人教版八年级下册数学福州数学期末试卷测试卷附答案.doc
《人教版八年级下册数学福州数学期末试卷测试卷附答案.doc》由会员分享,可在线阅读,更多相关《人教版八年级下册数学福州数学期末试卷测试卷附答案.doc(30页珍藏版)》请在咨信网上搜索。
人教版八年级下册数学福州数学期末试卷测试卷附答案 一、选择题 1.函数中自变量x的取值范围是( ) A. B. C. D. 2.以下列各组数为边长,不能构成直角三角形的是( ) A.1,2,3 B.5,12,13 C.3,4,5 D.1,2, 3.下列命题不是真命题的是( ) A.等边三角形的角平分线相等 B.线段的垂直平分线上的点到线段两端的距离相等 C.有两个角相等的三角形是等腰三角形 D.一组对边平行的四边形是平行四边形 4.为了解居民用水情况,在某小区随机抽查记录了20户家庭的月用水量,汇总结果如表: 月用水量(吨) 4 5 6 8 9 户数 1 2 13 3 1 则关于这20户家庭的月用水量,下列说法正确的是( )A.月用水量的众数是9吨 B.月用水量的众数是13吨 C.月用水量的中位数是6吨 D.月用水量的平均数是6吨 5.已知实数a,b为的两边,且满足,第三边,则第三边c上的高的值是 A. B. C. D. 6.如图,在△ABC中,点D为BC边的中点,点E为AC上一点.将∠C沿DE所在直线翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为( ) A.30° B.45° C.55 ° D.65° 7.如图,将矩形ABCD沿EF翻折,使B点恰好与D点重合,已知AD=8,CD=4,则折痕EF的长为( ) A.4 B.5 C. D. 8.如图1,动点P从菱形ABCD的顶点A出发,沿A→C→D以1cm/s的速度运动到点D.设点P的运动时间为(s),△PAB的面积为y(cm2).表示y与x的函数关系的图象如图2所示,则a的值为( ) A. B. C.2 D.2 二、填空题 9.若函数y=在实数范围内有意义,则自变量x的取值范围是______. 10.如图,菱形中,为对角线,,,点为边上一点,则阴影部分的面积为______. 11.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有____m. 12.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OAB的度数为_______. 13.已知一次函数y=ax﹣1的图象经过点(﹣2,2),则该一次函数的解析式为_________. 14.如图,连接四边形ABCD各边中点,得到四边形EFGH,只要添加_____条件,就能保证四边形EFGH是菱形. 15.如图,在平面直角坐标系中,点A1,A2,A3,…,都在x轴正半轴上,点B1,B2,B3,…,都在直线y=kx上,∠B1OA1=30°,△A1B1A2,△A2B2A3,△A3B3A4,…,都是等边三角形,且OA1=1,则点B6的纵坐标是_________. 16.如图,在矩形中,,沿直线折叠,使点与点重合,折痕交于点,交于点,连接,,则______. 三、解答题 17.计算下列各式的值 (1) (2) (3) (4) 18.春节期间,乐乐帮妈妈挂灯笼时,发现,如图长2.5米的梯子斜靠在一竖直的墙上,这时为1.5米,当梯子的底端向右移动0.5米到处时,你能帮乐乐算算梯子顶端下滑多少米吗?(处). 19.图①、图②都是4×4的正方形网格,每个小正方形的项点为格点,每个小正方形的边长均为1,在图①、图②中已画出AB,点A、B均在格点上,按下列要求画图: (1)在图①中,画一个以AB为腰且三边长都是无理数的等腰三角形ABC,点C为格点; (2)在图②中,画一个以AB为底的等腰三角形ABD,点D为格点. 20.如图,平行四边形的对角线、相较于点O,且,,.求证:四边形是矩形. 21.阅读下面的解答过程,然后作答: 有这样一类题目:将化简,若你能找到两个数 m和n,使m2+n2=a 且 mn=,则a+2 可变为m2+n2+2mn,即变成(m+n)2,从而使得化简. 例如:∵5+2=3+2+2=()2+()2+2=(+)2 ∴==+ 请你仿照上例将下列各式化简 (1),(2). 22.甲、乙两个种子店都销售“黄金1号”玉米种子,在甲店,该玉米种子的价格为m元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折.某科技人员对付款金额和购买量这两个变量的对应关系用列表法做了分析,并绘制出函数图象,如表是该科技人员绘制的图象和表格的不完整资料,已知点A的坐标为(2,10).在乙店,不论一次购买该种子的数量是多少,付款金额T(元)与购买数量x(千克)的函数关系式为T=kx. 付款金额(元) m 7.5 10 12 n 购买量(千克) 1 1.5 2 2.5 3 (1)根据题意,得m= ,n= . (2)当x>2时,求出y关于x的函数解析式; (3)如果某农户要购买4千克该玉米种子,那么该农户应选择哪个店更合算? 23.已知如图,在中,点是边上一点,连接、,,,点是上一动点,连接. (1)如图1,若点是的中点,,求的面积; (2)如图2,当时,连接,求证:; (3)如图3,以为直角边作等腰,,连接,若,,当点在运动过程中,请直接写出周长的最小值. 24.请你根据学习函数的经验,完成对函数y=|x|﹣1的图象与性质的探究.下表给出了y与x的几组对应值. x … ﹣3 ﹣2 ﹣1 0 1 2 3 … y … m 1 0 ﹣1 0 1 2 … 【探究】 (1)m= ; (2)在给出的平面直角坐标系中,描出表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象; (3)根据函数图象,当y随x的增大而增大时,x的取值范围是 ; 【拓展】 (4)函数y1=﹣|x|+1的图象与函数y=|x|﹣1的图象交于两点,当y1≥y时,x的取值范围是 ; (5)函数y2=﹣|x|+b(b>0)的图象与函数y=|x|﹣1的图象围成的四边形的形状是 ,该四边形的面积为18时,则b的值是 . 25.(1)问题探究:如图①,在四边形ABCD中,AB∥CD,E是BC的中点,AE是∠BAD的平分线,则线段AB,AD,DC之间的等量关系为 ; (2)方法迁移:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,E是BC的中点,AE是∠BAF的平分线,试探究线段AB,AF,CF之间的等量关系,并证明你的结论; (3)联想拓展:如图③,AB∥CF,E是BC的中点,点D在线段AE上,∠EDF=∠BAE,试探究线段AB,DF,CF之间的数量关系,并证明你的结论. 26.如图,已知平面直角坐标系中,、,现将线段绕点顺时针旋转得到点,连接. (1)求出直线的解析式; (2)若动点从点出发,沿线段以每分钟个单位的速度运动,过作交轴于,连接.设运动时间为分钟,当四边形为平行四边形时,求的值. (3)为直线上一点,在坐标平面内是否存在一点,使得以、、、为顶点的四边形为菱形,若存在,求出此时的坐标;若不存在,请说明理由. 【参考答案】 一、选择题 1.A 解析:A 【分析】 根据二次根式有意义的条件:被开方数大于或等于0,即可求解. 【详解】 解:由二次根式有意义的条件可得: , 解得:, 故选A. 【点睛】 本题主要考查函数自变量取值范围和二次根式有意义的条件,解决本题的关键是要熟练掌握二次根式有意义的条件. 2.A 解析:A 【分析】 分别求出各选项中较小两数的平方和及最大数的平方,比较后即可得出结论. 【详解】 解:、由于,不能作为直角三角形的三边长,符合题意; 、由于,能作为直角三角形的三边长,不符合题意; 、由于,能作为直角三角形的三边长,不符合题意; 、由于,能作为直角三角形的三边长,不符合题意. 故选:A. 【点睛】 本题考查了勾股定理的逆定理,解题的关键是牢记“如果三角形的三边长,,满足,那么这个三角形就是直角三角形”. 3.D 解析:D 【解析】 【分析】 根据等边三角形的性质、线段垂直平分线的性质定理、等腰三角形的判定定理、平行四边形的定义判断即可. 【详解】 解:A、等边三角形的角平分线相等,是真命题,不符合题意; B、线段的垂直平分线上的点到线段两端的距离相等,是真命题,不符合题意; C、有两个角相等的三角形是等腰三角形,是真命题,不符合题意; D、一组对边平行的四边形是平行四边形或梯形,本选项说法不是真命题,符合题意; 故选:D. 【点睛】 本题考查了真假命题的判断,等边三角形,线段的垂直平分线,等腰三角形,平行四边形,掌握相关性质定理是解题的关键. 4.C 解析:C 【解析】 【分析】 根据表格中的数据,可以得到这组数据的中位数,众数和平均数,从而可以解答本题. 【详解】 解:由表格中的数据可得, 月用水量的众数是6吨,故选项A、B错误; 月用水量的中位数是(6+6)÷2=6(吨),故选项C正确; 月用水量的平均数是:=6.25(吨),故选项D错误; 故选:C. 【点睛】 本题考查众数、中位数和加权平均数,解答本题的关键是计算出这组数据的平均数和中位数. 5.D 解析:D 【分析】 本题主要考查了算术平方根的非负性及偶次方的非负性,勾股定理的逆定理及三角形面积的运算,首先根据非负性的性质得出a、b的值是解题的关键,再根据勾股定理的逆定理判定三角形为直角三角形,再根据三角形的面积得出c边上高即可. 【详解】 解:整理得,, 所以, 解得; 因为, , 所以, 所以是直角三角形,, 设第三边c上的高的值是h, 则的面积, 所以. 故选:D. 【点睛】 本题考查了非负数的性质、勾股定理的逆定理,解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0. 6.D 解析:D 【解析】 【分析】 由点为边的中点,得到,根据折叠的性质得到,,得到,根据等腰三角形的性质得到,由三角形的内角和和平角的定义得到,于是得到结论. 【详解】 解:点为边的中点, , 将沿翻折,使点落在上的点处, ,, , , ,, , , . 故选:D. 【点睛】 本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键. 7.D 解析:D 【解析】 【分析】 作于,则,由四边形为矩形,得,由折叠的性质及等量代换得,设,则,由勾股定理解得,所以,,根据矩形的判定可证四边形是矩形,可得出,在由勾股定理得即可计算出. 【详解】 解:如图,作于,则, 四边形为矩形, ,,,, , 矩形沿折叠,使点与点重合, ,,, , , 设,则, 在中,, , 解得:, ,, , , 四边形是矩形, ,, , 在中,, 故选:D. 【点睛】 本题考查了折叠的性质,矩形的判定和性质、勾股定理,解题的关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化. 8.B 解析:B 【分析】 由图2知,菱形的边长为a,对角线AC=,则对角线BD为22,当点P在线段AC上运动时,yAPBDx,即可求解. 【详解】 解:由图2知,菱形的边长为a,对角线AC, 则对角线BD为22, 当点P在线段AC上运动时, yAPBDx, 由图2知,当x时,y=a, 即a, 解得:a, 故选:B. 【点睛】 本题考查的是动点图象问题,涉及到函数、解直角三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解. 二、填空题 9.x≤5 【解析】 【分析】 利用二次根式有意义的条件得到5﹣x≥0,然后解不等式即可. 【详解】 根据题意得5﹣x≥0, 所以x≤5. 故答案为x≤5. 【点睛】 本题考查了函数自变量的取值范围,关键是掌握自变量的范围,二次根式有意义的范围:二次根式的被开方数是非负数. 10.A 解析: 【解析】 【分析】 取对角线的交点为,根据菱形的性质及三角形面积的计算公式可知阴影部分的面积为面积的两倍. 【详解】 解:取对角线的交点为,过点作的垂线,交分别于点,如图所示: 根据菱形的性质及三角形面积的计算知, 阴影部分的面积为,∠AOB=90°, , , , , 即, 故阴影部分的面积为, 故答案是:. 【点睛】 本题考查了菱形的性质、勾股定理、三角形面积求法,解题的关键是:利用转换的思想来解答. 11.A 解析:4 【解析】 【详解】 解:解如图所示:在RtABC中,BC=3,AC=5, 由勾股定理可得:AB2+BC2=AC2 设旗杆顶部距离底部AB=x米,则有32+x2=52, 解得x=4 故答案为:4. 【点睛】 本题考查勾股定理. 12.A 解析:35° 【分析】 根据矩形的判定得到四边形ABCD是矩形,由矩形的性质求出∠DAB,代入∠OAB=∠DAB﹣∠OAD求出即可. 【详解】 解:∵四边形ABCD是平行四边形, ∴OA=OC,OB=OD, ∵OA=OD, ∴AC=BD, ∴四边形ABCD是矩形, ∴∠DAB=90°, ∵∠OAD=55°, ∴∠OAB=∠DAB﹣∠OAD=35°, 故答案为:35°. 【点睛】 本题考查了矩形的判定和性质,能根据矩形的性质求出∠DAB的度数是解此题的关键. 13.y=x-1 【详解】 试题分析:把(﹣2,2)代入y=ax﹣1得:﹣2a﹣1=2,解得:a=,即y=x﹣1. 故答案为y=x-1. 考点: 一次函数图象上点的坐标特征. 14.A 解析:AC=BD 【分析】 根据中位线的性质易得四边形EFGH为平行四边形,那么只需让一组邻边相等即可,而邻边都等于对角线的一半,那么对角线需相等. 【详解】 解:∵E、F为AD、AB中点, ∴EF为△ABD的中位线, ∴EF∥BD,EF=BD, 同理可得GH∥BD,GH=BD,FG∥AC,FG=AC, ∴EF∥GH,EF=GH, ∴四边形EFGH为平行四边形, ∴当EF=FG时,四边形EFGH为菱形, ∵FG=AC,EF=BD,EF=FG ∴AC=BD, 故答案为:AC=BD. 【点睛】 本题考查菱形的判定,四边相等的四边形是菱形和中位线定理,解题的关键是了解菱形的判定定理,难度不大. 15.【分析】 设△BnAnAn+1的边长为an,根据勾股定理求出点M坐标,求出直线的解析式,得出∠AnOBn=30°,再结合等边三角形的性质及外角的性质即可得出∠OBnAn=30°,从而得出AnBn= 解析: 【分析】 设△BnAnAn+1的边长为an,根据勾股定理求出点M坐标,求出直线的解析式,得出∠AnOBn=30°,再结合等边三角形的性质及外角的性质即可得出∠OBnAn=30°,从而得出AnBn=OAn,列出部分an的值,发现规律an+1=2an,依此规律结合等边三角形的性质即可得出结论. 【详解】 设△BnAn An+1的边长为an,点B1,B2,B3,…是直线y= 上的第一象限内的点, 过A1作A1M⊥x轴交直线OB1于M点, ∵OA1=1, ∴点M的横坐标为1, ∵∠MOA1=30°, ∴OM=2A1M 在Rt△OMA1中,由勾股定理(2A1M)2=A1M2+1 解得A1M= ∴点M的坐标为(1,) 点M在y= 上, ∴= ∵∠A1OB1 = 30°, 又△BnAnAn+1为等边三角形, ∴∠BnAnAn+1 = 60°, ∴∠OBnAn = ∠BnAnAn+1 -∠BnOAn=30°, ∴AnBn = OAn, ∵OA1=1, ∴a1 =1, a2=1+1=2= 2a1, a3= 1+a1 +a2=4= 2a2, a4 = 1+a1 +a2十a3 =8= 2a3, an+1 = 2an, a5 =2a4= 16, a6 = 2a5 = 32,a7= 2a6= 64, ∵△A6B6A7为等边三角形, ∴点B6的坐标为(a7-a6,(a7- a6)), ∴点B6的坐标为(48,16) 故答案为:16. 【点睛】 本题考查了一次函数的性质、等边三角形的性质以及三角形外角的性质,勾股定理,解题的关键是找出规律:an+1=2an本题属于灵活题,难度较大,解决该题型题目时,根据等边三角形边的特征找出边的变化规律是关键. 16.【分析】 先证明得到AE=CE,再证明AF=AE=CE,利用勾股定理求出cm ,然后求出cm,cm 由此求解即可. 【详解】 解:如图,过点E作EG⊥BC于G, 由折叠的性质可知,CF=AF,, 解析: 【分析】 先证明得到AE=CE,再证明AF=AE=CE,利用勾股定理求出cm ,然后求出cm,cm 由此求解即可. 【详解】 解:如图,过点E作EG⊥BC于G, 由折叠的性质可知,CF=AF,,,,∠AFE=∠EFC, ∴, ∴AE=CE ∵四边形ABCD是矩形, ∴∠B=∠BCD=∠D=90°,AD∥BC,cm, ∴∠AEF=∠EFC, ∴∠AEF=∠AFE, ∴AF=AE=CE, 设AF=CF=x,则BF=4-x, ∵, ∴, 解得, ∴cm, ∵EG⊥CG, ∴∠EGC=∠D=∠GCD=90°, ∴四边形EGCD是矩形, ∴cm, ∴cm , ∴cm, ∴cm , 故答案为:. 【点睛】 本题主要考查了矩形的性质与判定,勾股定理,折叠的性质,等腰三角形的性质与判定,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 三、解答题 17.(1);(2);(3)0;(4)或 【分析】 (1)根据二次根式的乘除计算法则求解即可; (2)先利用二次根式的性质化简,然后根据二次根式的加减计算法则求解即可; (3)先根据二次根式的性质化简,然 解析:(1);(2);(3)0;(4)或 【分析】 (1)根据二次根式的乘除计算法则求解即可; (2)先利用二次根式的性质化简,然后根据二次根式的加减计算法则求解即可; (3)先根据二次根式的性质化简,然后根据二次根式的混合计算法则求解即可; (4)根据求平方根的方法解方程即可. 【详解】 (1) ; (2) ; (3) ; (4)∵, ∴或, 解得或. 【点睛】 本题主要考查了利用二次根式的性质化简,二次根式的乘除计算,二次根式的混合计算,二次根式的加减计算,求平方根法解方程,熟知相关计算法则是解题的关键. 18.5米 【分析】 在中,由勾股定理可求出AC的值,在中,由勾股定理可求出CE的值,最后根据线段的和差关系即可得出答案. 【详解】 解:∵,在中,由勾股定理得,, ∴米,(负值已舍去) ∵米, ∴在中, 解析:5米 【分析】 在中,由勾股定理可求出AC的值,在中,由勾股定理可求出CE的值,最后根据线段的和差关系即可得出答案. 【详解】 解:∵,在中,由勾股定理得,, ∴米,(负值已舍去) ∵米, ∴在中,, ∴米 ∴(米) 答:梯子顶端下滑0.5米. 【点睛】 本题考查勾股定理的应用,在直角三角形里根据勾股定理,知道其中两边就可求出第三边,从而可求解. 19.(1)答案见详解;(2)答案见详解. 【解析】 【分析】 (1)直接利用网格结合勾股定理得出符合题意的图形; (2)直接利用网格结合勾股定理得出符合题意的图形. 【详解】 (1)如图所示:即为所求; 解析:(1)答案见详解;(2)答案见详解. 【解析】 【分析】 (1)直接利用网格结合勾股定理得出符合题意的图形; (2)直接利用网格结合勾股定理得出符合题意的图形. 【详解】 (1)如图所示:即为所求; (2)如图所示:即为所求. 【点睛】 本题考查了应用设计与作图,正确应用勾股定理是解题的关键. 20.见解析 【分析】 先根据四边形是平行四边形且得到平行四边形是菱形,即可得到,再根据,,证明四边形是平行四边形,即可得到平行四边形是矩形. 【详解】 证明:∵四边形是平行四边形且 ∴平行四边形是菱形 解析:见解析 【分析】 先根据四边形是平行四边形且得到平行四边形是菱形,即可得到,再根据,,证明四边形是平行四边形,即可得到平行四边形是矩形. 【详解】 证明:∵四边形是平行四边形且 ∴平行四边形是菱形 ∴,即 又∵,. ∴四边形是平行四边形, ∴平行四边形是矩形. 【点睛】 本题主要考查了平行四边形的判定,矩形的判定,菱形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 21.(1)1+;(2). 【解析】 【分析】 参照范例中的方法进行解答即可. 【详解】 解:(1)∵, ∴; (2)∵, ∴. 解析:(1)1+;(2). 【解析】 【分析】 参照范例中的方法进行解答即可. 【详解】 解:(1)∵, ∴; (2)∵, ∴. 22.(1)5,14;(2)y=4x+2;(3)当k<2.5时,到乙种子店花合算;当k=2.5时,个种子店花费的钱相同;k>2.5时,到甲种子店花合算. 【分析】 (1)结合函数图象与表格即可得出购买量为 解析:(1)5,14;(2)y=4x+2;(3)当k<2.5时,到乙种子店花合算;当k=2.5时,个种子店花费的钱相同;k>2.5时,到甲种子店花合算. 【分析】 (1)结合函数图象与表格即可得出购买量为函数的自变量,再根据购买2千克花了10元钱即可得出m值,结合超过2千克部分的种子价格打8折可得出n值; (2)设当x>2时,y关于x的函数解析式为y=ax+b,根据点的坐标利用待定系数法即可求出函数解析式; (3)当x=4时,分别求出两家店花费的钱即可. 【详解】 解:(1)结合函数图象以及表格即可得出购买量是函数的自变量x, ∵10÷2=5, ∴m=5,n=12+2=14. 故答案为:5;14; (2)设当x>2时,y关于x的函数解析式为y=ax+b, 将点(2.5,12)、(2,10)代入y=ax+b中, 得:, 解得, ∴当x>2时,y关于x的函数解析式为y=4x+2. (3)∵x>2, ∴当甲、乙两个种子店花费的钱相同时,4×4+2=4k,解得k=2.5, ∴当k<2.5时,到乙种子店花合算; 当k=2.5时,两个种子店花费的钱相同; k>2.5时,到甲种子店花合算. 【点睛】 本题考查了一次函数的应用以及待定系数法求出函数解析式,观察函数图象找出点的坐标再利用待定系数法求出函数解析式是解题的关键. 23.(1);(2)证明见解析;(3) 【分析】 (1)先利用等腰直角三角形的性质求解 再求解的面积,从而可得平行四边形的面积; (2)如图,延长交于点 先证明再证明 再结合平行四边形的性质可得: (3) 解析:(1);(2)证明见解析;(3) 【分析】 (1)先利用等腰直角三角形的性质求解 再求解的面积,从而可得平行四边形的面积; (2)如图,延长交于点 先证明再证明 再结合平行四边形的性质可得: (3)如图,过作,交的延长线于 过作 交于 先证明在上运动,作关于的对称点,连接,交于 确定三角形周长最小时的位置,再过作于 分别求解 再利用勾股定理求解即可. 【详解】 解:(1)是的中点, 设 解得: (负根舍去) , (2)如图,延长交于点 在中, (3)如图,过作,交的延长线于 过作 交于 等腰直角三角形 在上运动, 如图,作关于的对称点,连接,交于 此时周长最短, 过作于 由(2)得: 而 由(2)得: 是等腰直角三角形, 即的周长的最小值是 【点睛】 本题考查的是全等三角形的判定与性质,等腰直角三角形的性质,勾股定理的应用,平行四边形的性质,轴对称的性质,动点的轨迹,灵活应用以上知识是解题的关键. 24.(1)2;(2)见解析;(3)x≥0;(4)﹣1≤x≤1;(5)正方形;5 【解析】 【分析】 (1)把x=﹣3代入y=|x|﹣1,即可求出m; (2)描点连线画出该函数的图象即可求解; (3)根据 解析:(1)2;(2)见解析;(3)x≥0;(4)﹣1≤x≤1;(5)正方形;5 【解析】 【分析】 (1)把x=﹣3代入y=|x|﹣1,即可求出m; (2)描点连线画出该函数的图象即可求解; (3)根据图象即可解答; (4)画出函数y1=﹣|x|+1的图象,根据图象即可得当y1≥y时,x的取值范围; (5)取b=3,在同一平面直角坐标系中画出y2=﹣|x|+3的图象,结合y1=﹣|x|+1的图象可得围成的四边形的形状是正方形,根据正方形的面积公式即可求解. 【详解】 解:(1)①把x=﹣3代入y=|x|﹣1,得m=3﹣1=2, 故答案为:2; (2)该函数的图象如图, (3)根据函数图象,当y随x的增大而增大时,x的取值范围是x≥0, 故答案为:x≥0; (4)画出函数y1=﹣|x|+1的图象如图, 由图象得:当y1≥y时,x的取值范围为﹣1≤x≤1, 故答案为:﹣1≤x≤1; (5)取b=3,在同一平面直角坐标系中画出y2=﹣|x|+3的图象,如图: 由图象得:y1=﹣|x|+1的图象与函数y=|x|﹣1的图象围成的四边形的形状是正方形,y2=﹣|x|+3的图象与函数y=|x|﹣1的图象围成的四边形的形状是正方形, ∴函数y2=﹣|x|+b(b>0)的图象与函数y=|x|﹣1的图象围成的四边形的形状是正方形, ∵y=|x|﹣1,y2=﹣|x|+b(b>0), ∴y与y2的图象围成的正方形的对角线长为b+1, ∵该四边形的面积为18, ∴(b+1)2=18, 解得:b=5(负值舍去), 故答案为:正方形,5. 【点睛】 本题是一次函数综合题,考查了一次函数的图象与性质,一次函数图象上点的坐标特征,利用了数形结合思想.正确画出函数的图象是解题的关键. 25.(1)AD=AB+DC;(2)AB=AF+CF,证明详见解析;(3)AB=DF+CF,证明详见解析. 【分析】 (1)结论:AD=AB+DC.延长AE,DC交于点F,证明△ABE≌△FEC(AAS) 解析:(1)AD=AB+DC;(2)AB=AF+CF,证明详见解析;(3)AB=DF+CF,证明详见解析. 【分析】 (1)结论:AD=AB+DC.延长AE,DC交于点F,证明△ABE≌△FEC(AAS),即可推出AB=CF,再证明DA=DF,即可解决问题. (2)结论:AB=AF+CF,如图②,延长AE交DF的延长线于点G,证明方法类似(1). (3)结论;AB=DF+CF.如图③,延长AE交CF的延长线于点G,证明方法类似(1). 【详解】 解:(1)探究问题:结论:AD=AB+DC. 理由:如图①中,延长AE,DC交于点F, ∵AB∥CD, ∴∠BAF=∠F, 在△ABE和△FCE中, CE=BE,∠BAF=∠F,∠AEB=∠FEC, ∴△ABE≌△FEC(AAS), ∴CF=AB, ∵AE是∠BAD的平分线, ∴∠BAF=∠FAD, ∴∠FAD=∠F, ∴AD=DF, ∵DC+CF=DF, ∴DC+AB=AD. 故答案为AD=AB+DC. (2)方法迁移:结论:AB=AF+CF. 证明:如图②,延长AE交DF的延长线于点G, ∵E是BC的中点, ∴CE=BE, ∵AB∥DC, ∴∠BAE=∠G.且BE=CE,∠AEB=∠GEC ∴△AEB≌△GEC(AAS) ∴AB=GC ∵AE是∠BAF的平分线 ∴∠BAG=∠FAG, ∵∠BAG∠G, ∴∠FAG=∠G, ∴FA=FG, ∵CG=CF+FG, ∴AB=AF+CF. (3)联想拓展:结论;AB=DF+CF. 证明:如图③,延长AE交CF的延长线于点G, ∵E是BC的中点, ∴CE=BE, ∵AB∥CF, ∴∠BAE=∠G, 在△AEB和△GEC中, , ∴△AEB≌△GEC, ∴AB=GC, ∵∠EDF=∠BAE, ∴∠FDG=∠G, ∴FD=FG, ∴AB=DF+CF. 【点睛】 本题是四边形的综合问题,考查了全等三角形的判定与性质、等腰三角形的判定与性质、角平分线的性质、三角形三边关系等知识点,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 26.(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或. 【分析】 (1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2 解析:(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或. 【分析】 (1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题. (2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题. (3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题. 【详解】 (1)如图1中,作BH⊥x轴于H. ∵A(1,0)、C(0,2), ∴OA=1,OC=2, ∵∠COA=∠CAB=∠AHB=90°, ∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°, ∴∠ACO=∠BAH, ∵AC=AB, ∴△COA≌△AHB(AAS), ∴BH=OA=1,AH=OC=2, ∴OH=3, ∴B(3,1), 设直线BC的解析式为y=kx+b,则有, 解得:, ∴; (2)如图2中, ∵四边形ABMN是平行四边形, ∴AN∥BM, ∴直线AN的解析式为:, ∴, ∴, ∵B(3,1),C(0,2), ∴BC=, ∴, ∴, ∴t=s时,四边形ABMN是平行四边形; (3)如图3中, 如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3, 连接OQ交BC于E, ∵OE⊥BC, ∴直线OE的解析式为y=3x, 由,解得:, ∴E(,), ∵OE=OQ, ∴Q(,), ∵OQ1∥BC, ∴直线OQ1的解析式为y=-x, ∵OQ1=OB=,设Q1(m,-), ∴m2+m2=10, ∴m=±3, 可得Q1(3,-1),Q3(-3,1), 当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上, 易知线段OB的垂直平分线的解析式为y=-3x+5, 由,解得:, ∴Q2(,). 综上所述,满足条件的点Q坐标为:或或或. 【点睛】 本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版八 年级 下册 数学 福州 期末试卷 测试 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文