2024年人教版中学七7年级下册数学期末质量检测卷(及解析).doc
《2024年人教版中学七7年级下册数学期末质量检测卷(及解析).doc》由会员分享,可在线阅读,更多相关《2024年人教版中学七7年级下册数学期末质量检测卷(及解析).doc(23页珍藏版)》请在咨信网上搜索。
2024年人教版中学七7年级下册数学期末质量检测卷(及解析) 一、选择题 1.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( ) A.∠2 和∠4 B.∠6和∠4 C.∠2 和∠6 D.∠6和∠3 2.下列四幅名车标志设计中能用平移得到的是( ) A.奥迪 B.本田 C.奔驰 D.铃木 3.在平面直角坐标系中,点P(-3,0)在( ) A.第二象限 B.第三象限 C.x轴上 D.y轴上 4.下列六个命题 ①有理数与数轴上的点一一对应 ②两条直线被第三条直线所截,内错角相等 ③平行于同一条直线的两条直线互相平行; ④同一平面内,垂直于同一条直线的两条直线互相平行; ⑤直线外一点到这条直线的垂线段叫做点到直线的距离 ⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是( ) A.2个 B.3个 C.4个 D.5个 5.如图,直线,点E,F分别在直线.AB和直线CD上,点P在两条平行线之间,和的角平分线交于点H,已知,则的度数为( ) A. B. C. D. 6.下列说法中正确的是( ) A.有理数和数轴上的点一一对应 B.0.304精确到十分位是0.30 C.立方根是本身的数只有0 D.平方根是本身的数只有0 7.如图,将木条,与钉在一起,,,要使木条与平行,木条顺时针旋转的度数至少是( ) A. B. C. D. 8.如图,在平面直角坐标系中,点A从原点O出发,按A→A1→A2→A3→A4→A5…依次不断移动,每次移动1个单位长度,则A2021的坐标为( ) A.(673,﹣1) B.(673,1) C.(674,﹣1) D.(674,1) 九、填空题 9.的算术平方根是_______. 十、填空题 10.在平面直角坐标系中,点A(2,1)关于x轴对称的点的坐标是_____. 十一、填空题 11.若在第一、三象限的角平分线上,与的关系是_________. 十二、填空题 12.如图:已知AB∥CD,CE∥BF,∠AEC=45°,则∠BFD=_____. 十三、填空题 13.如图,将长方形ABCD沿DE折叠,使点C落在边AB上的点F处,若,则________° 十四、填空题 14.如图,数轴上,两点表示的数分别为和4.1,则,两点之间表示整数的点共有____个. 十五、填空题 15.已知点A(0,0),|AB|=5,点B和点A在同一坐标轴上,那么点B的坐标是________. 十六、填空题 16.如图,在平面直角坐标系上有点A(1,0),第一次点A跳动至点A1(﹣1,1),第二次点A1跳动至点A2(2,1),第三次点A2跳动至点A3(﹣2,2),第四次点A3跳动至点A4(3,2),…依此规律跳动下去,则点A2021与点A2022之间的距离是_______. 十七、解答题 17.(1)计算 (2)计算: 十八、解答题 18.求下列各式中的x: (1)x2﹣=0. (2)(x﹣1)3=64. 十九、解答题 19.完成下面的证明与解题. 如图,AD∥BC,点E是BA延长线上一点,∠E=∠DCE. (1)求证:∠B=∠D. 证明:∵AD∥BC, ∴∠B=∠______________(______________) ∵∠E=∠DCE, ∴AB∥CD(______________). ∴∠D=∠______________(______________). ∴∠B=∠D. (2)若CE平分∠BCD,∠E=50°,求∠B的度数. 二十、解答题 20.如图,在平面直角坐标系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).△ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+2,y0+4),将△ABC作同样的平移得到△A1B1C1. (1)请画出△A1B1C1并写出点A1,B1,C1的坐标; (2)求△A1B1C1的面积; 二十一、解答题 21.如图,数轴的正半轴上有,,三点,点,表示数和.点到点的距离与点到点的距离相等,设点所表示的数为. (1)请你求出数的值. (2)若为的相反数,为的绝对值,求的整数部分的立方根. 二十二、解答题 22.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件. (1)求正方形工料的边长; (2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:=1.414,=1.732,=2.236) 二十三、解答题 23.已知AB//CD. (1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D; (2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F. ①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数. ②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示) 二十四、解答题 24.将两块三角板按如图置,其中三角板边,,,. (1)下列结论:正确的是_______. ①如果,则有; ②; ③如果,则平分. (2)如果,判断与是否相等,请说明理由. (3)将三角板绕点顺时针转动,直到边与重合即停止,转动的过程中当两块三角板恰有两边平行时,请直接写出所有可能的度数. 二十五、解答题 25.解读基础: (1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由; (2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由: 应用乐园:直接运用上述两个结论解答下列各题 (3)①如图3,在中,、分别平分和,请直接写出和的关系 ; ②如图4, . (4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数. 【参考答案】 一、选择题 1.A 解析:A 【分析】 同位角:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角,根据此定义即可得出答案. 【详解】 解:∵直线AD,BE被直线BF和AC所截, ∴∠1与∠2是同位角,∠5与∠4是内错角, 故选A. 【点睛】 本题考查的知识点是同位角和内错角的概念,解题关键是熟记内错角和同位角的定义. 2.A 【分析】 根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解. 【详解】 解:A、是经过平移得到的,故符合题意; B、不是经过平移得 解析:A 【分析】 根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解. 【详解】 解:A、是经过平移得到的,故符合题意; B、不是经过平移得到的,故的符合题意; C、不是经过平移得到的,故不符合题意; D、不是经过平移得到的,故不符合题意; 故选A. 【点睛】 本题主要考查了图形的平移,解题的关键在于能够熟练掌握图形平移的概念. 3.C 【分析】 根据点的坐标特点判断即可. 【详解】 解:在平面直角坐标系中,点P(-3,0)在x轴上, 故选C. 【点睛】 此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键. 4.C 【分析】 利用实数的性质、平行线的性质及判定、点到直线的距离等知识分别判断后即可确定答案. 【详解】 解:①实数与数轴上的点一一对应,故原命题错误,是假命题,符合题意; ②两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,符合题意; ③平行于同一条直线的两条直线互相平行,正确,是真命题,不符合题意; ④同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意; ⑤直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故原命题错误,是假命题,符合题意; ⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故原命题错误,是假命题,符合题意, 假命题有4个, 故选:C. 【点睛】 本题主要考查了命题与定理的知识,解题的关键是了解实数的性质、平行线的性质及判定、点到直线的距离的定义等知识,难度不大. 5.D 【分析】 过点P作PQ∥AB,过点H作HG∥AB,根据平行线的性质得到∠EPF=∠BEP+∠DFP=78°,结合角平分线的定义得到∠AEH+∠CFH,同理可得∠EHF=∠AEH+∠CFH. 【详解】 解:过点P作PQ∥AB,过点H作HG∥AB, , 则PQ∥CD,HG∥CD, ∴∠BEP=∠QPE,∠DFP=∠QPF, ∵∠EPF=∠QPE+∠QPF=78°, ∴∠BEP+∠DFP=78°, ∴∠AEP+∠CFP=360°-78°=282°, ∵EH平分∠AEP,HF平分∠CFP, ∴∠AEH+∠CFH=282°÷2=141°, 同理可得:∠EHF=∠AEH+∠CFH=141°, 故选D. 【点睛】 本题主要考查了平行线的性质,解决问题的关键是作平行线构造内错角,利用两直线平行,内错角相等得出结论. 6.D 【分析】 根据实数与数轴、精确度、立方根及平方根的概念和性质逐项判断即可. 【详解】 解:A. 实数和数轴上的点一一对应,原说法错误; B. 0.304精确到十分位是0.3,原说法错误; C. 立方根是本身的数是0、±1,原说法错误; D. 平方根是本身的数只有0,正确, 故选:D. 【点睛】 本题考查了实数与数轴、精确度、立方根及平方根的概念和性质,熟练掌握基础知识是解题关键. 7.B 【分析】 根据两直线平行同旁内角互补和对顶角相等,求出旋转后∠2的同旁内角的度数,然后利用对顶角相等旋转后∠1的度数,继而用旋转后∠1减去110°即可得到木条a旋转的度数. 【详解】 解:要使木条a与b平行, ∴旋转后∠1+∠2=180°, ∵∠2=50°, ∴旋转后∠1=180°﹣50°=130°, ∴当∠1需变为130 º, ∴木条a至少旋转:130º﹣110º=20º, 故选B. 【点睛】 本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等,在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角. 8.C 【分析】 根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标. 【详解】 解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7 解析:C 【分析】 根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标. 【详解】 解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7(2,1),…, 点坐标运动规律可以看作每移动6次一个循环,每个循环向右移动2个单位, 则2021÷6=336…5, 所以,前336次循环运动点共向右运动336×2=672个单位,且在x轴上, 再运动5次即向右移动2个单位,向下移动一个单位, 则A2021的坐标是(674,﹣1). 故选:C. 【点睛】 本题考查了平面直角坐标系点的规律,找到规律是解题的关键. 九、填空题 9.. 【详解】 试题分析:∵的平方为,∴的算术平方根为.故答案为. 考点:算术平方根. 解析:. 【详解】 试题分析:∵的平方为,∴的算术平方根为.故答案为. 考点:算术平方根. 十、填空题 10.(2,﹣1) 【分析】 平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标 解析:(2,﹣1) 【分析】 平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标变成相反数. 【详解】 解:点(2,1)关于x轴对称的点的坐标是(2,﹣1), 故答案为(2,﹣1). 【点睛】 熟练掌握关于坐标轴对称的点的坐标特点是本题的解题关键. 关于x轴的对称点,横坐标不变,纵坐标变成相反数.关于y轴的对称点,纵坐标不变,横坐标变成相反数. 十一、填空题 11.a=b. 【详解】 根据第一、三象限的角平分线上的点的坐标特征,易得a=b. 解析:a=b. 【详解】 根据第一、三象限的角平分线上的点的坐标特征,易得a=b. 十二、填空题 12.45° 【分析】 根据平行线的性质可得∠ECD=∠AEC,∠BFD=∠ECD,等量代换即可求出∠BFD. 【详解】 解:∵AB∥CD, ∴∠ECD=∠AEC, ∵CE∥BF, ∴∠BFD=∠ECD, 解析:45° 【分析】 根据平行线的性质可得∠ECD=∠AEC,∠BFD=∠ECD,等量代换即可求出∠BFD. 【详解】 解:∵AB∥CD, ∴∠ECD=∠AEC, ∵CE∥BF, ∴∠BFD=∠ECD, ∴∠BFD=∠AEC, ∵∠AEC=45°, ∴∠BFD=45°. 故答案为:45°. 【点睛】 本题考查了平行线的性质,熟练掌握平行线的性质是解题关键. 十三、填空题 13.5 【分析】 根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可. 【详解】 解:∵△DFE是由△DCE折叠得到的, ∴∠DEC=∠FE 解析:5 【分析】 根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可. 【详解】 解:∵△DFE是由△DCE折叠得到的, ∴∠DEC=∠FED, 又∵∠EFB=45°,∠B=90°, ∴∠BEF=45°, ∴∠DEC=(180°-45°)=67.5°. 故答案为:67.5. 【点睛】 本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键. 十四、填空题 14.3 【分析】 根据无理数的估算、结合数轴求解即可 【详解】 解: ∴ ∴ ∴在到4.1之间由2,3,4这三个整数 故答案为:3. 【点睛】 本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是 解析:3 【分析】 根据无理数的估算、结合数轴求解即可 【详解】 解: ∴ ∴ ∴在到4.1之间由2,3,4这三个整数 故答案为:3. 【点睛】 本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解题关键. 十五、填空题 15.(5,0)或(﹣5,0)或(0,5)或(0,﹣5) 【分析】 根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案. 【详解】 解 解析:(5,0)或(﹣5,0)或(0,5)或(0,﹣5) 【分析】 根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案. 【详解】 解:∵点A(0,0),点B和点A在同一坐标轴上, ∴点B在x轴上或在y轴上, ∵|AB|=5, ∴当点B在x轴上时,点B的坐标为(5,0)或(﹣5,0), 当点B在y轴上时,点B的坐标为(0,5)或(0,﹣5); 故答案为:(5,0)或(﹣5,0)或(0,5)或(0,﹣5). 【点睛】 本题考查了点的坐标,解决本题的关键是要注意坐标轴上到一点距离相等的点有两个,以防遗漏. 十六、填空题 16.2023 【分析】 根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2 解析:2023 【分析】 根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2022的坐标,进而可求出点A2021与点A2022之间的距离. 【详解】 解:观察发现,第2次跳动至点的坐标是(2,1), 第4次跳动至点的坐标是(3,2), 第6次跳动至点的坐标是(4,3), 第8次跳动至点的坐标是(5,4), … 第2n次跳动至点的坐标是(n+1,n), 则第2022次跳动至点的坐标是(1012,1011), 第2021次跳动至点的坐标是(-1011,1011). ∵点A2021与点A2022的纵坐标相等, ∴点A2021与点A2022之间的距离=1012-(-1011)=2023, 故答案为:2023. 【点睛】 本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键. 十七、解答题 17.(1);(2) 【分析】 (1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可; (2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可. 【详解】 解 解析:(1);(2) 【分析】 (1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可; (2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可. 【详解】 解:(1) ; (2) . 【点睛】 本题主要考查了实数的运算,解题的关键是熟练掌握算术平方根、立方根、平方的定义,绝对值的性质及实数运算法则. 十八、解答题 18.(1);(2) 【分析】 (1)用求平方根的方法解方程即可得到答案; (2)用求立方根的方法解方程即可得到答案. 【详解】 解:(1)∵, ∴, ∴; (2)∵, ∴, ∴. 【点睛】 本题主要考查 解析:(1);(2) 【分析】 (1)用求平方根的方法解方程即可得到答案; (2)用求立方根的方法解方程即可得到答案. 【详解】 解:(1)∵, ∴, ∴; (2)∵, ∴, ∴. 【点睛】 本题主要考查了平方根和立方根,解题的关键在于能够熟练掌握平方根和立方根的求解方法. 十九、解答题 19.(1)EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)80°. 【分析】 (1)根据平行线的性质及判定填空即可; (2)由∠E=∠DCE,∠E=50°, 解析:(1)EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)80°. 【分析】 (1)根据平行线的性质及判定填空即可; (2)由∠E=∠DCE,∠E=50°,可得AB∥CD,∠DCE=50°,而CE平分∠BCD,即得∠BCD=100°,故∠B=80°. 【详解】 (1)证明:∵AD∥BC, ∴∠B=∠EAD(两直线平行,同位角相等), ∵∠E=∠DCE, ∴AB∥CD(内错角相等,两直线平行), ∴∠D=∠EAD(两直线平行,内错角相等), ∴∠B=∠D; 故答案为:EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等; (2)解:∵∠E=∠DCE,∠E=50°, ∴AB∥CD,∠DCE=50°, ∴∠B+∠BCD=180°, ∵CE平分∠BCD, ∴∠BCD=2∠DCE=100°, ∴∠B=80°. 【点睛】 本题考查平行线性质及判定的应用,解题关键是要掌握平行线的性质及判定定理,熟练运用它们进行推理和计算. 二十、解答题 20.(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2) 【分析】 (1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标. (2)利用分割法求解即可. 【详解】 解:(1 解析:(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2) 【分析】 (1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标. (2)利用分割法求解即可. 【详解】 解:(1)如图,A1B1C1并写即为所求作,A1(1,2),B1(0,0),C1(-2,3). (2)△A1B1C1的面积=3×3-×3×2-×1×2-×1×3=. 【点睛】 本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题. 二十一、解答题 21.(1);(2)2 【分析】 (1)根据数轴上两点间的距离求出AB之间的距离即为c的值; (2)根据题意及c的值求出m和n的值,再把m,n代入所求代数式进行计算即可. 【详解】 解:(1)点.分别表示 解析:(1);(2)2 【分析】 (1)根据数轴上两点间的距离求出AB之间的距离即为c的值; (2)根据题意及c的值求出m和n的值,再把m,n代入所求代数式进行计算即可. 【详解】 解:(1)点.分别表示1,, , ; (2), ,, , , , , 的整数部分是8, . 【点睛】 此题考查了估算无理数的大小,正确估算及是解题的关键. 二十二、解答题 22.(1)正方形工料的边长是 5 分米; (2)这块正方形工料不合格,理由见解析. 【详解】 试题分析:(1)根据正方形的面积公式求出的值即可; (2)设长方形的长宽分别为3x分米、2x分米,得出方程3 解析:(1)正方形工料的边长是 5 分米; (2)这块正方形工料不合格,理由见解析. 【详解】 试题分析:(1)根据正方形的面积公式求出的值即可; (2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出x=,再求出长方形的长和宽和5比较即可得出答案. 试题解析:(1)∵正方形的面积是 25 平方分米, ∴正方形工料的边长是 5 分米; (2)设长方形的长宽分别为 3x 分米、2x 分米, 则 3x•2x=18, x2=3, x1= ,x2=(舍去), 3x=3>5,2x=2<5 , 即这块正方形工料不合格. 二十三、解答题 23.(1)见解析;(2)55°;(3) 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图 解析:(1)见解析;(2)55°;(3) 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数; ②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数. 【详解】 解:(1)如图1,过点作, 则有, , , , ; (2)①如图2,过点作, 有. , . . . 即, 平分,平分, ,, . 答:的度数为; ②如图3,过点作, 有. , , . . . 即, 平分,平分, ,, . 答:的度数为. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 二十四、解答题 24.(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135° 【分析】 (1)根据平行线的判定和性质分别判定即可; (2)利用角的和差,结合∠CAB=∠DAE=90°进行判断 解析:(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135° 【分析】 (1)根据平行线的判定和性质分别判定即可; (2)利用角的和差,结合∠CAB=∠DAE=90°进行判断; (3)依据这两块三角尺各有一条边互相平行,分五种情况讨论,即可得到∠EAB角度所有可能的值. 【详解】 解:(1)①∵∠BFD=60°,∠B=45°, ∴∠BAD+∠D=∠BFD+∠B=105°, ∴∠BAD=105°-30°=75°, ∴∠BAD≠∠B, ∴BC和AD不平行,故①错误; ②∵∠BAC+∠DAE=180°, ∴∠BAE+∠CAD=∠BAE+∠CAE+∠DAE=180°,故②正确; ③若BC∥AD, 则∠BAD=∠B=45°, ∴∠BAE=45°, 即AB平分∠EAD,故③正确; 故答案为:②③; (2)相等,理由是: ∵∠CAD=150°, ∴∠BAE=180°-150°=30°, ∴∠BAD=60°, ∵∠BAD+∠D=∠BFD+∠B, ∴∠BFD=60°+30°-45°=45°=∠C; (3)若AC∥DE, 则∠CAE=∠E=60°, ∴∠EAB=90°-60°=30°; 若BC∥AD, 则∠B=∠BAD=45°, ∴∠EAB=45°; 若BC∥DE, 则∠E=∠AFB=60°, ∴∠EAB=180°-60°-45°=75°; 若AB∥DE, 则∠D=∠DAB=30°, ∴∠EAB=30°+90°=120°; 若AE∥BC, 则∠C=∠CAE=45°, ∴∠EAB=45°+90°=135°; 综上:∠EAB的度数可能为30°或45°或75°或120°或135°. 【点睛】 本题考查了平行线的判定和性质,角平分线的定义,解题的关键是理解题意,分情况画出图形,学会用分类讨论的思想思考问题. 二十五、解答题 25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结 解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结论; (3)①根据角平分线的定义及三角形内角和定理即可得出结论; ②连结BE,由(2)的结论及四边形内角和为360°即可得出结论; (4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论. 【详解】 (1).理由如下: 如图1,,,,; (2).理由如下: 在中,,在中,,,; (3)①,,、分别平分和,,. 故答案为:. ②连结. ∵,. 故答案为:; (4)由(1)知,,,,,,,,,,,; . 【点睛】 本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 年人教版 中学 年级 下册 数学 期末 质量 检测 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文