2023年人教版中学七7年级下册数学期末解答题复习附答案.doc
《2023年人教版中学七7年级下册数学期末解答题复习附答案.doc》由会员分享,可在线阅读,更多相关《2023年人教版中学七7年级下册数学期末解答题复习附答案.doc(34页珍藏版)》请在咨信网上搜索。
2023年人教版中学七7年级下册数学期末解答题复习附答案 一、解答题 1.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件. (1)求正方形工料的边长; (2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,) 2.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3) 3.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上. (1)请求出图中阴影部分(正方形)的面积和边长 (2)若边长的整数部分为,小数部分为,求的值. 4.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件. (1)求正方形工料的边长; (2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:=1.414,=1.732,=2.236) 5.求下图的方格中阴影部分正方形面积与边长. 二、解答题 6.已知:ABCD.点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,∠GFB=∠CEH. (1)如图1,求证:GFEH; (2)如图2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,试问∠M与α之间有怎样的数量关系(用含α的式子表示∠M)?请写出你的猜想,并加以证明. 7.已知,,. (1)如图1,求证:; (2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数. 8.问题情境: 如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°. 问题解决: (1)如图2,AB∥CD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P在线段MN上运动时(不与点M、N重合),∠PAB=α,∠PCD=β,判断∠APC、α、β之间的数量关系并说明理由; (2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时.请直接写出∠APC、α、B之间的数量关系; (3)如图3,AB∥CD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,∠BAP和∠DCP的平分线交于点Q.若∠APC=116°,请结合(2)中的规律,求∠AQC的度数. 9.直线AB∥CD,点P为平面内一点,连接AP,CP. (1)如图①,点P在直线AB,CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC的度数; (2)如图②,点P在直线AB,CD之间,∠BAP与∠DCP的角平分线相交于K,写出∠AKC与∠APC之间的数量关系,并说明理由; (3)如图③,点P在直线CD下方,当∠BAK=∠BAP,∠DCK=∠DCP时,写出∠AKC与∠APC之间的数量关系,并说明理由. 10.已知,如图:射线分别与直线、相交于、两点,的角平分线与直线相交于点,射线交于点,设,且. (1)________,________;直线与的位置关系是______; (2)如图,若点是射线上任意一点,且,试找出与之间存在一个什么确定的数量关系?并证明你的结论. (3)若将图中的射线绕着端点逆时针方向旋转(如图)分别与、相交于点和点时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由. 三、解答题 11.如图1所示:点E为BC上一点,∠A=∠D,AB∥CD (1)直接写出∠ACB与∠BED的数量关系; (2)如图2,AB∥CD,BG平分∠ABE,BG的反向延长线与∠EDF的平分线交于H点,若∠DEB比∠GHD大60°,求∠DEB 的度数; (3)保持(2)中所求的∠DEB的度数不变,如图3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角). 12.如图,已知是直线间的一点,于点交于点. (1)求的度数; (2)如图2,射线从出发,以每秒的速度绕P点按逆时针方向旋转,当垂直时,立刻按原速返回至后停止运动:射线从出发,以每秒的速度绕E点按逆时针方向旋转至后停止运动,若射线,射线同时开始运动,设运动间为t秒. ①当时,求的度数; ②当时,求t的值. 13.已知:如图1,,点,分别为,上一点. (1)在,之间有一点(点不在线段上),连接,,探究,,之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明. (2)如图2,在,之两点,,连接,,,请选择一个图形写出,,,存在的数量关系(不需证明). 14.已知:和同一平面内的点. (1)如图1,点在边上,过作交于,交于.根据题意,在图1中补全图形,请写出与的数量关系,并说明理由; (2)如图2,点在的延长线上,,.请判断与的位置关系,并说明理由. (3)如图3,点是外部的一个动点.过作交直线于,交直线于,直接写出与的数量关系,并在图3中补全图形. 15.如图所示,已知,点P是射线AM上一动点(与点A不重合),BC、BD分别平分和,分别交射线AM于点C、D,且 (1)求的度数. (2)当点P运动时,与之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律. (3)当点P运动到使时,求的度数. 四、解答题 16.解读基础: (1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由; (2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由: 应用乐园:直接运用上述两个结论解答下列各题 (3)①如图3,在中,、分别平分和,请直接写出和的关系 ; ②如图4, . (4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数. 17.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°. (1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数; (2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数; (3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果) 18.在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点. (1)如图1,点在线段上运动时,平分. ①若,,则_____;若,则_____; ②试探究与之间的数量关系?请说明理由; (2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由. 19.如图①,平分,⊥,∠B=450,∠C=730. (1) 求的度数; (2) 如图②,若把“⊥”变成“点F在DA的延长线上,”,其它条件不变,求 的度数; (3) 如图③,若把“⊥”变成“平分”,其它条件不变,的大小是否变化,并请说明理由. 20.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方. (1)l2与l3的位置关系是 ; (2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED= °,∠ADC= °; (3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG; (4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值. 【参考答案】 一、解答题 1.(1)6分米;(2)满足. 【分析】 (1)由正方形面积可知,求出的值即可; (2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可. 【详解】 解:( 解析:(1)6分米;(2)满足. 【分析】 (1)由正方形面积可知,求出的值即可; (2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可. 【详解】 解:(1)正方形工料的边长为分米; (2)设长方形的长为4a分米,则宽为3a分米. 则, 解得:, 长为,宽为 ∴满足要求. 【点睛】 本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题. 2.选择建成圆形草坪的方案,理由详见解析 【分析】 根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答 解析:选择建成圆形草坪的方案,理由详见解析 【分析】 根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案. 【详解】 解:选择建成圆形草坪的方案,理由如下: 设建成正方形时的边长为x米, 由题意得:x2=81, 解得:x=±9, ∵x>0, ∴x=9, ∴正方形的周长为4×9=36, 设建成圆形时圆的半径为r米, 由题意得:πr2=81. 解得:, ∵r>0. ∴, ∴圆的周长=, ∵, ∴, ∴建成圆形草坪时所花的费用较少, 故选择建成圆形草坪的方案. 【点睛】 本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键. 3.(1)S=13,边长为 ;(2)6 【详解】 分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案. 解析:(1)S=13,边长为 ;(2)6 【详解】 分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案. 详解:解:(1)S=25-12=13, 边长为 , (2)a=3,b= -3 原式=9+-3-=6. 点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长. 4.(1)正方形工料的边长是 5 分米; (2)这块正方形工料不合格,理由见解析. 【详解】 试题分析:(1)根据正方形的面积公式求出的值即可; (2)设长方形的长宽分别为3x分米、2x分米,得出方程3 解析:(1)正方形工料的边长是 5 分米; (2)这块正方形工料不合格,理由见解析. 【详解】 试题分析:(1)根据正方形的面积公式求出的值即可; (2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出x=,再求出长方形的长和宽和5比较即可得出答案. 试题解析:(1)∵正方形的面积是 25 平方分米, ∴正方形工料的边长是 5 分米; (2)设长方形的长宽分别为 3x 分米、2x 分米, 则 3x•2x=18, x2=3, x1= ,x2=(舍去), 3x=3>5,2x=2<5 , 即这块正方形工料不合格. 5.8; 【分析】 用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可. 【详解】 解:正方形面积=4×4-4××2×2=8; 正方形的边 解析:8; 【分析】 用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可. 【详解】 解:正方形面积=4×4-4××2×2=8; 正方形的边长==. 【点睛】 本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为. 二、解答题 6.(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详 解析:(1)见解析;(2),证明见解析. 【分析】 (1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解; (2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可. 【详解】 (1)证明:, , , , ; (2)解:,理由如下: 如图2,过点作,过点作, , , ,, , 同理,, 平分,平分, ,, , 由(1)知,, , , , , . 【点睛】 此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键. 7.(1)见解析;(2) 【分析】 (1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证; (2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的 解析:(1)见解析;(2) 【分析】 (1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证; (2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的含义得出,然后根据平行线的性质及角平分线的定义可推出;设,根据角的和差可得出,结合已知条件可求得,最后根据垂线的含义及平行线的性质,即可得出答案. 【详解】 (1)证明: ; (2)过点E作,延长DC至Q,过点M作 ,,, AF平分 FH平分 设 , . 【点睛】 本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键. 8.(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58° 【分析】 (1)过点P作PE∥AB,根据平行线的判定与性质即可求解; (2)分点P在线段MN或NM的延长线 解析:(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58° 【分析】 (1)过点P作PE∥AB,根据平行线的判定与性质即可求解; (2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解; (3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解. 【详解】 解:(1)如图2,过点P作PE∥AB, ∵AB∥CD, ∴PE∥AB∥CD, ∴∠APE=α,∠CPE=β, ∴∠APC=∠APE+∠CPE=α+β. (2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时, ∵AB∥CD,∠PAB=α, ∴∠1=∠PAB=α, ∵∠1=∠APC+∠PCD,∠PCD=β, ∴α=∠APC+β, ∴∠APC=α-β; 如图,在(1)的条件下,如果点P在线段NM的延长线上运动时, ∵AB∥CD,∠PCD=β, ∴∠2=∠PCD=β, ∵∠2=∠PAB+∠APC,∠PAB=α, ∴β=α+∠APC, ∴∠APC=β-α; (3)如图3,过点P,Q分别作PE∥AB,QF∥AB, ∵AB∥CD, ∴AB∥QF∥PE∥CD, ∴∠BAP=∠APE,∠PCD=∠EPC, ∵∠APC=116°, ∴∠BAP+∠PCD=116°, ∵AQ平分∠BAP,CQ平分∠PCD, ∴∠BAQ=∠BAP,∠DCQ=∠PCD, ∴∠BAQ+∠DCQ=(∠BAP+∠PCD)=58°, ∵AB∥QF∥CD, ∴∠BAQ=∠AQF,∠DCQ=∠CQF, ∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°, ∴∠AQC=58°. 【点睛】 此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键. 9.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析 【分析】 (1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠ 解析:(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析 【分析】 (1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可; (2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,进而得到∠AKC=∠APC; (3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,进而得到∠BAK﹣∠DCK=∠APC. 【详解】 (1)如图1,过P作PE∥AB, ∵AB∥CD, ∴PE∥AB∥CD, ∴∠APE=∠BAP,∠CPE=∠DCP, ∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°; (2)∠AKC=∠APC. 理由:如图2,过K作KE∥AB, ∵AB∥CD, ∴KE∥AB∥CD, ∴∠AKE=∠BAK,∠CKE=∠DCK, ∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK, 过P作PF∥AB, 同理可得,∠APC=∠BAP+∠DCP, ∵∠BAP与∠DCP的角平分线相交于点K, ∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC, ∴∠AKC=∠APC; (3)∠AKC=∠APC 理由:如图3,过K作KE∥AB, ∵AB∥CD, ∴KE∥AB∥CD, ∴∠BAK=∠AKE,∠DCK=∠CKE, ∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK, 过P作PF∥AB, 同理可得,∠APC=∠BAP﹣∠DCP, ∵∠BAK=∠BAP,∠DCK=∠DCP, ∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC, ∴∠AKC=∠APC. 【点睛】 本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算. 10.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2 【分析】 (1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB∥CD; (2 解析:(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2 【分析】 (1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB∥CD; (2)先根据内错角相等证GH∥PN,再根据同旁内角互补和等量代换得出∠FMN+∠GHF=180°; (3)作∠PEM1的平分线交M1Q的延长线于R,先根据同位角相等证ER∥FQ,得∠FQM1=∠R,设∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EPM1=2∠R,即可得=2. 【详解】 解:(1)∵(α-35)2+|β-α|=0, ∴α=β=35, ∴∠PFM=∠MFN=35°,∠EMF=35°, ∴∠EMF=∠MFN, ∴AB∥CD; (2)∠FMN+∠GHF=180°; 理由:由(1)得AB∥CD, ∴∠MNF=∠PME, ∵∠MGH=∠MNF, ∴∠PME=∠MGH, ∴GH∥PN, ∴∠GHM=∠FMN, ∵∠GHF+∠GHM=180°, ∴∠FMN+∠GHF=180°; (3)的值不变,为2, 理由:如图3中,作∠PEM1的平分线交M1Q的延长线于R, ∵AB∥CD, ∴∠PEM1=∠PFN, ∵∠PER=∠PEM1,∠PFQ=∠PFN, ∴∠PER=∠PFQ, ∴ER∥FQ, ∴∠FQM1=∠R, 设∠PER=∠REB=x,∠PM1R=∠RM1B=y, 则有:, 可得∠EPM1=2∠R, ∴∠EPM1=2∠FQM1, ∴==2. 【点睛】 本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键. 三、解答题 11.(1) ;(2) ;(3)不发生变化,理由见解析 【分析】 (1)如图1,延长DE交AB于点F,根据平行线的性质推出; (2)如图2,过点E作ES∥AB,过点H作HT∥AB,根据AB∥CD,AB∥E 解析:(1) ;(2) ;(3)不发生变化,理由见解析 【分析】 (1)如图1,延长DE交AB于点F,根据平行线的性质推出; (2)如图2,过点E作ES∥AB,过点H作HT∥AB,根据AB∥CD,AB∥ES推出,再根据AB∥TH,AB∥CD推出,最后根据比大得出的度数; (3)如图3,过点E作EQ∥DN,根据得出的度数,根据条件再逐步求出的度数. 【详解】 (1)如答图1所示,延长DE交AB于点F. AB∥CD,所以, 又因为,所以,所以AC∥DF,所以. 因为,所以. (2)如答图2所示,过点E作ES∥AB,过点H作HT∥AB. 设,, 因为AB∥CD,AB∥ES,所以,, 所以, 因为AB∥TH,AB∥CD,所以,,所以, 因为比大,所以,所以,所以,所以 (3)不发生变化 如答图3所示,过点E作EQ∥DN. 设,, 由(2)易知,所以,所以, 所以, 所以. 【点睛】 本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键. 12.(1);(2)①或;②秒或或秒 【分析】 (1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果; (2)①当时,分两种情况,Ⅰ当在和之间,Ⅱ当在和之间,由,计算出的运动时间 解析:(1);(2)①或;②秒或或秒 【分析】 (1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果; (2)①当时,分两种情况,Ⅰ当在和之间,Ⅱ当在和之间,由,计算出的运动时间,根据运动时间可计算出,由已知可计算出的度数; ②根据题意可知,当时,分三种情况, Ⅰ射线由逆时针转动,,根据题意可知,,再平行线的性质可得,再根据三角形外角和定理可列等量关系,求解即可得出结论; Ⅱ射线垂直时,再顺时针向运动时,,根据题意可知,,,,可计算射线的转动度数,再根据转动可列等量关系,即可求出答案; Ⅲ射线垂直时,再顺时针向运动时,,根据题意可知,,,根据(1)中结论,,,可计算出与代数式,再根据平行线的性质,可列等量关系,求解可得出结论. 【详解】 解:(1)延长与相交于点, 如图1, , , , ; (2)①Ⅰ如图2, ,, , 射线运动的时间(秒, 射线旋转的角度, 又, ; Ⅱ如图3所示, ,, , 射线运动的时间(秒, 射线旋转的角度, 又, ; 的度数为或; ②Ⅰ当由运动如图4时, 与相交于点, 根据题意可知,经过秒, ,, , , 又, , 解得(秒; Ⅱ当运动到,再由运动到如图5时, 与相交于点, 根据题意可知,经过秒, , , ,, 运动的度数可得,, 解得; Ⅲ当由运动如图6时,, 根据题意可知,经过秒, ,, ,, ,, 又, , , 解得(秒), 当的值为秒或或秒时,. 【点睛】 本题主要考查平行线性质,合理添加辅助线和根据题意画出相应的图形时解决本题的关键. 13.(1)见解析;(2)见解析 【分析】 (1)过点M作MP∥AB.根据平行线的性质即可得到结论; (2)根据平行线的性质即可得到结论. 【详解】 解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠E 解析:(1)见解析;(2)见解析 【分析】 (1)过点M作MP∥AB.根据平行线的性质即可得到结论; (2)根据平行线的性质即可得到结论. 【详解】 解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠EMF+∠MFC=360°. 证明:过点M作MP∥AB. ∵AB∥CD, ∴MP∥CD. ∴∠4=∠3. ∵MP∥AB, ∴∠1=∠2. ∵∠EMF=∠2+∠3, ∴∠EMF=∠1+∠4. ∴∠EMF=∠AEM+∠MFC; 证明:过点M作MQ∥AB. ∵AB∥CD, ∴MQ∥CD. ∴∠CFM+∠1=180°; ∵MQ∥AB, ∴∠AEM+∠2=180°. ∴∠CFM+∠1+∠AEM+∠2=360°. ∵∠EMF=∠1+∠2, ∴∠AEM+∠EMF+∠MFC=360°; (2)如图2第一个图:∠EMN+∠MNF-∠AEM-∠NFC=180°; 过点M作MP∥AB,过点N作NQ∥AB, ∴∠AEM=∠1,∠CFN=∠4,MP∥NQ, ∴∠2+∠3=180°, ∵∠EMN=∠1+∠2,∠MNF=∠3+∠4, ∴∠EMN+∠MNF=∠1+∠2+∠3+∠4,∠AEM+∠CFN=∠1+∠4, ∴∠EMN+∠MNF-∠AEM-∠NFC =∠1+∠2+∠3+∠4-∠1-∠4 =∠2+∠3 =180°; 如图2第二个图:∠EMN-∠MNF+∠AEM+∠NFC=180°. 过点M作MP∥AB,过点N作NQ∥AB, ∴∠AEM+∠1=180°,∠CFN=∠4,MP∥NQ, ∴∠2=∠3, ∵∠EMN=∠1+∠2,∠MNF=∠3+∠4, ∴∠EMN-∠MNF=∠1+∠2-∠3-∠4,∠AEM+∠CFN=180°-∠1+∠4, ∴∠EMN-∠MNF+∠AEM+∠NFC =∠1+∠2-∠3-∠4+180°-∠1+∠4 =180°. 【点睛】 本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键. 14.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或. 【分析】 (1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得; (2)如图(见解析),先根据平行线的性质可 解析:(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或. 【分析】 (1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得; (2)如图(见解析),先根据平行线的性质可得,再根据等量代换可得,然后根据平行线的判定即可得; (3)先根据点D的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得. 【详解】 (1)由题意,补全图形如下: ,理由如下: , , , , ; (2),理由如下: 如图,延长BA交DF于点O, , , , , ; (3)由题意,有以下两种情况: ①如图3-1,,理由如下: , , , , , 由对顶角相等得:, ; ②如图3-2,,理由如下: , , , , . 【点睛】 本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键. 15.(1);(2)不变化,,理由见解析;(3) 【分析】 (1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案; (2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解 解析:(1);(2)不变化,,理由见解析;(3) 【分析】 (1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案; (2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解; (3)根据平行线的性质,得;结合,推导得;再结合(1)的结论计算,即可得到答案. 【详解】 (1)∵BC,BD分别评分和, ∴, ∴ 又∵, ∴ ∵, ∴ ∴; (2)∵, ∴, 又∵BD平分 ∴, ∴; ∴与之间的数量关系保持不变; (3)∵, ∴ 又∵, ∴, ∵ ∴ 由(1)可得, ∴. 【点睛】 本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解. 四、解答题 16.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结 解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结论; (3)①根据角平分线的定义及三角形内角和定理即可得出结论; ②连结BE,由(2)的结论及四边形内角和为360°即可得出结论; (4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论. 【详解】 (1).理由如下: 如图1,,,,; (2).理由如下: 在中,,在中,,,; (3)①,,、分别平分和,,. 故答案为:. ②连结. ∵,. 故答案为:; (4)由(1)知,,,,,,,,,,,; . 【点睛】 本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键. 17.(1)105°;(2)135°;(3)5.5或11.5. 【分析】 (1)在△CEN中,用三角形内角和定理即可求出; (2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角 解析:(1)105°;(2)135°;(3)5.5或11.5. 【分析】 (1)在△CEN中,用三角形内角和定理即可求出; (2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数. (3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果. 【详解】 解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°; (2)∵∠BON=30°,∠N=30°, ∴∠BON=∠N, ∴MN∥CB. ∴∠OCD+∠CEN=180°, ∵∠OCD=45° ∴∠CEN=180°-45°=135°; (3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直. 【点睛】 本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去∠DOM的度数. 18.(1)①115°,110°;②,证明见解析;(2),证明见解析. 【解析】 【分析】 (1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD= 解析:(1)①115°,110°;②,证明见解析;(2),证明见解析. 【解析】 【分析】 (1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD的度数即可;已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三角形的内角和定理可求得∠AFD=110°; ②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的内角和定理可得∠AFD=90°+∠B; (2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM +∠FMD =∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角的性质可得∠AFD=∠FDM +∠FMD=90°-∠B. 【详解】 (1)①∵AG平分∠BAC,∠BAC=100°, ∴∠CAG=∠BAC=50°; ∵,∠C=30°, ∴∠EDG=∠C=30°,∠FMD=∠GAC=50°; ∵DF平分∠EDB, ∴∠FDM=∠EDG=15°; ∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°; ∵∠B=40°, ∴∠BAC+∠C=180°-∠B=140°; ∵AG平分∠BAC,DF平分∠EDB, ∴∠CAG=∠BAC,∠FDM=∠EDG, ∵DE//AC, ∴∠EDG=∠C,∠FMD=∠GAC; ∴∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°; ∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°; 故答案为115°,110°; ②∠AFD=90°+∠B,理由如下: ∵AG平分∠BAC,DF平分∠EDB, ∴∠CAG=∠BAC,∠FDM=∠EDG, ∵DE//AC, ∴∠EDG=∠C,∠FMD=∠GAC; ∴∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B; ∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-∠B)=90°+∠B; (2)∠AFD=90°-∠B,理由如下: 如图,射线ED交AG于点M, ∵AG平分∠BAC,DF平分∠EDB, ∴∠CAG=∠BAC,∠ND- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年人教版 中学 年级 下册 数学 期末 解答 复习 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文