2024年人教版七7年级下册数学期末质量检测题(附答案).doc
《2024年人教版七7年级下册数学期末质量检测题(附答案).doc》由会员分享,可在线阅读,更多相关《2024年人教版七7年级下册数学期末质量检测题(附答案).doc(24页珍藏版)》请在咨信网上搜索。
2024年人教版七7年级下册数学期末质量检测题(附答案) 一、选择题 1.如图,直线a,b,c被射线l和m所截,则下列关系正确的是( ) A.∠1与∠2是对顶角 B.∠1与∠3是同旁内角 C.∠3与∠4是同位角 D.∠2与∠3是内错角 2.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A. B. C. D. 3.若点在第二象限,则点在第( )象限 A.一 B.二 C.三 D.四 4.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③垂直于同一条直线的两条直线平行:④同旁内角互补.其中错误的有( ) A.1个 B.2个 C.3个 D.4个 5.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,,则∠E的度数是( ) A.30° B.40° C.60° D.70° 6.下列等式正确的是( ) A. B. C. D. 7.如图,和相交于点O,则下列结论正确的是( ) A. B. C. D. 8.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为……根据这个规律,第个点的坐标为( ) A. B. C. D. 九、填空题 9.若=x,则x的值为______. 十、填空题 10.已知点与点关于轴对称,则的值为__________. 十一、填空题 11.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为_____. 十二、填空题 12.如图,,点在上,点在上,则的度数等于______. 十三、填空题 13.如图,将ABC沿着AC边翻折得到AB1C,连接BB1交AC于点E,过点B1作B1DAC交BC延长线于点D,交BA延长线于点F,连接DA,若∠CBE=45°,BD=6cm,则ADB1的面积为_________. 十四、填空题 14.已知,若且是整数,则m=______ . 十五、填空题 15.如图,若“马”所在的位置的坐标为,“象”所在位置的坐标为,则“将"所在位置的坐标为_______. 十六、填空题 16.在平面直角坐标系中,对于点,我们把点叫做点的和谐点.已知点的和谐点为,点的和谐点为,点的和谐点为,……,这样依次得到点,,,…,.若点的坐标为,则点的坐标为______. 十七、解答题 17.计算. (1); (2). 十八、解答题 18.已知,,求下列各式的值 ; 十九、解答题 19.根据下列证明过程填空:已知:如图,于点,于点,.求证:. 证明:∵,(已知) ∴(______________) ∴(_____________) ∴(_____________) 又∵(已知) ∴(_________) ∴(_________) ∴(__________) 二十、解答题 20.如图,在平面直角坐标系中,已知三角形三点的坐标分别为,,. (1)求三角形的面积; (2)在轴上存在一点,使三角形的面积等于三角形面积,求点的坐标. 二十一、解答题 21.阅读下面的文字,解答问题. 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,但是由于1<<2,所以的整数部分为1,将减去其整数部分1,差就是小数部分为(-1).解答下列问题: (1)的整数部分是 ,小数部分是 ; (2)如果的小数部分为a,的整数部分为b,求a+b−的值; (3)已知12+=x+y,其中x是整数,且0<y<1,求x-y的相反数. 二十二、解答题 22.如图是一块正方形纸片. (1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为 dm. (2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆 C正(填“=”或“<”或“>”号) (3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由? 二十三、解答题 23.已知,.点在上,点在 上. (1)如图1中,、、的数量关系为: ;(不需要证明);如图2中,、、的数量关系为: ;(不需要证明) (2)如图 3中,平分,平分,且,求的度数; (3)如图4中,,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数. 二十四、解答题 24.已知直线,M,N分别为直线,上的两点且,P为直线上的一个动点.类似于平面镜成像,点N关于镜面所成的镜像为点Q,此时. (1)当点P在N右侧时: ①若镜像Q点刚好落在直线上(如图1),判断直线与直线的位置关系,并说明理由; ②若镜像Q点落在直线与之间(如图2),直接写出与之间的数量关系; (2)若镜像,求的度数. 二十五、解答题 25.(生活常识) 射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 . (现象解释) 如图 2,有两块平面镜 OM,ON,且 OM⊥ON,入射光线 AB 经过两次反射,得到反射光线 CD.求证 AB∥CD. (尝试探究) 如图 3,有两块平面镜 OM,ON,且∠MON =55° ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 相交于点 E,求∠BEC 的大小. (深入思考) 如图 4,有两块平面镜 OM,ON,且∠MON = α ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 所在的直线相交于点 E,∠BED=β , α 与 β 之间满足的等量关系是 .(直接写出结果) 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据对顶角、邻补角、同位角、内错角的定义分别分析即可. 【详解】 解:A、∠1与∠2是邻补角,故原题说法错误; B、∠1与∠3不是同旁内角,故原题说法错误; C、∠3与∠4是同位角,故原题说法正确; D、∠2与∠3不是内错角,故原题说法错误; 故选:C. 【点睛】 此题主要考查了对顶角、邻补角、内错角和同位角,解题的关键是掌握对顶角、邻补角、内错角和同位角的定义. 2.D 【分析】 根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可. 【详解】 解:A、不能用平移变换来分析其形成过程,故此选项错误; B、不能用平移变换来分析其 解析:D 【分析】 根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可. 【详解】 解:A、不能用平移变换来分析其形成过程,故此选项错误; B、不能用平移变换来分析其形成过程,故此选项错误; C、不能用平移变换来分析其形成过程,故此选项正确; D、能用平移变换来分析其形成过程,故此选项错误; 故选:D. 【点睛】 本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向. 3.C 【分析】 应根据点P的坐标特征先判断出点Q的横纵坐标的符号,进而判断点Q所在的象限. 【详解】 解:∵点在第二象限, ∴1+a<0,1-b>0; ∴a<-1, b-1<0, 即点在第三象限. 故选:C. 【点睛】 解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负. 4.C 【分析】 根据对顶角的性质、同旁内角的概念、平行公理及推论逐一进行判断即可. 【详解】 解:①对顶角相等,原命题正确; ②过直线外一点有且只有一条直线与已知直线平行,原命题错误; ③在同一平面内,垂直于同一条直线的两条直线平行,原命题错误; ④两直线平行,同旁内角互补,原命题错误. 故选:C. 【点睛】 本题考查了平行公理及推论,对顶角、邻补角和同旁内角等知识,熟记其概念和性质是解题的关键. 5.A 【分析】 过点作,先根据平行线的性质可得,再根据平行公理推论、平行线的性质可得,然后根据角的和差即可得. 【详解】 解:如图,过点作, , , , , , , , , 故选:A. 【点睛】 本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键. 6.C 【分析】 根据算术平方根、立方根的定义计算即可 【详解】 A、负数没有平方根,故错误 B、表示计算算术平方根,所以,故错误 C、,故正确 D、,故错误 故选:C 【点睛】 本题考查算术平方根、立方根的计算,熟知任何数都有立方根、负数没有平方根是关键 7.A 【分析】 根据对顶角的性质和平行线的性质判断即可. 【详解】 解:A、∵和是对顶角, ∴,选项正确,符合题意; B、∵与OB相交于点A, ∴与OB不平行, ∴,选项错误,不符合题意; C、∵AO与BC相交于点B, ∴AO与BC不平行, ∴,选项错误,不符合题意; D、∵OD与BC相交于点C, ∴OD与BC不平行, ∴,选项错误,不符合题意. 故选:A. 【点睛】 此题考查了对顶角的性质,平行线的性质,解题的关键是熟练掌握对顶角的性质和平行线的性质.对顶角相等. 8.A 【分析】 根据图形和数字规律、直角坐标系的性质,首先根据题意,第个点的坐标为: 第个点的坐标为 第个点的坐标为: 再总结规律,通过计算即可得到答案. 【详解】 解:根据题意,第个点的坐标为: 解析:A 【分析】 根据图形和数字规律、直角坐标系的性质,首先根据题意,第个点的坐标为: 第个点的坐标为 第个点的坐标为: 再总结规律,通过计算即可得到答案. 【详解】 解:根据题意,第个点的坐标为: 第个点的坐标为 第个点的坐标为: 所以第个点的坐标为:, ∵, ∴第2025个数为: ∴第2021个数为第2025个数向上推4个数,即 故选:A. 【点睛】 本题考查了直角坐标系、图形和数字规律的知识;解题的关键是熟练掌握直角坐标系、图形和数字规律的性质,从而完成求解. 九、填空题 9.0或1 【分析】 根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解. 【详解】 ∵02=0,12=1, ∴0的算术平方根为0,1的算术平方根 解析:0或1 【分析】 根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解. 【详解】 ∵02=0,12=1, ∴0的算术平方根为0,1的算术平方根为1. 故答案是:0或1. 【点睛】 考查了算术平方根的定义,解题关键是利用算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解. 十、填空题 10.-1 【分析】 直接利用关于y轴对称点的性质得出a,b的值进而得出答案. 【详解】 解:∵点A(a,2019)与点是关于y轴的对称点, ∴a=-2020,b=2019, ∴a+b=-1. 故答案为: 解析:-1 【分析】 直接利用关于y轴对称点的性质得出a,b的值进而得出答案. 【详解】 解:∵点A(a,2019)与点是关于y轴的对称点, ∴a=-2020,b=2019, ∴a+b=-1. 故答案为:-1. 【点睛】 本题考查关于y轴对称的点的坐标性质,解题关键是熟练掌握横纵坐标的关系. 十一、填空题 11.4cm 【详解】 ∵BC=10cm,BD:DC=3:2, ∴BD=6cm,CD=4cm, ∵AD是△ABC的角平分线,∠ACB=90°, ∴点D到AB的距离等于DC,即点D到AB的距离等于4cm. 解析:4cm 【详解】 ∵BC=10cm,BD:DC=3:2, ∴BD=6cm,CD=4cm, ∵AD是△ABC的角平分线,∠ACB=90°, ∴点D到AB的距离等于DC,即点D到AB的距离等于4cm. 十二、填空题 12.180° 【分析】 根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案 【详解】 解:∵AB∥ 解析:180° 【分析】 根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案 【详解】 解:∵AB∥CD, ∴∠1=∠AFD, ∵∠EFC=180°-∠EFD,∠ECF=180°-∠3,∠2+∠ECF+∠EFC=180°, ∴∠2+360°-∠1-∠3=180°, ∴∠1+∠3-∠2=180°, 故答案为:180° 【点睛】 本题主要考查了三角形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解 十三、填空题 13.cm² 【分析】 根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解. 【详解】 解:根据翻折变换的性质可知AC垂直平分BB1, ∵B1D∥AC, ∴ 解析:cm² 【分析】 根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解. 【详解】 解:根据翻折变换的性质可知AC垂直平分BB1, ∵B1D∥AC, ∴AC为三角形ADB中位线, ∴BC=CD=BD=3cm, 在Rt△BCE中,∠CBE=45°,BC=3cm, ∴CE2+BE2=BC2, 解得BE=CE=cm. ∴EB1=BE=, ∵CE为△BDB1中位线, ∴DB1=2CE=3cm, △ADB1的高与EB1相等, ∴S△ADB1=×DB1×EB1=××3=cm², 故答案为:cm². 【点睛】 本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC为△ADB的中位线从而得出答案. 十四、填空题 14.2 【分析】 根据题意可知m是整数,然后求出m的范围即可得出m的具体数值,然后根据是整数即可求出答案. 【详解】 解:∵是整数, ∴m是整数, ∵, ∴m2≤4, ∴−2≤m≤2, ∴m=−2,−1 解析:2 【分析】 根据题意可知m是整数,然后求出m的范围即可得出m的具体数值,然后根据是整数即可求出答案. 【详解】 解:∵是整数, ∴m是整数, ∵, ∴m2≤4, ∴−2≤m≤2, ∴m=−2,−1,0,1,2 当m=±2或−1时,是整数, ∵ ∴m=2 故答案为:2. 【点睛】 本题考查算术平方根和无理数大小的估算,解题的关键是根据条件求出m的范围,本题属于中等题型. 十五、填空题 15.【分析】 结合题意,根据坐标的性质分析,即可得到答案. 【详解】 ∵“马”所在的位置的坐标为,“象”所在位置的坐标为 ∴棋盘中每一格代表1 ∴“将"所在位置的坐标为,即 故答案为:. 【点睛】 本 解析: 【分析】 结合题意,根据坐标的性质分析,即可得到答案. 【详解】 ∵“马”所在的位置的坐标为,“象”所在位置的坐标为 ∴棋盘中每一格代表1 ∴“将"所在位置的坐标为,即 故答案为:. 【点睛】 本题考查了坐标的知识;解题的关键是熟练掌握坐标的性质,从而完成求解. 十六、填空题 16.【分析】 根据“和谐点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:∵A1的坐标为(2,4), ∴A 解析: 【分析】 根据“和谐点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:∵A1的坐标为(2,4), ∴A2(−3,3),A3(−2,−2),A4(3,−1),A5(2,4), …, 依此类推,每4个点为一个循环组依次循环, ∵2021÷4=505•••1, ∴点A2021的坐标与A1的坐标相同,为(2,4). 故答案为:. 【点睛】 本题是对点的变化规律的考查,读懂题目信息,理解“和谐点”的定义并求出每4个点为一个循环组依次循环是解题的关键. 十七、解答题 17.(1)3;(2) 【分析】 (1)根据有理数加减混合运算法则求解即可; (2)根据平方根与立方根的定义先化简,然后合并求解即可. 【详解】 解:(1)原式 (2)原式 【点睛】 本题考查有理数 解析:(1)3;(2) 【分析】 (1)根据有理数加减混合运算法则求解即可; (2)根据平方根与立方根的定义先化简,然后合并求解即可. 【详解】 解:(1)原式 (2)原式 【点睛】 本题考查有理数的加减混合运算,以及实数的混合运算等,掌握基本的运算法则,注意运算顺序是解题关键. 十八、解答题 18.(1)25;(2)37 【分析】 (1)利用完全平方差公式求解. (2)先配方,再求值. 【详解】 解:(1) (2) 【点睛】 本题考查完全平方公式及其变形式,根据公式特征进行变形是求解 解析:(1)25;(2)37 【分析】 (1)利用完全平方差公式求解. (2)先配方,再求值. 【详解】 解:(1) (2) 【点睛】 本题考查完全平方公式及其变形式,根据公式特征进行变形是求解本题的关键. 十九、解答题 19.;垂直的定义;同位角相等,两直线平行;;两直线平行,同位角相等;GD;同位角相等,两直线平行;;两直线平行,内错角相等;等量代换 【分析】 结合图形,根据已知证明过程,写出相关的依据即可. 【详解】 解析:;垂直的定义;同位角相等,两直线平行;;两直线平行,同位角相等;GD;同位角相等,两直线平行;;两直线平行,内错角相等;等量代换 【分析】 结合图形,根据已知证明过程,写出相关的依据即可. 【详解】 证明:证明:∵,(已知) ∴(垂直的定义) ∴(同位角相等,两直线平行) ∴(两直线平行,同位角相等) 又∵(已知) ∴(同位角相等,两直线平行) ∴(两直线平行,内错角相等) ∴(等量代换) 【点睛】 本题考查证明过程中每一步的依据,根据推理过程明白相关知识点是解题关键. 二十、解答题 20.(1)的面积为5;(2)或 【分析】 (1)根据割补法可直接进行求解; (2)由(1)可得,进而△的面积以点B的纵坐标为高,ON为底,然后可得ON=5,最后问题可求解. 【详解】 解:(1)由图象可 解析:(1)的面积为5;(2)或 【分析】 (1)根据割补法可直接进行求解; (2)由(1)可得,进而△的面积以点B的纵坐标为高,ON为底,然后可得ON=5,最后问题可求解. 【详解】 解:(1)由图象可得: ; (2)设点,由题意得:, ∴△的面积以点B的纵坐标为高,ON为底,即, ∴, ∴或. 【点睛】 本题主要考查图形与坐标,熟练掌握点的坐标表示的几何意义及割补法是解题的关键. 二十一、解答题 21.(1)3,-3;(2)1;(3)−14 【分析】 (1)根据的大小,即可求解; (2)分别求得a、b,即可求得代数式的值; (3)求得12+的整数部分x,小数部分y,即可求解. 【详解】 解:(1) 解析:(1)3,-3;(2)1;(3)−14 【分析】 (1)根据的大小,即可求解; (2)分别求得a、b,即可求得代数式的值; (3)求得12+的整数部分x,小数部分y,即可求解. 【详解】 解:(1)∵ ∴的整数部分是3,小数部分是-3; (2)∵2<<3,3<<4 ∴a=−2,b=3 ∴a+b−=−2+3−=1; (3)∵1<<2,∴13<12+<14, ∴x=13,y=−1 ∴x-y=13−(−1)=14− ∴x-y的相反数是−14. 【点睛】 此题主要考查了无理数大小的估算,正确确定无理数的整数部分和小数部分是解题的关键. 二十二、解答题 22.(1);(2)<;(3)不能;理由见解析. 【分析】 (1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长; (2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采 解析:(1);(2)<;(3)不能;理由见解析. 【分析】 (1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长; (2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采用方程思想求出长方形的长边,与正方形边长比较大小即可. 【详解】 解:(1)由已知AB2=1,则AB=1, 由勾股定理,AC=; 故答案为:. (2)由圆面积公式,可得圆半径为,周长为,正方形周长为4. ;即C圆<C正; 故答案为:< (3)不能; 由已知设长方形长和宽为3xcm和2xcm ∴长方形面积为:2x•3x=12 解得x= ∴长方形长边为3>4 ∴他不能裁出. 【点睛】 本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键. 二十三、解答题 23.(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°. 【分析】 (1)过E作EHAB,易得EHABCD,根据平行线的性质 解析:(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°. 【分析】 (1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解; (2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=180°,可求解∠BMF=60°,进而可求解; (3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解. 【详解】 解:(1)过E作EHAB,如图1, ∴∠BME=∠MEH, ∵ABCD, ∴HECD, ∴∠END=∠HEN, ∴∠MEN=∠MEH+∠HEN=∠BME+∠END, 即∠BME=∠MEN−∠END. 如图2,过F作FHAB, ∴∠BMF=∠MFK, ∵ABCD, ∴FHCD, ∴∠FND=∠KFN, ∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND, 即:∠BMF=∠MFN+∠FND. 故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND. (2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND. ∵NE平分∠FND,MB平分∠FME, ∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END, ∵2∠MEN+∠MFN=180°, ∴2(∠BME+∠END)+∠BMF−∠FND=180°, ∴2∠BME+2∠END+∠BMF−∠FND=180°, 即2∠BMF+∠FND+∠BMF−∠FND=180°, 解得∠BMF=60°, ∴∠FME=2∠BMF=120°; (3)∠FEQ的大小没发生变化,∠FEQ=30°. 由(1)知:∠MEN=∠BME+∠END, ∵EF平分∠MEN,NP平分∠END, ∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END, ∵EQNP, ∴∠NEQ=∠ENP, ∴∠FEQ=∠FEN−∠NEQ=(∠BME+∠END)−∠END=∠BME, ∵∠BME=60°, ∴∠FEQ=×60°=30°. 【点睛】 本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键. 二十四、解答题 24.(1)①,证明见解析,②,(2)或. 【分析】 (1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q作QF∥CD,根据平行线的性质证即可; (2)过点Q作QF∥CD,根据点P的位置不同, 解析:(1)①,证明见解析,②,(2)或. 【分析】 (1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q作QF∥CD,根据平行线的性质证即可; (2)过点Q作QF∥CD,根据点P的位置不同,分类讨论,依据平行线的性质求解即可. 【详解】 (1)①, 证明:∵, ∴, ∵, ∴, ∴; ②过点Q作QF∥CD, ∵, ∴, ∴,, ∴, ∵, ∴; (2)如图,当点P在N右侧时,过点Q作QF∥CD, 同(1)得,, ∴,, ∵, ∴, ∴, ∵, ∴, ∴, 如图,当点P在N左侧时,过点Q作QF∥CD,同(1)得,, 同理可得,, ∵, ∴, ∴, ∵, ∴, ∴; 综上,的度数为或. 【点睛】 本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系. 二十五、解答题 25.【现象解释】见解析;【尝试探究】ÐBEC = 70°;【深入思考】 b = 2a. 【分析】 [现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠ 解析:【现象解释】见解析;【尝试探究】ÐBEC = 70°;【深入思考】 b = 2a. 【分析】 [现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD; [尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°; [深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α. 【详解】 [现象解释] 如图2, ∵OM⊥ON, ∴∠CON=90°, ∴∠2+∠3=90° ∵∠1=∠2,∠3=∠4, ∴∠1+∠2+∠3+∠4=180°, ∴∠DCB+∠ABC=180°, ∴AB∥CD; 【尝试探究】 如图3, 在△OBC中,∵∠COB=55°, ∴∠2+∠3=125°, ∵∠1=∠2,∠3=∠4, ∴∠1+∠2+∠3+∠4=250°, ∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°, ∴∠EBC+BCE=360°-250°=110°, ∴∠BEC=180°-110°=70°; 【深入思考】 如图4, β=2α, 理由如下:∵∠1=∠2,∠3=∠4, ∴∠ABC=180°-2∠2,∠BCD=180°-2∠3, ∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β, ∵∠BOC=∠3-∠2=α, ∴β=2α. 【点睛】 本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 年人教版七 年级 下册 数学 期末 质量 检测 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文