人教版中学七年级数学下册期末试题(及解析).doc
《人教版中学七年级数学下册期末试题(及解析).doc》由会员分享,可在线阅读,更多相关《人教版中学七年级数学下册期末试题(及解析).doc(23页珍藏版)》请在咨信网上搜索。
人教版中学七年级数学下册期末试题(及解析) 一、选择题 1.下列图形中,与是同旁内角的是( ) A. B. C. D. 2.下列四幅名车标志设计中能用平移得到的是( ) A.奥迪 B.本田 C.奔驰 D.铃木 3.如果点P(12m,m)的横坐标与纵坐标互为相反数,则点P一定在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列语句中:①同角的补角相等;②雪是白的;③画;④他是小张吗?⑤两直线相交只有一个交点.其中是命题的个数有( ) A.1个 B.2个 C.3个 D.4个 5.把一张有一组对边平行的纸条,按如图所示的方式折叠,若∠EFB=35°,则下列结论错误的是( ) A.∠C'EF=35° B.∠AEC=120° C.∠BGE=70° D.∠BFD=110° 6.下列关于立方根的说法中,正确的是( ) A.的立方根是 B.立方根等于它本身的数有 C.的立方根为 D.一个数的立方根不是正数就是负数 7.如图,直线a∥b,∠1=74°,∠2=34°,则∠3的度数是( ) A.75° B.55° C.40° D.35° 8.如图,动点 P在平面直角坐标系中按图中箭头所示方向运动,第 1 次从原点运 动到点(1,1),第 2 次接着运动到点(2,0),第 3 次接着运动到点(3,2),…, 按这样的运动规律,经过第 2021 次运动后,动点 P的坐标是( ) A.(2020,1) B.(2020,2) C.(2021,1) D.(2021,2) 九、填空题 9.______. 十、填空题 10.在平面直角坐标系中,若点和点关于轴对称,则____. 十一、填空题 11.在△ABC中,AD为高线,AE为角平分线,当∠B=40º,∠ACD=60º,∠EAD的度数为_________. 十二、填空题 12.如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若∠1=∠2,那么∠1的度数为__________. 十三、填空题 13.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C’处,折痕为EF,若∠ABE=30°,则∠EFC’的度数为____________. 十四、填空题 14.如图,将面积为5的正方形放在数轴上,以表示-1的点为圆心,以正方形的边长为半径作圆,交数轴于点,两点,则点,表示的数分别为__________. 十五、填空题 15.若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为____________. 十六、填空题 16.如图,在平面直角坐标系中:A(1,1),B(﹣1,1),C(﹣1,﹣3),D(1,﹣3),现把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A→……的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是________. 十七、解答题 17.计算:(1)||+2; (2) 十八、解答题 18.已知:,,,求下列各式的值: (1)的值; (2)的值. 十九、解答题 19.完成下面的证明: 已知:如图,,,. 求证:. 证明:(已知), ∵∠______(____________________). ∴,(已知), ∵__________. 即∠______ ∴(______________________________). 二十、解答题 20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:A→B(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中 (1)A→C( , ),B→D( , ),C→ (+1, ); (2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置. 二十一、解答题 21.已知的平方根是,的立方根是4,的算术平方根是m. (1)求m的值; (2)如果,其中x是整数,且,求的值. 二十二、解答题 22.如图,用两个面积为的小正方形拼成一个大的正方形. (1)则大正方形的边长是 ; (2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为? 二十三、解答题 23.已知,点在与之间. (1)图1中,试说明:; (2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:. (3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系. 二十四、解答题 24.如图,,平分,设为,点E是射线上的一个动点. (1)若时,且,求的度数; (2)若点E运动到上方,且满足,,求的值; (3)若,求的度数(用含n和的代数式表示). 二十五、解答题 25.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数. 小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移: (1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由; (2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系. 【参考答案】 一、选择题 1.A 解析:A 【分析】 根据同旁内角的定义去判断 【详解】 ∵A选项中的两个角,符合同旁内角的定义, ∴选项A正确; ∵B选项中的两个角,不符合同旁内角的定义, ∴选项B错误; ∵C选项中的两个角,不符合同旁内角的定义, ∴选项C错误; ∵D选项中的两个角,不符合同旁内角的定义, ∴选项D错误; 故选A. 【点睛】 本题考查了同旁内角的定义,结合图形准确判断是解题的关键. 2.A 【分析】 根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解. 【详解】 解:A、是经过平移得到的,故符合题意; B、不是经过平移得 解析:A 【分析】 根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解. 【详解】 解:A、是经过平移得到的,故符合题意; B、不是经过平移得到的,故的符合题意; C、不是经过平移得到的,故不符合题意; D、不是经过平移得到的,故不符合题意; 故选A. 【点睛】 本题主要考查了图形的平移,解题的关键在于能够熟练掌握图形平移的概念. 3.B 【分析】 互为相反数的两个数的和为0,求出m的值,再判断出所求点的横纵坐标的符号,进而判断点P所在的象限. 【详解】 解:∵点P(1-2m,m)的横坐标与纵坐标互为相反数 ∴ 解得m=1 ∴1-2m=1-2×1=-1,m=1 ∴点P坐标为(-1,1) ∴点P在第二象限 故选B. 【点睛】 本题考查了点的坐标和相反数的定义,解决本题的关键是记住平面直角坐标系中各个象限内点的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-). 4.C 【分析】 根据命题的定义分别对各语句进行判断. 【详解】 解:“同角的补角相等”是命题,“雪是白的”是命题;“画∠AOB=Rt∠”不是命题;“他是小张吗?”不是命题;“两直线相交只有一个交点”是命题. 故选:C. 【点睛】 本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理. 5.B 【分析】 根据平行线的性质即可求解. 【详解】 A.∵AE∥BF, ∴∠C'EF=∠EFB=35°(两直线平行,内错角相等), 故A选项不符合题意; B.∵纸条按如图所示的方式析叠, ∴∠FEG=∠C'EF=35°, ∴∠AEC=180°﹣∠FEG﹣∠C'EF=180°﹣35°﹣35°=110°, 故B选项符合题意; C.∵∠BGE=∠FEG+∠EFB=35°+35°=70°, 故C选项不符合题意; D.∵AE∥BF, ∴∠EGF=∠AEC=110°(两直线平行,内错角相等), ∵EC∥FD, ∴∠BFD=∠EGF=110°(两直线平行,内错角相等), 故D选项不符合题意; 故选:B. 【点睛】 本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系. 6.B 【分析】 各项利用立方根定义判断即可. 【详解】 解:A、-9的立方根是,故该选项错误; B、立方根等于它本身的数有-1,0,1,故该选项正确; C、,-8的立方根为-2,故该选项错误; D、0的立方根是0,故该选项错误. 故选:B. 【点睛】 此题考查了立方根,熟练掌握立方根的定义是解本题的关键. 7.C 【分析】 根据平行线的性质得出∠4=∠1=74°,然后根据三角形外角的性质即可求得∠3的度数. 【详解】 解:∵直线a∥b,∠1=74°, ∴∠4=∠1=74°, ∵∠2+∠3=∠4, ∴∠3=∠4-∠2=74°-34°=40°. 故选:C. 【点睛】 本题考查了平行线的性质和三角形外角的性质,熟练掌握性质定理是解题的关键. 8.C 【分析】 分析点P的运动规律找到循环规律即可. 【详解】 解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位, 因为2021=505×4+1, 所以,前505次循环运动点P 解析:C 【分析】 分析点P的运动规律找到循环规律即可. 【详解】 解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位, 因为2021=505×4+1, 所以,前505次循环运动点P共向右运动505×4=2020个单位,剩余一次运动向右走1个单位,且纵坐标为1. 故点P坐标为(2021,1), 故选:C. 【点睛】 本题是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题. 九、填空题 9.10 【分析】 先计算乘法,然后计算算术平方根,即可得到答案. 【详解】 解:; 故答案为:10. 【点睛】 本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法. 解析:10 【分析】 先计算乘法,然后计算算术平方根,即可得到答案. 【详解】 解:; 故答案为:10. 【点睛】 本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法. 十、填空题 10.【分析】 关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题. 【详解】 解:∵点M(2a-7,2)和N(-3﹣b,a+b)关于y轴对称, ∴, 解得:, 则=. 故 解析: 【分析】 关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题. 【详解】 解:∵点M(2a-7,2)和N(-3﹣b,a+b)关于y轴对称, ∴, 解得:, 则=. 故答案为:. 【点睛】 本题考查关于y轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键. 十一、填空题 11.10°或40°; 【分析】 首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即 解析:10°或40°; 【分析】 首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即可求解. 【详解】 解:当高AD在△ABC的内部时. ∵∠B=40°,∠C=60°, ∴∠BAC=180°-40°-60°=80°, ∵AE平分∠BAC, ∴∠BAE=∠BAC=40°, ∵AD⊥BC, ∴∠BDA=90°, ∴∠BAD=90°-∠B=50°, ∴∠EAD=∠BAD-∠BAE=50°-40°=10°. 当高AD在△ABC的外部时. 同法可得∠EAD=10°+30°=40° 故答案为10°或40°. 【点睛】 此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出∠BAE的度数 十二、填空题 12.【分析】 根据题意知:,得出,从而得出,从而求算∠1. 【详解】 解:如图: ∵ ∴ 又∵∠1=∠2, ∴,解得: 故答案为: 【点睛】 本题考查平行线的性质,掌握两直线平行,同位角相等是 解析: 【分析】 根据题意知:,得出,从而得出,从而求算∠1. 【详解】 解:如图: ∵ ∴ 又∵∠1=∠2, ∴,解得: 故答案为: 【点睛】 本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键. 十三、填空题 13.120 【分析】 由折叠的性质知:∠EBC′、∠BC′F都是直角,因此BE∥C′F,那么∠EFC′和∠BEF互补,欲求∠EFC′的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而 解析:120 【分析】 由折叠的性质知:∠EBC′、∠BC′F都是直角,因此BE∥C′F,那么∠EFC′和∠BEF互补,欲求∠EFC′的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而∠AEB的度数可在Rt△ABE中求得,由此可求出∠BEF的度数,即可得解. 【详解】 解:Rt△ABE中,∠ABE=30°, ∴∠AEB=60°; 由折叠的性质知:∠BEF=∠DEF; 而∠BED=180°-∠AEB=120°, ∴∠BEF=60°; 由折叠的性质知:∠EBC′=∠D=∠BC′F=∠C=90°, ∴BE∥C′F, ∴∠EFC′=180°-∠BEF=120°. 故答案为:120. 【点睛】 本题考查图形的翻折变换以及平行线的性质的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变. 十四、填空题 14., 【分析】 根据算术平方根的定义以及数轴的定义解答即可. 【详解】 解:∵正方形的面积为5, ∴圆的半径为, ∴点A表示的数为,点B表示的数为. 故答案为:,. 【点睛】 本题考查了实数与数轴,熟 解析:, 【分析】 根据算术平方根的定义以及数轴的定义解答即可. 【详解】 解:∵正方形的面积为5, ∴圆的半径为, ∴点A表示的数为,点B表示的数为. 故答案为:,. 【点睛】 本题考查了实数与数轴,熟记算术平方根的定义是解答本题的关键. 十五、填空题 15.或 【详解】 【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得. 【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=, 当0≤x<3时,2x≥0,x-3 解析:或 【详解】 【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得. 【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=, 当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2, 当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=<3(不合题意,舍去), 综上,x的值为2或, 故答案为2或. 【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键. 十六、填空题 16.【分析】 先求出四边形ABCD的周长为12,再计算,得到余数为5,由此解题. 【详解】 解:A(1,1),B(﹣1,1),C(﹣1,﹣3),D(1,﹣3), 四边形ABCD的周长为2+4+2+4= 解析: 【分析】 先求出四边形ABCD的周长为12,再计算,得到余数为5,由此解题. 【详解】 解:A(1,1),B(﹣1,1),C(﹣1,﹣3),D(1,﹣3), 四边形ABCD的周长为2+4+2+4=12, 细线另一端所在位置的点在B点的下方3个单位的位置,即点的坐标 故答案为:. 【点睛】 本题考查规律型:点的坐标,解题关键是理解题意,求出四边形的周长,属于中考常考题型. 十七、解答题 17.(1)(2)3 【分析】 (1)根据二次根式的运算法即可求解; (2)根据实数的性质化简,故可求解. 【详解】 (1)||+2 = = (2) = =3. 【点睛】 此题主要考查实数与二次根式的运算 解析:(1)(2)3 【分析】 (1)根据二次根式的运算法即可求解; (2)根据实数的性质化简,故可求解. 【详解】 (1)||+2 = = (2) = =3. 【点睛】 此题主要考查实数与二次根式的运算,解题的关键是熟知其运算法则. 十八、解答题 18.(1)±5;(2)13 【分析】 (1)将已知两式相减,再利用完全平方公式得到,可得结果; (2)根据完全平方公式可得=,代入计算即可 【详解】 解:(1)∵①,②, ①+②得:,即, ∴; (2) 解析:(1)±5;(2)13 【分析】 (1)将已知两式相减,再利用完全平方公式得到,可得结果; (2)根据完全平方公式可得=,代入计算即可 【详解】 解:(1)∵①,②, ①+②得:,即, ∴; (2)∵, ∴===13. 【点睛】 本题主要考查了完全平方公式的变式应用,熟练应用完全平方公式的变式进行计算是解决本题的关键. 十九、解答题 19.BAC,垂直的定义,180°,BAD,同旁内角互补,两直线平行. 【分析】 根据垂直的定义和已知证明∠BAD,即,由同旁内角互补,两直线平行即可得出结论. 【详解】 证明:∵(已知), ∴∠BAC( 解析:BAC,垂直的定义,180°,BAD,同旁内角互补,两直线平行. 【分析】 根据垂直的定义和已知证明∠BAD,即,由同旁内角互补,两直线平行即可得出结论. 【详解】 证明:∵(已知), ∴∠BAC(垂直的定义). ∵,(已知), ∴180° 即∠BAD ∴(同旁内角互补,两直线平行) 故答案为:BAC,垂直的定义,180°,BAD,同旁内角互补,两直线平行. 【点睛】 本题主要考查了垂直定义和平行线的判定,证明∠BAD是解题关键. 二十、解答题 20.(1)3,4,3,﹣2,D,﹣2;(2)见解析 【分析】 (1)根据向上向右走为正,向下向左走为负,可得答案; (2)根据向上向右走为正,向下向左走为负,可得答案. 【详解】 解:(1)A→C( 3 解析:(1)3,4,3,﹣2,D,﹣2;(2)见解析 【分析】 (1)根据向上向右走为正,向下向左走为负,可得答案; (2)根据向上向右走为正,向下向左走为负,可得答案. 【详解】 解:(1)A→C( 3,4),B→D(3﹣2),C→D(+1,﹣2); 故答案为3,4;3,﹣2;D,﹣2; (2)这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置,如图 【点睛】 本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键. 二十一、解答题 21.(1);(2). 【分析】 (1)根据9的平方根为±3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可; (2)先估算,得到其整数部分,则y为小数部分,分别求出x,y 解析:(1);(2). 【分析】 (1)根据9的平方根为±3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可; (2)先估算,得到其整数部分,则y为小数部分,分别求出x,y即可计算. 【详解】 (1)依题意得2a-1=9,11a+b-1=64, 解得a=5,b=10, ∴b-a=5,其算术平方根为, ∴m= (2)x+y=10+ ∵2<<3, ∴12<10+<13, ∴x=12,y=10+-12=-2 ∴x-y=12-(-2)= 【点睛】 此题主要考查平方根的应用,解题的关键是熟知平方根的性质及实数的估算. 二十二、解答题 22.(1);(2)无法裁出这样的长方形. 【分析】 (1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解; (2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小 解析:(1);(2)无法裁出这样的长方形. 【分析】 (1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解; (2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小即可. 【详解】 解:(1)由题意得,大正方形的面积为200+200=400cm2, ∴边长为: ; 根据题意设长方形长为 cm,宽为 cm, 由题: 则 长为 无法裁出这样的长方形. 【点睛】 本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键. 二十三、解答题 23.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD. 【分析】 (1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG, 解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD. 【分析】 (1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE; (2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD; (3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系. 【详解】 解:(1)如图1中,过点E作EG∥AB, 则∠BEG=∠ABE, 因为AB∥CD,EG∥AB, 所以CD∥EG, 所以∠DEG=∠CDE, 所以∠BEG+∠DEG=∠ABE+∠CDE, 即∠BED=∠ABE+∠CDE; (2)图2中,因为BF平分∠ABE, 所以∠ABE=2∠ABF, 因为DF平分∠CDE, 所以∠CDE=2∠CDF, 所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF), 由(1)得:因为AB∥CD, 所以∠BED=∠ABE+∠CDE, ∠BFD=∠ABF+∠CDF, 所以∠BED=2∠BFD. (3)∠BED=360°-2∠BFD. 图3中,过点E作EG∥AB, 则∠BEG+∠ABE=180°, 因为AB∥CD,EG∥AB, 所以CD∥EG, 所以∠DEG+∠CDE=180°, 所以∠BEG+∠DEG=360°-(∠ABE+∠CDE), 即∠BED=360°-(∠ABE+∠CDE), 因为BF平分∠ABE, 所以∠ABE=2∠ABF, 因为DF平分∠CDE, 所以∠CDE=2∠CDF, ∠BED=360°-2(∠ABF+∠CDF), 由(1)得:因为AB∥CD, 所以∠BFD=∠ABF+∠CDF, 所以∠BED=360°-2∠BFD. 【点睛】 本题考查了平行线的性质,解决本题的关键是掌握平行线的性质. 二十四、解答题 24.(1)60°;(2)50°;(3)或 【分析】 (1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数; (2)根据题意画出图形,先 解析:(1)60°;(2)50°;(3)或 【分析】 (1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数; (2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论; (3)根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,,列出等量关系求解即可等处结论;②若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论. 【详解】 解:(1),, , 平分, , , 又, ; (2)根据题意画图,如图1所示, ,, , , , , 又平分, , ; (3)①如图2所示, , , 平分, , , 又, , , 解得; ②如图3所示, , , 平分, , , 又, , , 解得. 综上的度数为或. 【点睛】 本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键. 二十五、解答题 25.(1),理由见解析; (2)当点P在B、O两点之间时,; 当点P在射线AM上时,. 【分析】 (1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C 解析:(1),理由见解析; (2)当点P在B、O两点之间时,; 当点P在射线AM上时,. 【分析】 (1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案; (2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论. 【详解】 解:(1)∠CPD=∠α+∠β,理由如下: 如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠DPE+∠CPE=∠α+∠β. (2)当点P在A、M两点之间时,∠CPD=∠β-∠α. 理由:如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠CPE-∠DPE=∠β-∠α; 当点P在B、O两点之间时,∠CPD=∠α-∠β. 理由:如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠DPE-∠CPE=∠α-∠β. 【点睛】 本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 中学 七年 级数 下册 期末 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文