部编版八年级数学下册期末试卷练习(Word版含答案).doc
《部编版八年级数学下册期末试卷练习(Word版含答案).doc》由会员分享,可在线阅读,更多相关《部编版八年级数学下册期末试卷练习(Word版含答案).doc(30页珍藏版)》请在咨信网上搜索。
部编版八年级数学下册期末试卷练习(Word版含答案) 一、选择题 1.要使二次根式有意义的条件是( ) A. B. C. D. 2.在△ABC中,a,b,c为△ABC的三边,下列条件不能判定△ABC为直角三角形的是( ) A.a:b:c=1::2 B.a=32,b=42,c=52 C.a2=(c﹣b)(c+b) D.a=5,b=12,c=13 3.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有( ) A.1个 B.2个 C.3个 D.4个 4.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差: 甲 乙 丙 丁 平均数 方差 要从中选择一名发挥稳定的运动员去参加比赛,应该选择( )A.甲 B.乙 C.丙 D.丁 5.如图,正方形ABCD的边长为4,点M在AB上,且AM=1,N是BD上一动点,则AN+MN的最小值为( ) A.4 B. C.5 D.4 6.如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为( ) A.20º B.25º C.30º D.35º 7.如图,在正方形中,,,分别为边,的中点,连接,,点,分别为,的中点,连接.则的长为( ) A. B.1 C. D.2 8.如图所示,已知点C(1,0),直线与两坐标轴分别交于A,B两点,D,E分别是线段AB,OA上的动点,则△CDE的周长的最小值是( ) A. B.10 C. D.12 二、填空题 9.函数中,自变量的取值范围是______. 10.已知菱形ABCD的面积为24,AC=6,则AB=___. 11.如图,每个小正方形的边长都为1,则的三边长,,的大小关系是________(用“>”连接). 12.在矩形ABCD中,对角线AC,BD相交于点O,若∠AOB=60°,AB=2,则BC的长为______. 13.若函数y=kx+3的图象经过点(3,6),则k=_____. 14.如图,在中,于点点分别是边的中点,请你在中添加一个条件:__________,使得四边形是菱形. 15.如图,直线l1:y=x+2与x轴交于点A,与y轴交于点B.直线l2:y=4x﹣4与y轴交于点C,与x轴交于点D,直线l1,l2交于点P.若x轴上存在点Q,使以A、C、P、Q为顶点的四边形是平行四边形,则点Q的坐标是 _____. 16.如图,在矩形中,点是线段上的一点,,将沿翻折,得到,若,,则点到的距离为______. 三、解答题 17.计算下列各式的值 (1) (2) (3) (4) 18.如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C处折断,顶部(B)着地,离旗杆底部(A)4米,工人在修复的过程中,发现在折断点C的下方1.25米D处,有一明显裂痕,若下次大风将旗杆从D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险? 19.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上. (1)在图1中画出一个以AB为一边正方形ABCD,使点C、D在小正方形的顶点上; (2)在图2中画出一个以AB为一边,面积为6的□ABEF,使点E、F均在小正方形的顶点上,并直接写出□ABEF周长. 20.在矩形中,,,对角线、交于点,一直线过点分别交、于点、,且,求证:四边形为菱形. 21.阅读下列解题过程: ==== === 请回答下列问题: (1)观察上面的解题过程,请直接写出结果. = . (2)利用上面提供的信息请化简: 的值. 22.某市出租车收费标准分白天和夜间分别计费,计费方案见下列表格及图象(其中,,为常数) 行驶路程 收费标准 白天 夜间(22时至次日5时) 不超过的部分 起步价6元 起步价元 超过不超出的部分 每公里2元 每公里元 超出的部分 每公里3元 每公里元 设行驶路程为时,白天的运价为(元),夜间的运价为(元).如图,折线表示与之间的函数关系式,线段表示当时,与的函数关系式,根据图表信息,完成下列各题: (1)填空:______,______,______; (2)当时,求的函数表达式; (3)若幸福小区到阳光小区的路程为,小明从幸福小区乘出租车去阳光小区,白天收费比夜间收费少多少元? 23.如图,正方形ABCD的顶点C处有一等腰直角三角形CEP,∠PEC=90°,连接AP,BE. (1)若点E在BC上时,如图1,线段AP和BE之间的数量关系是 ; (2)若将图1中的△CEP顺时针旋转使P点落在CD上,如图2,则(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由; (3)在(2)的基础上延长AP,BE交于F点,若DP=PC=2,求BF的长. 24.如图,在平面直角坐标系中,直线AB交x轴于点A(﹣2,0), 交y轴于点B(0,4),直线y=kx+b经过点B且交x轴正半轴于点C,已知△ABC面积为10. (1)点C的坐标是( , ),直线BC的表达式是 ; (2)如图1,点E为线段AB中点,点D为y轴上一动点,以DE为直角边作等腰直角三角形△EDF,且DE=DF,当点F落在直线BC上时,求点D的坐标; (3)如图2,若G为线段BC上一点,且满足S△ABG=S△ABO,点M为直线AG上一动点,在x轴上是否存在点N,使以点B,C,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,说明理由; 25.如图,在Rt中,,,,动点D从点C出发,沿边向点B运动,到点B时停止,若设点D运动的时间为秒.点D运动的速度为每秒1个单位长度. (1)当时, , ; (2)用含t的代数式表示的长; (3)当点D在边CA上运动时,求t为何值,是以BD或CD为底的等腰三角形?并说明理由; (4)直接写出当是直角三角形时,t的取值范围 . 【参考答案】 一、选择题 1.D 解析:D 【分析】 根据二次根式有意义的条件,即根号下为非负数,判断即可. 【详解】 解:∵有意义, ∴, 解得:, 故选:D. 【点睛】 本题主要考查二次根式有意义的条件,明确根号下为非负数是解题的关键. 2.B 解析:B 【分析】 根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形. 【详解】 解:A、∵a:b:c=1::2, ∴设三边为:x,x,2x, ∵x2+(x)2=(2x)2, ∴该三角形符合勾股定理的逆定理,故是直角三角形,故选项不符合题意; B、∵(32)2+(42)2≠(52)2, ∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故选项符合题意; C、∵a2=(c-b)(c+b), ∴a2+b2=c2,该三角形符合勾股定理的逆定理,故是直角三角形,故选项不符合题意; D、∵52+122=132, ∴该三角形符合勾股定理的逆定理,故是直角三角形,故选项不符合题意; 故选:B. 【点睛】 本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断. 3.C 解析:C 【解析】 【详解】 试题分析:由题意画出图形,在一个平面内,不在同一条直线上的三点,与D点恰能构成一个平行四边形,符合这样条件的点D有3个. 故选C. 考点:平行四边形的判定 4.B 解析:B 【解析】 【分析】 首先比较出甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的方差的大小关系,然后根据方差越大,波动性越大,判断出应该选择谁参加比赛即可. 【详解】 解:因为<<<, 所以乙最近几次选拔赛成绩的方差最小, 所以要从中选择一名发挥稳定的运动员去参加比赛,应该选择乙. 故选:B. 【点睛】 此题主要考查了方差的含义和应用,要熟练掌握,解答此题的关键是要明确:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 5.C 解析:C 【分析】 连接AC,则直线AC即为BD的垂直平分线,点A与点C关于直线BD对称,连CM交BD于点N,则此时AN+MN的值最小,连接AN,根据垂直平分线的性质 可得AN=CN,从而得出AN+MN=CN+MN=CM,再根据勾股定理得出CM的长即可解决问题. 【详解】 解:在正方形ABCD中连接AC,则点A与点C是关于直线BD为对称轴的对称点, ∴连接MC交BD于点N,则此时AN+MN的值最小, 连接AN, ∵直线AC即为BD的垂直平分线, ∴AN=NC ∴AN+MN=CN+MN=CM, ∵四边形ABCD为正方形,AM=1 ∴BC=4,BM=4-1=3,∠CBM=90°, ∴, ∴AN+MN的最小值是5. 故选:C. 【点睛】 本题考查了轴对称-最短路线问题,正方形的性质,勾股定理等知识点,此题的难点在于利用轴对称的方法确定满足条件的点N的位置. 6.C 解析:C 【解析】 【分析】 依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解. 【详解】 ∵ADBC, ∴∠AEB=∠DAE=∠B=80°, ∴AE=AB=AD, 在三角形AED中,AE=AD,∠DAE=80°, ∴∠ADE=50°, 又∵∠B=80°, ∴∠ADC=80°, ∴∠CDE=∠ADC-∠ADE=30°. 故选:C. 【点睛】 考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数. 7.B 解析:B 【解析】 【分析】 连接AM,延长AM交CD于G,连接FG,由正方形性质得,,,证得(AAS),得到,,根据三角形中位线定理得到,再用由勾股定理求出FG即可得MN. 【详解】 解:如图所示,连接AM,延长AM交CD于G,连接FG, ∵四边形ABCD是正方形, ∴,,, ∴,, ∵M是DE的中点, ∴EM=DM, 在和中, ∴(AAS), ∴,, ∴, ∵点N是为AF的中点, ∴, ∵F是BC的中点, ∴, 在中,根据勾股定理, , ∴, 故选B. 【点睛】 本题考查了正方形的性质,全等三角形的判定与性质,三角形中位线定理和勾股定理,解题的关键是掌握并灵活运用这些知识点. 8.B 解析:B 【解析】 【分析】 点C关于OA的对称点C′(-1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,可以证明这个最小值就是线段C′C″. 【详解】 解:如图,点C(1,0)关于y轴的对称点C′(-1,0),点C关于直线AB的对称点C″, ∵直线AB的解析式为y=-x+7, ∴直线CC″的解析式为y=x-1, 由 解得, ∴直线AB与直线CC″的交点坐标为K(4,3), ∵K是CC″中点,C(1,0), 设C″坐标为(m,n), ∴,解得: ∴C″(7,6). 连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小, △DEC的周长=DE+EC+CD=EC′+ED+DC″=C′C″= 故答案为10. 【点睛】 本题考查轴对称-最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D、点E位置,将三角形的周长转化为线段的长. 二、填空题 9.且 【解析】 【分析】 根据分式的分母不能为0、二次根式的定义即可得. 【详解】 由题意得:, 解得且, 故答案为:且. 【点睛】 本题考查了求函数自变量的取值范围、分式的分母不能为0、二次根式的定义,熟练掌握分式和二次根式的定义是解题关键. 10.B 解析:5 【解析】 【分析】 根据菱形的面积等于对角线乘积的一半可求出另一条对角线BD的长.然后根据勾股定理即可求得边长. 【详解】 解:菱形ABCD的面积=AC•BD, ∵菱形ABCD的面积是24cm2,其中一条对角线AC长6cm, ∴另一条对角线BD的长=8cm; ∵OA=OC,OB=OD, ∴OA=3,OB=4, 又∵AC⊥BD, ∴由勾股定理得:, 故答案为:5 【点睛】 本题考查了菱形的性质.菱形被对角线分成4个全等的直角三角形,以及菱形的面积的计算,理解菱形的性质是关键. 11.; 【解析】 【分析】 观察图形根据勾股定理分别计算出a、b、c,根据二次根式的性质即可比较a、b、c的大小. 【详解】 解:在图中,每个小正方形的边长都为1,由勾股定理可得: , , , ∵,即, ∴, 故答案为:. 【点睛】 本题考查了勾股定理和比较二次根式的大小,本题中正确求出a、b、c的值是解题的关键. 12.A 解析: 【分析】 根据矩形的性质得出∠ABC=90°,AC=BD,AO=CO,BO=DO,求出AO=CO=BO,证得AOB是等边三角形,根据等边三角形的性质求出AO=CO=AB=2,根据勾股定理求出BC即可. 【详解】 解:∵四边形ABCD是矩形, ∴∠ABC=90°,AC=BD,AO=CO,BO=DO, ∴CO=AO=BO, 又∵∠AOB=60°, ∴AOB是等边三角形, ∵AB=2, ∴AB=AO=CO=2, 即AC=4, 在RtABC中, 由勾股定理得:BC===2, 故答案为:2. 【点睛】 本题考查了矩形的性质,等边三角形的性质和判定,勾股定理等知识点,能证出AOB是等边三角形是解此题的关键. 13.1 【解析】 ∵函数y=kx+3的图象经过点(3,6), ∴,解得:k=1. 故答案为:1. 14.D 解析: 【分析】 根据菱形的性质可得,从而可得即为所添加的条件;理由:先根据等腰三角形的判定与性质可得点D是BC的中点,再根据三角形中位线定理、线段中点的定义可得,然后根据菱形的判定即可得. 【详解】 点分别是边的中点 要使四边形是菱形,则需,即 理由如下: 是等腰三角形 点D是BC的中点 是的两条中位线 又 四边形是菱形 故答案为:. 【点睛】 本题考查了等腰三角形的判定与性质、菱形的判定与性质、三角形中位线定理等知识点,掌握理解三角形中位线定理是解题关键. 15.(4,0) 【分析】 根据一次函数的性质分别求得点A、点C、点P的坐标,然后结合平行四边形的性质求解. 【详解】 解:在y=x+2中,当y=0时,x+2=0, 解得:x=-2, ∴点A的坐标为(-2 解析:(4,0) 【分析】 根据一次函数的性质分别求得点A、点C、点P的坐标,然后结合平行四边形的性质求解. 【详解】 解:在y=x+2中,当y=0时,x+2=0, 解得:x=-2, ∴点A的坐标为(-2,0), 在y=4x-4中,当x=0时,y=-4, ∴C点坐标为(0,-4), 联立方程组, 解得:, ∴P点坐标为(2,4), 设Q点坐标为(x,0), ∵点Q在x轴上, ∴以A、C、P、Q为顶点的四边形是平行四边形时,AQ和PC是对角线, ∴, 解得:x=4, ∴Q点坐标为(4,0), 故答案为:(4,0). 【点睛】 本题考查了一次函数的性质,平行四边形的性质,理解一次函数的图象性质,掌握平行四边形对角线互相平分,利用数形结合思想解题是关键. 16.. 【分析】 过F作FG⊥EC与于G,根据,可得∠AED+∠BEC=90°,由四边形ABCD为矩形,可得∠CEB+∠ECB=90°,可证△AED∽△BCE,设AE=x,则BE=10-x,可得,解得, 解析:. 【分析】 过F作FG⊥EC与于G,根据,可得∠AED+∠BEC=90°,由四边形ABCD为矩形,可得∠CEB+∠ECB=90°,可证△AED∽△BCE,设AE=x,则BE=10-x,可得,解得,当AE=1时,BE=9,根据折叠与四边形ABCD为矩形可得EH=HC,设EH=HC=m,则HF=9-m,在Rt△FHC中由勾股定理得,即,当AE=9时,BE=1,可得 DH=HE,设DH=HE=n,则HF=HE-EF=n-1,HC=DC-DH=10-n,在Rt△HFC中,由勾股定理即,根据三角形面积即可. 【详解】 解:过F作FG⊥DC于G,EF(EF延长线)交CD于H, ∵ ∴∠DEC=90°, ∴∠AED+∠BEC=90°, ∵四边形ABCD为矩形, ∴∠A=∠B=90°,AD=BC=3, ∴∠CEB+∠ECB=90° ∴∠AED=∠BCE, ∴△AED∽△BCE, ∴, 设AE=x,则BE=10-x, ∴, 整理得, 解得, 经检验都符合题意是原方程的解, 当AE=1时,BE=9,根据折叠,EF=EB=9,FC=BC=3,∠EFC=∠B=90°,∠BEC=∠FEC, ∵四边形ABCD为矩形 ∴DC//AB, ∴∠HCE=∠BEC=∠HEC, ∴EH=HC, 设EH=HC=m,则HF=9-m, 在Rt△FHC中由勾股定理得,即 解得 ∴S△FHC=, ∴, 当AE=9时,BE=1,根据折叠,EF=EB=1,FC=BC=3,∠EFC=∠B=90°,∠CEB=∠CEF, ∵四边形ABCD为矩形, ∴DC//AB, ∴∠HDE=∠AED, ∵∠DEH+∠FEC=∠AED+∠BEC=90°, ∴∠DEH =∠AED=∠HDE, ∴DH=HE, 设DH=HE=n,则HF=HE-EF=n-1,HC=DC-DH=10-n, 在Rt△HFC中,由勾股定理,即 解得 ∴HC=10-5=5,HF=5-1=4 ∴S△CHF=, ∴, ∴点到的距离为. 故答案为. 【点睛】 本题考查矩形性质,三角形相似判定与性质,折叠性质,勾股定理,三角形面积,掌握矩形性质,三角形相似判定与性质,折叠性质,勾股定理,三角形面积是解题关键. 三、解答题 17.(1);(2);(3)0;(4)或 【分析】 (1)根据二次根式的乘除计算法则求解即可; (2)先利用二次根式的性质化简,然后根据二次根式的加减计算法则求解即可; (3)先根据二次根式的性质化简,然 解析:(1);(2);(3)0;(4)或 【分析】 (1)根据二次根式的乘除计算法则求解即可; (2)先利用二次根式的性质化简,然后根据二次根式的加减计算法则求解即可; (3)先根据二次根式的性质化简,然后根据二次根式的混合计算法则求解即可; (4)根据求平方根的方法解方程即可. 【详解】 (1) ; (2) ; (3) ; (4)∵, ∴或, 解得或. 【点睛】 本题主要考查了利用二次根式的性质化简,二次根式的乘除计算,二次根式的混合计算,二次根式的加减计算,求平方根法解方程,熟知相关计算法则是解题的关键. 18.6 【分析】 先根据勾股定理求得,进而求得,根据勾股定理即可求得范围. 【详解】 由题意可知, 则, 即, 解得, 若下次大风将旗杆从D处吹断,如图, , BD, . 则距离旗杆底部周围6米范围内 解析:6 【分析】 先根据勾股定理求得,进而求得,根据勾股定理即可求得范围. 【详解】 由题意可知, 则, 即, 解得, 若下次大风将旗杆从D处吹断,如图, , BD, . 则距离旗杆底部周围6米范围内有被砸伤的危险. 【点睛】 本题考查了勾股定理的应用,掌握勾股定理是解题的关键. 19.(1)见解析;(2)见解析;周长为4+2. 【解析】 【分析】 (1)直接利用网格结合正方形的性质得出符合题意的答案; (2)直接利用网格结合平行四边形的性质以及勾股定理得出答案. 【详解】 (1) 解析:(1)见解析;(2)见解析;周长为4+2. 【解析】 【分析】 (1)直接利用网格结合正方形的性质得出符合题意的答案; (2)直接利用网格结合平行四边形的性质以及勾股定理得出答案. 【详解】 (1)如图1,将绕点逆时针旋转得, 将绕点顺时针旋转得, 连接,正方形ABCD即为所求. (2)如图2所示, ∴S▱ABEF 由题意可知: 平行四边形ABEF即为所求.周长为. 【点睛】 本题考查作图、勾股定理、正方形的性质等知识,解题的关键是理解题意,学会利用数形结合的思想思考问题. 20.见解析 【分析】 根据矩形的性质,可证得,从而得到四边形为平行四边形,再由勾股定理,可得到,即可求证. 【详解】 证明:∵矩形, ∴,, ∴, 在和中, , ∴, ∴, 又∵, ∴四边形为平行四边形 解析:见解析 【分析】 根据矩形的性质,可证得,从而得到四边形为平行四边形,再由勾股定理,可得到,即可求证. 【详解】 证明:∵矩形, ∴,, ∴, 在和中, , ∴, ∴, 又∵, ∴四边形为平行四边形, ∵矩形, ∴,, 又∵,,, ∴, , ∴, ∴四边形为菱形. 【点睛】 本题主要考查了矩形的性质,菱形的判定,勾股定理,熟练掌握矩形的性质定理,菱形的判定定理是解题的关键. 21.(1)(3) 【解析】 【分析】 (1)利用已知数据变化规律直接得出答案; (2)利用分母有理化的规律将原式化简进而求出即可. 【详解】 解:(1) (2)利用上面提供的信息请化简: ﹣1. 【点 解析:(1)(3) 【解析】 【分析】 (1)利用已知数据变化规律直接得出答案; (2)利用分母有理化的规律将原式化简进而求出即可. 【详解】 解:(1) (2)利用上面提供的信息请化简: ﹣1. 【点睛】 考核知识点:实数运算. 22.(1)7,2.4,3.6;(2)y=2x+2;(3)5.4元 【分析】 (1)a即为AB与y轴的交点的纵坐标,可结合图象,单价=总价÷路程,b、c便可以求出; (2)利用表格中的数据求解即可; (3 解析:(1)7,2.4,3.6;(2)y=2x+2;(3)5.4元 【分析】 (1)a即为AB与y轴的交点的纵坐标,可结合图象,单价=总价÷路程,b、c便可以求出; (2)利用表格中的数据求解即可; (3)利用待定系数法求解求出当x>10时,y2与x之间的函数关系式,再把x=12分别代入y1和y2的函数表达式即可解答. 【详解】 解:解:(1)由图可知,a=7, b=(26.2-7)÷(10-2)=2.4, c=(29.8-26.2)÷(11-10)=3.6(元); 故答案为7,2.4,3.6; (2)当2<x≤10时,求y1的函数表达式为y1=6+2(x-2)=2x+2; (3)设当x>10时,y2与x之间的函数关系式为y2=kx+b, 根据题意得,, 解得:, ∴y2与x之间的函数关系式为y2=3.6x-9.8(x>10); 当x>10时,y1与x之间的函数关系式为6+2×(10-2)+3(x-10)=3x-8(x>10). 当x=12时,y2=3.6×12-9.8=33.4(元),y1=3×12-8=28(元),33.4-28=5.4(元), 答:白天收费比夜间收费少5.4元. 【点睛】 本题主要考查一次函数的应用问题,熟练掌握一次函数的性质是解答本题的关键. 23.(1)AP=BE;(2)成立,理由见解析;(3) 【分析】 (1)首先说明A,P,C三点共线,设正方形ABCD的边长为1,CE=x,根据正方形和等腰直角三角形的性质求出AP和BE的长,即可判断; ( 解析:(1)AP=BE;(2)成立,理由见解析;(3) 【分析】 (1)首先说明A,P,C三点共线,设正方形ABCD的边长为1,CE=x,根据正方形和等腰直角三角形的性质求出AP和BE的长,即可判断; (2)过点B作BH⊥BE,且BH=BE,连接AH,EH,证明△ABH≌△BEC,得到AH=EC=PE,∠AHB=∠CEB,从而证明四边形AHEP是平行四边形,同理可得AP=EH=BE; (3)过B,D分别作AF的垂线,垂足为K,M,证明△ABK≌△DAM,得到BK=AM,求出AP,在△ADP中利用面积法求出DM,可得AM和BK,再利用勾股定理求出BF即可. 【详解】 解:(1)∵点E在BC上,△PEC为等腰直角三角形, ∴PE=CE,∠PCE=45°, ∵四边形ABCD是正方形, ∴∠ACB=45°, ∴A,P,C三点共线,设正方形ABCD的边长为1,CE=x, ∴PE=x,PC=x,AC=, ∴AP=AC-PC=,BE=BC-CE=1-x, ∴AP=BE; (2)成立, 如图,过点B作BH⊥BE,且BH=BE,连接AH,EH, ∵∠ABC=∠EBH=90°, ∴∠CBE+∠ABE=∠ABH+∠ABE=90°, ∴∠CBE=∠ABH, 又∵BH=BE,AB=BC, ∴△ABH≌△BEC(SAS), ∴AH=EC=PE,∠AHB=∠CEB, ∴∠AHE=∠AHB-∠EHB=∠CEB-45°, ∵∠HEP=360°-∠CEB-∠HEB-∠CEP =360°-∠CEB-45°-90° =225°-∠CEB, ∴∠AHE+∠HEP=∠CEB-45°+225°-∠CEB=180°, ∴AH∥PE, ∴四边形AHEP是平行四边形, ∴AP=EH=BE; (3)如图,过B,D分别作AF的垂线,垂足为K,M, ∵∠BAD=∠BAK+∠DAM=90°,∠ABK+∠BAK=90°, ∴∠ABK=∠DAM, 又∵AB=AD,∠AKB=∠AMD=90°, ∴△ABK≌△DAM(AAS), ∴BK=AM, ∵四边形ABCD是正方形,DP=PC=2, ∴AD=CD=4,∠AHE=90°, ∴AP=, ∴S△ADP=, ∴, ∴, ∴AM=, 由(2)可知:△EBH为等腰直角三角形,HE∥AP, ∴∠KBF=∠HBE=45°, ∴∠F=45°, ∴BF==. 【点睛】 本题考查了正方形的性质,等腰直角三角形的判定和性质,勾股定理,全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题. 24.(1),;(2)或;(3)存在,或或 【解析】 【分析】 (1)由△ABC面积为10,可得AC=5,即可求C点坐标,再将点B与C代入y=kx+b,解二元一次方程组可求y=﹣x+4; (2)当D点在E 解析:(1),;(2)或;(3)存在,或或 【解析】 【分析】 (1)由△ABC面积为10,可得AC=5,即可求C点坐标,再将点B与C代入y=kx+b,解二元一次方程组可求y=﹣x+4; (2)当D点在E上方时,过点D作MN⊥y轴,过E、F分别作ME、FN垂直与x轴,与MN交于点M、N,由△EDF是等腰直角三角形,可证得△MED≌△NDF(AAS),设D(0,y),F(m,﹣m+4),E(﹣1,2),由ME=y﹣2,MD=1,DN=y﹣2,NF=1,得到m=y﹣2,y=1+(﹣m+4)=5﹣m,求出D(0,);当点D在点E下方时,过点D作PQ⊥y轴,过P、Q分别作PE、FQ垂直与x轴,与PQ交于点P、Q,同理可证△PED≌△QDF(AAS),设D(0,y),F(m,﹣m+4),得到PE=2﹣y,PD=1,DQ=2﹣y,QF=1,所以m=2﹣y,1=﹣m+4﹣y,求得D(0,﹣1); (3)连接OG,由S△ABG=S△ABO,可得OG∥AB,求出AB的解析式为y=2x+4,所以OG的解析式为y=2x,可求出G( ,),进而能求出AG的解析式为y=x+,设M(t,t+),N(n,0),①当BC、MN分别为对角线时,BC的中点为(,2),MN的中点为(,t+),求得N(﹣,0);②当BM、CN分别为对角线时,BM的中点为(,t+),CN的中点为(,0),求得N(﹣,0);③当BN、CM分别为对角线时,BN的中点为(,2),CM的中点为(,t+),求得N(,0). 【详解】 解:(1)∵△ABC面积为10, ∴×AC×OB=×AC×4=10, ∴AC=5, ∵A(﹣2,0), ∴C(3,0), 将点B与C代入y=kx+b,可得, ∴, ∴y=﹣x+4, 故答案为(3,0),y=﹣x+4; (2)当D点在E上方时,过点D作MN⊥y轴,过E、F分别作ME、FN垂直与x轴,与MN交于点M、N, ∵△EDF是等腰直角三角形, ∴∠EDF=90°,ED=DF, ∵∠MDE+∠NDF=∠MDE+∠MED=90°, ∴∠NDF=∠MED, ∴△MED≌△NDF(AAS), ∴ME=DN,MD=FN, 设D(0,y),F(m,﹣m+4), ∵E是AB的中点, ∴E(﹣1,2), ∴ME=y﹣2,MD=1, ∴DN=y﹣2,NF=1, ∴m=y﹣2,y=1+(﹣m+4)=5﹣m, ∴m=, ∴D(0,); 当点D在点E下方时,过点D作PQ⊥y轴,过P、Q分别作PE、FQ垂直与x轴,与PQ交于点P、Q, ∵△EDF是等腰直角三角形, ∴∠EDF=90°,ED=DF, ∵∠PDE+∠QDF=∠PDE+∠PED=90°, ∴∠QDF=∠PED, ∴△PED≌△QDF(AAS), ∴PE=DQ,PD=FQ, 设D(0,y),F(m,﹣m+4) ∵E是AB的中点, ∴E(﹣1,2), ∴PE=2﹣y,PD=1, ∴DQ=2﹣y,QF=1, ∴m=2﹣y,1=﹣m+4﹣y, ∴m=3, ∴D(0,﹣1); 综上所述:D点坐标为(0,﹣1)或(0,); (3)连接OG, ∵S△ABG=S△ABO, ∴OG∥AB, 设AB的解析式为y=kx+b, 将点A(﹣2,0),B(0,4)代入,得, 解得, ∴y=2x+4, ∴OG的解析式为y=2x, ∴2x=﹣x+4, ∴x=, ∴G( ,), 设AG的解析式为y=k1x+b1, 将点A、G代入可得, 解得, ∴y=x+, ∵点M为直线AG上动点,点N在x轴上, 则可设M(t,t+),N(n,0), 当BC、MN分别为对角线时, BC的中点为(,2),MN的中点为(,t+), ∴,t+=2, ∴t=,n=﹣, ∴N(﹣,0); 当BM、CN分别为对角线时, BM的中点为(,t+),CN的中点为(,0), ∴,t+=0, ∴t=﹣,n=﹣, ∴N(﹣,0); ③当BN、CM分别为对角线时, BN的中点为(,2),CM的中点为(,t+), ∴,t+=2, ∴t=,n=, ∴N(,0); 综上所述:以点B,C,M,N为顶点的四边形为平行四边形时,N点坐标为或或. 【点睛】 本题考查一次函数的综合应用,(2)中注意D点的位置有两种情况,避免丢解,同时解题时要构造K字型全等,将D点、F点坐标联系起来,(3)中利用平行四边形对角线互相平分的性质,借助中点坐标公式解题,能简便运算,快速求解. 25.(1)1;3;(2)当时,;当时,;(3)t=3秒或3.6秒时,△CBD是以BD或CD为底的等腰三角形;(4)或秒. 【分析】 (1)由勾股定理先求出的长度,则时,点D在线段AB上,即可求出答案; 解析:(1)1;3;(2)当时,;当时,;(3)t=3秒或3.6秒时,△CBD是以BD或CD为底的等腰三角形;(4)或秒. 【分析】 (1)由勾股定理先求出的长度,则时,点D在线段AB上,即可求出答案; (2)由题意,可分为:,两种情况,分别表示出的长度即可; (3)分①CD=BC时,CD=3;②BD=BC时,过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF,即可得到答案. (4)分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D在线段AB上运动,然后即可得解; 【详解】 解:(1)在Rt中,,,, ∴, ∵点D运动的速度为每秒1个单位长度, ∴当,点D在线段CA上;当,点D在线段AB上; ∴当时,点D在线段AB上, ∴,; 故答案为:1;3; (2)根据题意, 当时,点D在线段CA上,且, ∴; 当时,点D在线段AB上, ∴; (3)①CD=BC时,CD=3,t=3÷1=3; ②BD=BC时,如图,过点B作BF⊥AC于F, 设,则, ∴, ∴, ∴CD=2CF=1.8×2=3.6, ∴t=3.6÷1=3.6, 综上所述,t=3秒或3.6秒时,△CBD是以BD或CD为底的等腰三角形. (4)①∠CDB=90°时,S△ABC=AC•BD=AB•BC, 即=×4×3, 解得BD=2.4, ∴CD=, ∴t=1.8÷1=1.8秒; ②∠CBD=90°时,点D在线段AB上运动, ∴ 综上所述,t=1.8或秒; 故答案为:或秒; 【点睛】 本题考查了勾股定理,等腰三角形的判定与性质,三角形的面积,(3)(4)难点在于要分情况讨论,作出图形更形象直观.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 部编版 八年 级数 下册 期末试卷 练习 Word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文