的面积最大,直角三角形的面积最大,最大值是多少?最大值是多少?函数函数y=ax+bx+c的图象和性质:的图象和性质:顶点坐标:顶点坐标:对称轴:对称轴:开口开口与与y轴交点:轴交点:与与x轴交点:轴交点:向向上上向向下下a0a0增减性增减性x-2abx-2abx-2ab最最 值值当当x=-时,时,2aby有最小值:有最小值:4a4ac-b2当当x=-时,时,2aby有最大值:有最大值:4a4ac-b2直线直线x=-2ab(0,c)4a4ac-b2-2ab(,)2a-b b2-4ac(,0)3、已知一次函数、已知一次函数y=2x+c与二次函数与二次函数y=ax2+bx4的图象都经过点的图象都经过点A(1,1),二次函数的对称轴直线,二次函数的对称轴直线是是x=1,请求出一次函数和二次函数的表达式,请求出一次函数和二次函数的表达式.2、当、当m=_时,抛物线时,抛物线y=mx2 +2(m+2)x+m+3的的 对称轴是对称轴是y轴;轴;当当m=_时,图象与时,图象与y轴交点的纵坐标是轴交点的纵坐标是1;当当m=_时,函数的最小值是时,函数的最小值是2.4.4.写出一个二次函数的解析式,使它的顶点在第二象限写出一个二次函数的解析式,使它的顶点在第二象限且开口向下(要求用一般式表示)且开口向下(要求用一般式表示)5.如图,在同一坐标系中,函数如图,在同一坐标系中,函数y=ax+b与与y=ax2+bx(ab0)的图象只可能是(的图象只可能是()xyoABxyoCxyoDxyo6.二次函数二次函数y=ax2+bx+c的图象如图所示,下的图象如图所示,下列各式中是正数的有()列各式中是正数的有()a b c a+b+c a-b+c 4a+b 2a+bBy-1.12xyA.5个个B.4个个C.3个个D.2个个7.7.已知抛物线已知抛物线y yaxax2 2bxbxc c的图象如图所示,的图象如图所示,下列结论:下列结论:a+b+c0 acb0 b=2a,a+b+c0 acb0 b=2a,其中正确的结论的个数是()其中正确的结论的个数是()A.4 B.3 C.2 D.1A.4 B.3 C.2 D.1 心理学家发现,学生对概念的接受能力心理学家发现,学生对概念的接受能力y与提出与提出概念所用的时间概念所用的时间x(分钟分钟)之间满足函数关系:之间满足函数关系:y=0.1x2+2.6x+43(0 x30),y值越大表示接受值越大表示接受能力越强能力越强.(1)x在什么范围内,学生的接受能力逐步增加?在什么范围内,学生的接受能力逐步增加?x在什么范围内,学生的接受能力逐步降低?在什么范围内,学生的接受能力逐步降低?(2)第第10 分钟时,学生的接受能力是多少?分钟时,学生的接受能力是多少?几分钟时,学生的接受能力最强?几分钟时,学生的接受能力最强?1.抛物线抛物线y=-x2+mx-n的顶点坐标是的顶点坐标是(2,-3),求),求m,n的值。的值。2.不画图象,说明抛物线不画图象,说明抛物线y=-x2+4x+5可可由抛物线由抛物线y=-x2经过怎样的平移得到?经过怎样的平移得到?3.已知抛物线已知抛物线y=ax2+bx+c的图象如的图象如图所示,试求出图所示,试求出a,b,c的值。的值。230yx1.如图,隧道横截面的下部是矩形,上部是半圆,周长为16米。求截面积S(米2)关于底部宽x(米)的函数解析式,及自变量x 的取值范围?试问:当底部宽x为几米时,隧道的截面积S最大(结果精确到0.01米)?课后拓展课后拓展- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 26.1 二次 函数 ax2 bx 图象 性质
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文