八年级下册数学期末试卷试卷(word版含答案).doc
《八年级下册数学期末试卷试卷(word版含答案).doc》由会员分享,可在线阅读,更多相关《八年级下册数学期末试卷试卷(word版含答案).doc(29页珍藏版)》请在咨信网上搜索。
八年级下册数学期末试卷试卷(word版含答案) 一、选择题 1.若y=﹣3,则(x+y)2021等于( ) A.1 B.5 C.﹣5 D.﹣1 2.以下列各组数的长度围成的三角形中,不是直角三角形的一组是( ) A.6,8,11 B.5,12,13 C.1,,2 D.3,4,5 3.如图,在中,点分别在边上.若从下列条件中只选择一个添加到图中的条件中:①;②;③;④.那么不能使四边形是平行四边形的条件相应序号是( ) A.① B.② C.③ D.④ 4.小君周一至周五的支出分别是(单位:元):,,,,则这组数据的平均数是( ) A. B. C. D. 5.如图,将△ABC放在正方形网格中(图中每个小正方形边长均为1)点A,B,C恰好在网格图中的格点上,那么∠ABC的度数为( ) A.90° B.60° C.30° D.45° 6.如图,在菱形中,,的垂直平分线交对角线于点,为垂足,连结,则等于( ) A. B. C. D. 7.如图,以Rt△ABC(AC⊥BC)的三边为边,分别向外作正方形,它们的面积分别为S1﹑S2﹑S3,若S1+S2+S3=12,则S1的值是( ) A.4 B.5 C.6 D.7 8.如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(3,4),点P是y轴正半轴上的动点,连接AP交线段OB于点Q,若△OPQ是等腰三角形,则点P的坐标是( ) A.(0,) B.(0,) C.(0,)或(0,) D.(0,)或(0,) 二、填空题 9.二次根式有意义的条件是_______. 10.菱形的两条对角线分别是6cm,8cm,则菱形面积为_________. 11.在平面直角坐标系中,若点到原点的距离是,则的值是________. 12.如图,在矩形ABCD中,对角线AC、BD交于点O,点E是CD中点,且∠COD=60°.如果AB=2,那么矩形ABCD的面积是____. 13.饮料每箱24瓶,售价48元,买饮料的总价y (元)与所买瓶数x之间的函数________. 14.若矩形的边长分别为2和4,则它的对角线长是__. 15.如图,已知点,,,的坐标分别为,,,.线段、、组成的图形为图形,点沿移动,设点移动的距离为,直线:过点,且在点移动过程中,直线随运动而运动,当过点时,的值为__________;若直线与图形有一个交点,直接写出的取值范围是__________. 16.如图,Rt△ABC中,AB,BC=3,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为 _____. 三、解答题 17.计算: (1); (2). 18.春节期间,乐乐帮妈妈挂灯笼时,发现,如图长2.5米的梯子斜靠在一竖直的墙上,这时为1.5米,当梯子的底端向右移动0.5米到处时,你能帮乐乐算算梯子顶端下滑多少米吗?(处). 19.如图,在4×4的网格直角坐标系中(图中小正方形的边长代表一个单位长),已知点A(﹣1,﹣1),B(2,2). (1)线段AB的长为 ; (2)在小正方形的顶点上找一点C,连接AC,BC,使得S△ABC=. ①用直尺画出一个满足条件的△ABC; ②写出所有符合条件的点C的坐标. 20.如图,平行四边形的对角线、相较于点O,且,,.求证:四边形是矩形. 21.小明在解决问题:已知a=,求2a2-8a+1的值,他是这样分析与解答的: 因为a===2-, 所以a-2=-. 所以(a-2)2=3,即a2-4a+4=3. 所以a2-4a=-1. 所以2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1. 请你根据小明的分析过程,解决如下问题: (1)计算: = - . (2)计算:+…+; (3)若a=,求4a2-8a+1的值. 22.为了做好开学准备,某校共购买了20桶A、B两种桶装消毒液,进行校园消杀,以备开学.已知A种消毒液300元/桶,每桶可供2000米2的面积进行消杀,B种消毒液200元/桶,每桶可供1000米2的面积进行消杀. (1)设购买了A种消毒液x桶,购买消毒液的费用为y元,写出y与x之间的关系式,并指出自变量x的取值范围; (2)在现有资金不超过5300元的情况下,求可消杀的最大面积. 23.已知:如图,平行四边形ABCD中,AB=5,BD=8,点E、F分别在边BC、CD上(点E、F与平行四边形ABCD的顶点不重合),CE=CF,AE=AF. (1)求证:四边形ABCD是菱形; (2)设BE=x,AF=y,求y关于x的函数解析式,并写出定义域; (3)如果AE=5,点P在直线AF上,△ABP是以AB为腰的等腰三角形,那么△ABP的底边长为 .(请将答案直接填写在空格内) 24.如图1,在平面直角坐标系中,直线交轴于点,交轴于点. (1)求直线的函数表达式; (2)如图2,在线段上有一点(点不与点、点重合),将沿折叠,使点落在上,记作点,在上方,以为斜边作等腰直角三角形,求点的坐标; (3)在(2)的条件下,如图3,在平面内是否存在一点,使得以点,,为顶点的三角形与全等(点不与点重合),若存在,请直接写出满足条件的所有点的坐标,若不存在,请说明理由. 25.如图,△ABC中,BA=BC,CO⊥AB于点O,AO=4,BO=6. (1)求BC,AC的长; (2)若点D是射线OB上的一个动点,作DE⊥AC于点E,连结OE. ①当点D在线段OB上时,若△AOE是以AO为腰的等腰三角形,请求出所有符合条件的OD的长. ②设DE交直线BC于点F,连结OF,CD,若S△OBF:S△OCF=1:4,则CD的长为 (直接写出结果). 【参考答案】 一、选择题 1.D 解析:D 【分析】 直接利用二次根式中的被开方数是非负数,进而得出x的值,进而得出y的值,再利用有理数的乘方运算法则计算得出答案. 【详解】 解:由题意可得:x﹣2≥0且4﹣2x≥0, 解得:x=2, 故y=﹣3, 则(x+y)2021=﹣1. 故选:D. 【点睛】 此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数的符号是解题关键. 2.A 解析:A 【分析】 由两条短边长的平方和不等于长边的平方,可得出这三个数不能作为直角三角形的三边长,此题得解. 【详解】 解:A.∵62+82=100,112=121,100≠121, ∴6,8,11不能作为直角三角形的三边长; B. ∵52+122=169,132=169,169=169, ∴5,12,13能作为直角三角形的三边长; C. ∵12+()2=4,22=4,4=4, ∴1,,2能作为直角三角形的三边长; D. ∵32+42=25,52=25,25=25, ∴3,4,5能作为直角三角形的三边长; 故选:A. 【点睛】 本题考查了勾股定理的逆定理,牢记“如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形”是解题的关键. 3.B 解析:B 【解析】 【分析】 利用平行四边形的性质,依据平行四边形的判定方法,即可得出不能使四边形AECF是平行四边形的条件. 【详解】 解:①∵四边形ABCD平行四边形, ∴AD//BC, ∴AF//EC, ∵AE∥CF, ∴四边形AECF是平行四边形; ②∵AE=CF不能得出四边形AECF是平行四边形, ∴条件②符合题意; ③∵四边形ABCD平行四边形, ∴AD=BC,AD∥BC, 又∵BE=DF, ∴AF=EC. 又∵AF∥EC, ∴四边形AECF是平行四边形. ④∵四边形ABCD是平行四边形, ∴∠B=∠D, ∵∠BAE=∠DCF, ∴∠AEB=∠CFD. ∵AD∥BC, ∴∠AEB=∠EAD. ∴∠CFD=∠EAD. ∴AE∥CF. ∵AF∥CE, ∴四边形AECF是平行四边形. 综上所述,不能使四边形AECF是平行四边形的条件有1个. 故选:B. 【点睛】 本题考查了平行四边形的性质定理和判定定理,以及平行线的判定定理;熟记平行四边形的判定方法是解决问题的关键. 4.B 解析:B 【解析】 【分析】 用这组数据的和除以数据的个数就可计算出这组数据的平均数,据此解答即可. 【详解】 解:(7+10+14+7+12)÷5=50÷5=10(元), 故选:B. 【点睛】 此题主要考查的是平均数的含义及其计算方法,关键是要熟练掌握平均数的计算方法. 5.D 解析:D 【分析】 根据所给出的图形求出AB、AC、BC的长以及∠BAC的度数,根据等腰直角三角形的性质即可得到结论. 【详解】 解:根据图形可得: ∵AB=AC==,BC==, ∴∠BAC=90°, ∴∠ABC=45°, 故选D. 【点睛】 此题考查了勾股定理,勾股定理的逆定理、熟练掌握勾股定理的逆定理是解题的关键. 6.D 解析:D 【解析】 【分析】 连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF. 【详解】 解:如图,连接BF, 在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC, ∠ABC=180°-∠BAD=180°-80°=100°, ∵EF是线段AB的垂直平分线, ∴AF=BF,∠ABF=∠BAC=40°, ∴∠CBF=∠ABC-∠ABF=100°-40°=60°, ∵在△BCF和△DCF中, , ∴△BCF≌△DCF(SAS), ∴∠CDF=∠CBF=60°, 故选:D. 【点睛】 本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键. 7.C 解析:C 【解析】 【分析】 根据正方形的面积公式结合勾股定理就可发现大正方形的面积是两个小正方形的面积和,即可得出答案. 【详解】 解:∵由勾股定理得:AC2+BC2=AB2, ∴S3+S2=S1, ∵S1+S2+S3=12, ∴2S1=12, ∴S1=6, 故选:C. 【点睛】 题考查了勾股定理和正方形面积的应用,注意:分别以直角三角形的边作相同的图形,则两个小图形的面积等于大图形的面积. 8.C 解析:C 【分析】 利用待定系数法分别求出OB、PA的函数关系式,设,,并由P、Q点坐标,可表示出OP、OQ和PQ,根据△OPQ是等腰三角形,可得或或,则可得到关于m的方程,求得m的值,即可求得P点坐标. 【详解】 解:设OB的关系式为, 将B(3,4)代入得:, ∴, 设,, ∴,,, 设PA的关系式为,将,代入得: , 解得, ∴, 将,联立方程组得: , 解得, 若△OPQ是等腰三角形,则有或或, 当时,,, 即, 解得,则P点坐标为(0,), 当时,,, 解得,不合题意,舍去, 当时,根据等腰三角形性质可得:点Q在OP的垂直平分线上,, ∴,且, 即, 解得,则P点坐标为(0,) 综上可知存在满足条件的点P,其坐标为(0,)或(0,). 故选:C. 【点睛】 本题是一次函数的综合问题,考查了待定系数法、等腰三角形的性质等知识,掌握待定系数法与两点间的距离公式并注意分类讨论思想及方程思想的应用是解题的关键,综合性较强. 二、填空题 9.x≥0且x≠9 【解析】 【分析】 根据二次根式有意义的条件:被开方数要大于等于0,以及分式有意义的条件:分母不为0,计算求解即可. 【详解】 解:∵二次根式有意义 ∴且 ∴且 故答案为:且. 【点睛】 本题主要考查了二次根式和分式有意义的条件,解题的关键在于能够熟练掌握相关知识点进行求解. 10.24cm2 【解析】 【分析】 根据菱形面积的计算公式,即可求解. 【详解】 解:菱形面积为对角线乘积的一半,可得菱形面积(cm2) 故答案为24cm2. 【点睛】 此题主要考查了菱形面积的计算,掌握菱形面积的计算公式是解题的关键. 11.3或-3 【解析】 【分析】 根据点到原点的距离是,可列出方程,从而可以求得x的值. 【详解】 解:∵点到原点的距离是, ∴, 解得:x=3或-3, 故答案为:3或-3. 【点睛】 本题考查了坐标系中两点之间的距离,解题的关键是利用勾股定理列出方程求解. 12.A 解析:4 【分析】 由矩形的性质得出OA=BO,证△AOB是等边三角形,得出AB=OB=2,由勾股定理求出AD,即可求出矩形的面积. 【详解】 解:∵四边形ABCD是矩形 ∴OA=BO,∠COD=∠AOB=60° ∵∠AOB=60°, ∴△AOB是等边三角形, ∴AB=OB=2, ∴∠BAD=90°,AO=COAC,BO=DOBD,AC=BD=2OB=4, ∴AD2, ∴矩形ABCD的面积=AB×AD=2×24; 故答案:4. 【点睛】 本题考查了矩形的性质,等边三角形的判定和性质,勾股定理等知识;熟练掌握矩形的性质和勾股定理,证明△AOB为等边三角形是解题的关键. 13.y=2x. 【详解】 试题解析:每瓶的售价是=2(元/瓶), 则买的总价y(元)与所买瓶数x之间的函数关系式是:y=2x. 考点:根据实际问题列一次函数关系式. 14.A 解析: 【分析】 根据矩形的性质得出∠ABC=90°,AC=BD,根据勾股定理求出AC即可. 【详解】 ∵四边形ABCD是矩形, ∴∠ABC=90°,AC=BD, 在Rt△ABC中,AB=2,BC=4,由勾股定理得:AC=, ∴ 故答案为 【点睛】 本题考查了矩形的性质,勾股定理的应用,题目比较好,难度适中. 15.1或11 或 【分析】 l过点C、点P的位置有两种情况:①点P位于点E时,S=1;②点P位于点C时,S=11;求出l过临界点D、E、B即求出直线与图形有一个交点时b的取值范围. 【详解 解析:1或11 或 【分析】 l过点C、点P的位置有两种情况:①点P位于点E时,S=1;②点P位于点C时,S=11;求出l过临界点D、E、B即求出直线与图形有一个交点时b的取值范围. 【详解】 解:∵点A、B、C、D的坐标分别为(-2,2),(-2,1),(3,1),(3,2) ∴AD=BC=5,AB=1 当直线l过点C(3,1)时,1=-3+b,即b=4 ∴直线的解析式为y=-x+4. ∴,解得,即直线1与AD的交点E为(2,2) ∴DE=1. ∴如图:当l过点C时,点P位于点E或点C ①当l过点C时,点P位于点E时,S=DE=1; ②当l过点C时,点P位于点C时,S=AD+AB+BC=5+1+5=11.. ∴当1过点C时,S的值为1或11; 当直线l过点D时,b=5; 当直线1过点C时,b=4; 当直线1过点B时,将B(-2,1)代入y=-x+b得1=2+b,即b=-1 ∴当或时,直线与图形有一个交点. 故填1或11,或. 【点睛】 本题主要考查了一次函数图象与系数的关系、一次函数图象上点的坐标特征,根据题意求出临界值成为解答本题的关键. 16.2 【分析】 根据题意,设,由折叠,在利用勾股定理列方程解出x,就求出BN的长. 【详解】 ∵D是CB中点,, ∴, 设,则, 在中,, , 解得:, ∴. 故答案是:2. 【点睛】 本题考查折叠的 解析:2 【分析】 根据题意,设,由折叠,在利用勾股定理列方程解出x,就求出BN的长. 【详解】 ∵D是CB中点,, ∴, 设,则, 在中,, , 解得:, ∴. 故答案是:2. 【点睛】 本题考查折叠的性质和勾股定理,关键是利用方程思想设边长,然后用勾股定理列方程解未知数,求边长. 三、解答题 17.(1);(2)4 【分析】 (1)先利用二次根式的性质化简和去绝对值,然后合并同类二次根式即可; (2)利用二次根式的性质化简,完全平方公式和零指数幂的计算法则化简,最后合并同类二次根式即可. 【详 解析:(1);(2)4 【分析】 (1)先利用二次根式的性质化简和去绝对值,然后合并同类二次根式即可; (2)利用二次根式的性质化简,完全平方公式和零指数幂的计算法则化简,最后合并同类二次根式即可. 【详解】 解:(1) ; (2) . 【点睛】 本题主要考查了利用二次根式的性质化简,合并同类二次根式,完全平方公式,零指数幂,解题的关键在于能够熟练掌握相关计算法则 18.5米 【分析】 在中,由勾股定理可求出AC的值,在中,由勾股定理可求出CE的值,最后根据线段的和差关系即可得出答案. 【详解】 解:∵,在中,由勾股定理得,, ∴米,(负值已舍去) ∵米, ∴在中, 解析:5米 【分析】 在中,由勾股定理可求出AC的值,在中,由勾股定理可求出CE的值,最后根据线段的和差关系即可得出答案. 【详解】 解:∵,在中,由勾股定理得,, ∴米,(负值已舍去) ∵米, ∴在中,, ∴米 ∴(米) 答:梯子顶端下滑0.5米. 【点睛】 本题考查勾股定理的应用,在直角三角形里根据勾股定理,知道其中两边就可求出第三边,从而可求解. 19.(1)3;(2)①见解析;②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2). 【解析】 【分析】 (1)直接利用勾股定理求出AB的长度即可; (2)①根据三角形ABC的面积画 解析:(1)3;(2)①见解析;②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2). 【解析】 【分析】 (1)直接利用勾股定理求出AB的长度即可; (2)①根据三角形ABC的面积画出对应的三角形即可; ②根据点C的位置,写出点C的坐标即可. 【详解】 解:(1)如图所示 在Rt△ACB中,∠P=90°,AP=3,BP=3 ∴ (2)①如图所示 Rt△ACB中,∠C=90°,AC=3,BC=3 ∴ ②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2). 满足条件的三角形如图所示. C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2). 【点睛】 本题主要考查了勾股定理,三角形的面积,点的坐标,解题的关键在于能够熟练掌握相关知识点进行求解. 20.见解析 【分析】 先根据四边形是平行四边形且得到平行四边形是菱形,即可得到,再根据,,证明四边形是平行四边形,即可得到平行四边形是矩形. 【详解】 证明:∵四边形是平行四边形且 ∴平行四边形是菱形 解析:见解析 【分析】 先根据四边形是平行四边形且得到平行四边形是菱形,即可得到,再根据,,证明四边形是平行四边形,即可得到平行四边形是矩形. 【详解】 证明:∵四边形是平行四边形且 ∴平行四边形是菱形 ∴,即 又∵,. ∴四边形是平行四边形, ∴平行四边形是矩形. 【点睛】 本题主要考查了平行四边形的判定,矩形的判定,菱形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 21.(1) ,1;(2) 9;(3) 5 【解析】 【分析】 (1); (2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求 解析:(1) ,1;(2) 9;(3) 5 【解析】 【分析】 (1); (2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解; (3)首先化简,然后把所求的式子化成代入求解即可. 【详解】 (1)计算: ; (2)原式; (3), 则原式, 当时,原式. 【点睛】 本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键. 22.(1)y=100x+4000(0<x<20且x为整数);(2)33000米2. 【分析】 (1)根据题意,可以写出y与x之间的关系式,并写出自变量x的取值范围; (2)根据现有资金不超过5300元, 解析:(1)y=100x+4000(0<x<20且x为整数);(2)33000米2. 【分析】 (1)根据题意,可以写出y与x之间的关系式,并写出自变量x的取值范围; (2)根据现有资金不超过5300元,可以求得x的取值范围,再根据题意,可以得到消杀面积与x的函数关系式,然后根据一次函数的性质,即可得到可消杀的最大面积. 【详解】 解:(1)由题意可得, y=300x+200(20﹣x)=100x+4000, 即y与x之间的关系式为y=100x+4000(0<x<20且x为整数); (2)∵现有资金不超过5300元, ∴100x+4000≤5300, 解得,x≤13, 设可消杀的面积为S米2, S=2000x+1000(20﹣x)=1000x+20000, ∴S随x的增大而增大, ∴当x=13时,S取得最大值,此时S=33000, 即可消杀的最大面积是33000米2. 【点睛】 本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答. 23.(1)见解析;(2);(3)8或或6 【分析】 (1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形; (2)连结,交于点,作于点,由菱形的面积及边长求出菱形的 解析:(1)见解析;(2);(3)8或或6 【分析】 (1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形; (2)连结,交于点,作于点,由菱形的面积及边长求出菱形的高,再求的长,由勾股定理列出关于、的等式,整理得到关于的函数解析式; (3)以为腰的等腰三角形分三种情况,其中有两种情况是等腰三角形与或全等,另一种情况可由(2)中求得的菱形的高求出的长,再求等腰三角形的底边长. 【详解】 解:(1)证明:如图1,连结, ,,, , , 即; 四边形是平行四边形, , , , , 四边形是菱形 (2)如图2,连结,交于点,作于点,则, 由(1)得,四边形是菱形, , , ,, , , , 由,且,得, 解得; , , 由,且,得, 点在边上且不与点、重合, , 关于的函数解析式为, (3)如图3,,且点在的延长线上, ,, , , , , , , , , , , , ,, , , 即等腰三角形的底边长为8; 如图4,,作于点,于点,则, , , , , , 由(2)得,, , , 即等腰三角形的底边长为; 如图5,,点与点重合,连结, ,,, , , 即, 等腰三角形的底边长为6. 综上所述,以为腰的等腰三角形的底边长为8或或6, 故答案为:8或或6. 【点睛】 此题重点考查菱形的性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理、求与几何图形有关的函数关系式等知识与方法,在解第(3)题时,需要进行分类讨论,求出所有符合条件的值,以免丢解. 24.(1);(2),;(3),或,或,. 【解析】 【分析】 (1)直接利用待定系数法,即可得出结论; (2)先求出,,进而求出点的坐标,再构造出,得出,,设,进而建立方程组求解,即可得出结论; (3) 解析:(1);(2),;(3),或,或,. 【解析】 【分析】 (1)直接利用待定系数法,即可得出结论; (2)先求出,,进而求出点的坐标,再构造出,得出,,设,进而建立方程组求解,即可得出结论; (3)分两种情况,①当时,利用中点坐标公式求解,即可得出结论; ②当时,当点在上方时,判断出四边形是平行四边形,即可得出结论; 当点在下方时,判断出四边形是平行四边形,再用平移的性质,即可得出结论. 【详解】 解:(1)设直线的函数表达式为, 点,点, , , 直线的函数表达式为; (2)如图1, 点,点, ,, , 由折叠知,, 过点作轴,交轴于, , , ,, , ,, 过点作轴于,延长交于, , , 是等腰直角三角形, ,, , , , ,, 设,则, , ,; (3)设,则, 由折叠知,,, 在中,, , , ,,,, 点,,为顶点的三角形与全等, ①当时, ,, 连接交于,则,,由(1)知,,, 设, ,, ,, ,; ②当时,当点在上方时, ,, 四边形是平行四边形, , ,; 当点在下方时,,, 四边形是平行四边形, 点,向左平移个单位,再向下平移个单位到达点, 点是点向左平移个单位,再向下平移个单位到达点,,即满足条件的点的坐标为,或,或,. 【点睛】 本题考查了一次函数综合题,考查了待定系数法,折叠的性质,等腰直角三角形的性质,全等三角形的判定和性质,平移的性质,中点坐标公式,解题的关键是构造出全等三角. 25.(1)4;(2)或8. 【分析】 根据BA=BC,分别用勾股定理求出CO和AC的长. ①分情况AO=OE和AO=AE,画出图形,根据三角形中位线定理和证明三角形全等解决问题. ②分情况 i)当D在线 解析:(1)4;(2)或8. 【分析】 根据BA=BC,分别用勾股定理求出CO和AC的长. ①分情况AO=OE和AO=AE,画出图形,根据三角形中位线定理和证明三角形全等解决问题. ②分情况 i)当D在线段OB上时,如图3,过B作BG⊥EF于G,根据同高三角形面积比等于底边之比,得到,再根据平行线性质∠BDG=∠BFG,得到BD=BF=,最后使用勾股定理求出结论 ii)当D在线段OB的延长线上时,如图4,过B作BG⊥DE于G,同理计算可得结论. 【详解】 解:(1)∵AO=4,BO=6, ∴AB=10, ∵BA=BC, ∴BC=10, ∵CO⊥AB, ∴∠AOC=∠BOC=90°, 由勾股定理得:CO===8, AC===4; (2)①分两种情况: i)如图1,当AO=OE=4时,过O作ON⊥AC于N, ∴AN=EN, ∵DE⊥AC, ∴ON∥DE, ∴AO=OD=4; ii)当AO=AE=4时,如图2, 在△CAO和△DAE中, , ∴△CAO≌△DAE(AAS), ∴AD=AC=4, ∴OD=4﹣4; ②分两种情况: i)当D在线段OB上时,如图3,过B作BG⊥EF于G, ∵S△OBF:S△OCF=1:4, ∴ ∴ ∵CB=10 ∴BF= ∵EF⊥AC, ∴BG∥AC, ∴∠GBF=∠ACB, ∵AE∥BG, ∴∠A=∠DBG, ∵AB=BC, ∴∠A=∠ACB, ∴∠DBG=∠GBF, ∵∠DGB=∠FGB, ∴∠BDG=∠BFG, ∴BD=BF=, ∴OD=OB﹣BD=6﹣=, ∴CD===; ii)当D在线段OB的延长线上时,如图4,过B作BG⊥DE于G, 同理得, ∵BC=10, ∴BF=2, 同理得:∠BFG=∠BDF, ∴BD=BF=2, Rt△COD中,CD===8, 综上,CD的长为或8. 故答案为:或8. 【点睛】 本题考查的是三角形全等的综合题,关键是根据三角形全等判定和性质、平行线性质、等腰三角形性质,三角形面积、勾股定理等,知识解答有难度.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 数学 期末试卷 试卷 word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文