人教七年级下册数学期末解答题压轴题及答案.doc
《人教七年级下册数学期末解答题压轴题及答案.doc》由会员分享,可在线阅读,更多相关《人教七年级下册数学期末解答题压轴题及答案.doc(36页珍藏版)》请在咨信网上搜索。
人教七年级下册数学期末解答题压轴题及答案 一、解答题 1.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1). (1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________; (2)迁移应用: 请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形. ①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图. ②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 的点,并比较它们的大小. 2.(1)如图,分别把两个边长为的小正方形沿一条对角线裁成个小三角形拼成一个大正方形,则大正方形的边长为_______; (2)若一个圆的面积与一个正方形的面积都是,设圆的周长为,正方形的周长为,则_____(填“”或“”或“”号); (3)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由? 3.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等. (1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号) (2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:,) 4.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件. (1)求正方形工料的边长; (2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:=1.414,=1.732,=2.236) 5.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3. (1)求原来正方形场地的周长; (2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由. 二、解答题 6.已知,,. (1)如图1,求证:; (2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数. 7.已知:直线AB∥CD,直线MN分别交AB、CD于点E、F,作射线EG平分∠BEF交CD于G,过点F作FH⊥MN交EG于H. (1)当点H在线段EG上时,如图1 ①当∠BEG=时,则∠HFG= . ②猜想并证明:∠BEG与∠HFG之间的数量关系. (2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG与∠HFG之间的数量关系. 8.如图1,已AB∥CD,∠C=∠A. (1)求证:AD∥BC; (2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明. (3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°, ①直接写出∠AED与∠FDC的数量关系: . ②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,补全图形后,求∠EPD的度数 9.已知,.点在上,点在 上. (1)如图1中,、、的数量关系为: ;(不需要证明);如图2中,、、的数量关系为: ;(不需要证明) (2)如图 3中,平分,平分,且,求的度数; (3)如图4中,,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数. 10.已知AB∥CD,线段EF分别与AB,CD相交于点E,F. (1)请在横线上填上合适的内容,完成下面的解答: 如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数; 解:过点P作直线PH∥AB, 所以∠A=∠APH,依据是 ; 因为AB∥CD,PH∥AB, 所以PH∥CD,依据是 ; 所以∠C=( ), 所以∠APC=( )+( )=∠A+∠C=97°. (2)当点P,Q在线段EF上移动时(不包括E,F两点): ①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由; ②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系. 三、解答题 11.已知,点为平面内一点,于. (1)如图1,点在两条平行线外,则与之间的数量关系为______; (2)点在两条平行线之间,过点作于点. ①如图2,说明成立的理由; ②如图3,平分交于点平分交于点.若,求的度数. 12.如图1,由线段组成的图形像英文字母,称为“形”. (1)如图1,形中,若,则______; (2)如图2,连接形中两点,若,试探求与的数量关系,并说明理由; (3)如图3,在(2)的条件下,且的延长线与的延长线有交点,当点在线段的延长线上从左向右移动的过程中,直接写出与所有可能的数量关系. 13.已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E,F点,且. (1)将直角如图1位置摆放,如果,则________; (2)将直角如图2位置摆放,N为上一点,,请写出与之间的等量关系,并说明理由; (3)将直角如图3位置摆放,若,延长交直线b于点Q,点P是射线上一动点,探究与的数量关系,请直接写出结论. 14.如图1,E点在BC上,∠A=∠D,AB∥CD. (1)直接写出∠ACB和∠BED的数量关系 ; (2)如图2,BG平分∠ABE,与∠CDE的邻补角∠EDF的平分线交于H点.若∠E比∠H大60°,求∠E; (3)保持(2)中所求的∠E不变,如图3,BM平分∠ABE的邻补角∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不变,请求值;若改变,请说理由. 15.已知点A,B,O在一条直线上,以点O为端点在直线AB的同一侧作射线,,使. (1)如图①,若平分,求的度数; (2)如图②,将绕点O按逆时针方向转动到某个位置时,使得所在射线把分成两个角. ①若,求的度数; ②若(n为正整数),直接用含n的代数式表示. 四、解答题 16.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°. (1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数; (2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数; (3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果) 17.模型与应用. (模型) (1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°. (应用) (2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为 . 如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为 . (3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CMnMn-1的角平分线MnO交于点O,若∠M1OMn=m°. 在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示) 18.如图,平分,平分, 请判断与的位置关系并说明理由; 如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由. 如图,为线段上一定点,点为直线上一动点且与的位置关系保持不变,①当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理由.②当点在射线的反向延长线上运动时(点除外),与有何数量关系?直接写出猜想结论,不需说明理由. 19.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由; 【问题迁移】 如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β. (1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °. (2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC与α、β之间的数量关系,并说明理由. (图1) (图2) 20.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系? (特殊化) (1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数; (2)当∠1=70°,求∠EPB的度数; (一般化) (3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示). 【参考答案】 一、解答题 1.(1);(2)①见解析;②见解析, 【分析】 (1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形; ② 解析:(1);(2)①见解析;②见解析, 【分析】 (1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形; ②由题(1)的原理得出大正方形的边长为,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小. 【详解】 解:设正方形边长为a, ∵a2=2, ∴a=, 故答案为:,; (2)解:①裁剪后拼得的大正方形如图所示: ②设拼成的大正方形的边长为b, ∴b2=5, ∴b=±, 在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+,看图可知,表示-0.5的N点在M点的右方, ∴比较大小:. 【点睛】 本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键. 2.(1);(2);(3)不能裁剪出,详见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形 解析:(1);(2);(3)不能裁剪出,详见解析 【分析】 (1)根据所拼成的大正方形的面积为2即可求得大正方形的边长; (2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可; (3)利用方程思想求出长方形的长边,与正方形边长比较大小即可; 【详解】 解:(1)∵小正方形的边长为1cm, ∴小正方形的面积为1cm2, ∴两个小正方形的面积之和为2cm2, 即所拼成的大正方形的面积为2 cm2, ∴大正方形的边长为cm, (2)∵, ∴, ∴, 设正方形的边长为a ∵, ∴, ∴, ∴ 故答案为:<; (3)解:不能裁剪出,理由如下: ∵长方形纸片的长和宽之比为, ∴设长方形纸片的长为,宽为, 则, 整理得:, ∴, ∵450>400, ∴, ∴, ∴长方形纸片的长大于正方形的边长, ∴不能裁出这样的长方形纸片. 【点睛】 本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查. 3.(1);(2)不同意,理由见解析 【分析】 (1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值; (2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个 解析:(1);(2)不同意,理由见解析 【分析】 (1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值; (2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答. 【详解】 解:(1)设正方形边长为,则,由算术平方根的意义可知, 所以正方形的边长是. (2)不同意. 因为:两个小正方形的面积分别为和,则它们的边长分别为和.,即两个正方形边长的和约为, 所以,即两个正方形边长的和大于长方形的长, 所以不能在长方形纸片上截出两个完整的面积分别为和的正方形纸片. 【点睛】 本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念. 4.(1)正方形工料的边长是 5 分米; (2)这块正方形工料不合格,理由见解析. 【详解】 试题分析:(1)根据正方形的面积公式求出的值即可; (2)设长方形的长宽分别为3x分米、2x分米,得出方程3 解析:(1)正方形工料的边长是 5 分米; (2)这块正方形工料不合格,理由见解析. 【详解】 试题分析:(1)根据正方形的面积公式求出的值即可; (2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出x=,再求出长方形的长和宽和5比较即可得出答案. 试题解析:(1)∵正方形的面积是 25 平方分米, ∴正方形工料的边长是 5 分米; (2)设长方形的长宽分别为 3x 分米、2x 分米, 则 3x•2x=18, x2=3, x1= ,x2=(舍去), 3x=3>5,2x=2<5 , 即这块正方形工料不合格. 5.(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用. 【分析】 (1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为 解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用. 【分析】 (1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用. 【详解】 解:(1)=20(m),4×20=80(m), 答:原来正方形场地的周长为80m; (2)设这个长方形场地宽为3am,则长为5am. 由题意有:3a×5a=300, 解得:a=±, ∵3a表示长度, ∴a>0, ∴a=, ∴这个长方形场地的周长为 2(3a+5a)=16a=16(m), ∵80=16×5=16×>16, ∴这些铁栅栏够用. 【点睛】 本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长. 二、解答题 6.(1)见解析;(2) 【分析】 (1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证; (2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的 解析:(1)见解析;(2) 【分析】 (1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证; (2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的含义得出,然后根据平行线的性质及角平分线的定义可推出;设,根据角的和差可得出,结合已知条件可求得,最后根据垂线的含义及平行线的性质,即可得出答案. 【详解】 (1)证明: ; (2)过点E作,延长DC至Q,过点M作 ,,, AF平分 FH平分 设 , . 【点睛】 本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键. 7.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部 【分析】 (1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可. 解析:(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部 【分析】 (1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可. (2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可. 【详解】 解:(1)①∵EG平分∠BEF, ∴∠BEG=∠FEG, ∵FH⊥EF, ∴∠EFH=90°, ∵AB∥CD, ∴∠BEF+∠EFG=180°, ∴2∠BEG+90°+∠HFG=180°, ∴2∠BEG+∠HFG=90°, ∵∠BEG=36°, ∴∠HFG=18°. 故答案为:18°. ②结论:2∠BEG+∠HFG=90°. 理由:∵EG平分∠BEF, ∴∠BEG=∠FEG, ∵FH⊥EF, ∴∠EFH=90°, ∵AB∥CD, ∴∠BEF+∠EFG=180°, ∴2∠BEG+90°+∠HFG=180°, ∴2∠BEG+∠HFG=90°. (2)如图2中,结论:2∠BEG-∠HFG=90°. 理由:∵EG平分∠BEF, ∴∠BEG=∠FEG, ∵FH⊥EF, ∴∠EFH=90°, ∵AB∥CD, ∴∠BEF+∠EFG=180°, ∴2∠BEG+90°-∠HFG=180°, ∴2∠BEG-∠HFG=90°. 【点睛】 本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50° 【分析】 (1)根据平行线的性质及判定可得结论; (2)过点E作EF∥AB,根 解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50° 【分析】 (1)根据平行线的性质及判定可得结论; (2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论; (3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系; ②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度数. 【详解】 解:(1)证明:AB∥CD, ∴∠A+∠D=180°, ∵∠C=∠A, ∴∠C+∠D=180°, ∴AD∥BC; (2)∠BAE+∠CDE=∠AED,理由如下: 如图2,过点E作EF∥AB, ∵AB∥CD ∴AB∥CD∥EF ∴∠BAE=∠AEF,∠CDE=∠DEF 即∠FEA+∠FED=∠CDE+∠BAE ∴∠BAE+∠CDE=∠AED; (3)①∠AED-∠FDC=45°; ∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°, ∴∠AEC=∠DEC+∠AEB, ∴∠AED=∠AEB, ∵DF平分∠EDC ∠DEC=2∠FDC ∴∠DEC=90°-2∠FDC, ∴2∠AED+(90°-2∠FDC)=180°, ∴∠AED-∠FDC=45°, 故答案为:∠AED-∠FDC=45°; ②如图3, ∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°, ∴∠F=45°, ∴∠DEP=2∠F=90°, ∵∠DEA-∠PEA=∠DEB=∠DEA, ∴∠PEA=∠AED, ∴∠DEP=∠PEA+∠AED=∠AED=90°, ∴∠AED=70°, ∵∠AED+∠AEC=180°, ∴∠DEC+2∠AED=180°, ∴∠DEC=40°, ∵AD∥BC, ∴∠ADE=∠DEC=40°, 在△PDE中,∠EPD=180°-∠DEP-∠AED=50°, 即∠EPD=50°. 【点睛】 本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键. 9.(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°. 【分析】 (1)过E作EHAB,易得EHABCD,根据平行线的性质 解析:(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°. 【分析】 (1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解; (2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=180°,可求解∠BMF=60°,进而可求解; (3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解. 【详解】 解:(1)过E作EHAB,如图1, ∴∠BME=∠MEH, ∵ABCD, ∴HECD, ∴∠END=∠HEN, ∴∠MEN=∠MEH+∠HEN=∠BME+∠END, 即∠BME=∠MEN−∠END. 如图2,过F作FHAB, ∴∠BMF=∠MFK, ∵ABCD, ∴FHCD, ∴∠FND=∠KFN, ∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND, 即:∠BMF=∠MFN+∠FND. 故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND. (2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND. ∵NE平分∠FND,MB平分∠FME, ∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END, ∵2∠MEN+∠MFN=180°, ∴2(∠BME+∠END)+∠BMF−∠FND=180°, ∴2∠BME+2∠END+∠BMF−∠FND=180°, 即2∠BMF+∠FND+∠BMF−∠FND=180°, 解得∠BMF=60°, ∴∠FME=2∠BMF=120°; (3)∠FEQ的大小没发生变化,∠FEQ=30°. 由(1)知:∠MEN=∠BME+∠END, ∵EF平分∠MEN,NP平分∠END, ∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END, ∵EQNP, ∴∠NEQ=∠ENP, ∴∠FEQ=∠FEN−∠NEQ=(∠BME+∠END)−∠END=∠BME, ∵∠BME=60°, ∴∠FEQ=×60°=30°. 【点睛】 本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键. 10.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°. 解析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°. 【分析】 (1)根据平行线的判定与性质即可完成填空; (2)结合(1)的辅助线方法即可完成证明; (3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系. 【详解】 解:过点P作直线PH∥AB, 所以∠A=∠APH,依据是两直线平行,内错角相等; 因为AB∥CD,PH∥AB, 所以PH∥CD,依据是平行于同一条直线的两条直线平行; 所以∠C=(∠CPH), 所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°. 故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH; (2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下: 过点P作直线PH∥AB,QG∥AB, ∵AB∥CD, ∴AB∥CD∥PH∥QG, ∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°, ∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°. ∴∠APQ+∠PQC=∠A+∠C+180°成立; ②如图3, 过点P作直线PH∥AB,QG∥AB,MN∥AB, ∵AB∥CD, ∴AB∥CD∥PH∥QG∥MN, ∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN, ∴∠PMQ=∠HPM+∠GQM, ∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°, ∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ), ∴3∠PMQ+∠A+∠C=360°. 【点睛】 考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键. 三、解答题 11.(1)∠A+∠C=90°;(2)①见解析;②105° 【分析】 (1)根据平行线的性质以及直角三角形的性质进行证明即可; (2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥ 解析:(1)∠A+∠C=90°;(2)①见解析;②105° 【分析】 (1)根据平行线的性质以及直角三角形的性质进行证明即可; (2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°. 【详解】 解:(1)如图1,AM与BC的交点记作点O, ∵AM∥CN, ∴∠C=∠AOB, ∵AB⊥BC, ∴∠A+∠AOB=90°, ∴∠A+∠C=90°; (2)①如图2,过点B作BG∥DM, ∵BD⊥AM, ∴DB⊥BG, ∴∠DBG=90°, ∴∠ABD+∠ABG=90°, ∵AB⊥BC, ∴∠CBG+∠ABG=90°, ∴∠ABD=∠CBG, ∵AM∥CN,BG∥DM, ∴∠C=∠CBG, ∠ABD=∠C; ②如图3,过点B作BG∥DM, ∵BF平分∠DBC,BE平分∠ABD, ∴∠DBF=∠CBF,∠DBE=∠ABE, 由(2)知∠ABD=∠CBG, ∴∠ABF=∠GBF, 设∠DBE=α,∠ABF=β, 则∠ABE=α,∠ABD=2α=∠CBG, ∠GBF=∠AFB=β, ∠BFC=3∠DBE=3α, ∴∠AFC=3α+β, ∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°, ∴∠FCB=∠AFC=3α+β, △BCF中,由∠CBF+∠BFC+∠BCF=180°得: 2α+β+3α+3α+β=180°, ∵AB⊥BC, ∴β+β+2α=90°, ∴α=15°, ∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°. 【点睛】 本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用. 12.(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α 【分析】 (1)过M作MN∥AB,由平行线的性质即可求得∠M的值. (2)延长BA,DC交于E, 解析:(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α 【分析】 (1)过M作MN∥AB,由平行线的性质即可求得∠M的值. (2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题. (3)分两种情形分别求解即可; 【详解】 解:(1)过M作MN∥AB, ∵AB∥CD, ∴AB∥MN∥CD, ∴∠1=∠A,∠2=∠C, ∴∠AMC=∠1+∠2=∠A+∠C=50°; 故答案为:50°; (2)∠A+∠C=30°+α, 延长BA,DC交于E, ∵∠B+∠D=150°, ∴∠E=30°, ∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α; 即∠A+∠C=30°+α; (3)①如下图所示: 延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F, ∵∠B+∠D=150°,∠AMC=α,∴∠E=30° 由三角形的内外角之间的关系得: ∠1=30°+∠2 ∠2=∠3+α ∴∠1=30°+∠3+α ∴∠1-∠3=30°+α 即:∠A-∠C=30°+α. ②如图所示,210-∠A=(180°-∠DCM)+α,即∠A-∠DCM=30°-α. 综上所述,∠A-∠DCM=30°+α或30°-α. 【点睛】 本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l∥AB,利用平行线的性质(两直线平行内错角相等)将所求的角∠M与已知角∠A、∠C的数量关系联系起来,从而求得∠M的度数. 13.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析 【分析】 (1)作CP//a,则CP//a//b,根据平行线的性质求解. (2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N 解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析 【分析】 (1)作CP//a,则CP//a//b,根据平行线的性质求解. (2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°. (3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解. 【详解】 解:(1)如图,作CP//a, ∵a//b,CP//a, ∴CP//a//b, ∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°, ∴∠BCP=180°-∠CEF, ∵∠ACP+∠BCP=90°, ∴∠AOG+180°-∠CEF=90°, ∴∠CEF=180°-90°+∠AOG=146°. (2)∠AOG+∠NEF=90°.理由如下: 如图,作CP//a,则CP//a//b, ∴∠AOG=∠ACP,∠BCP+∠CEF=180°, ∵∠NEF+∠CEF=180°, ∴∠BCP=∠NEF, ∵∠ACP+∠BCP=90°, ∴∠AOG+∠NEF=90°. (3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b, ∴∠GOP=∠OPN,∠PQF=∠NPQ, ∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF, ∵∠GOC=∠GOP+∠POQ=135°, ∴∠GOP=135°-∠POQ, ∴∠OPQ=135°-∠POQ+∠PQF. 如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b, ∴∠GOP=∠OPN,∠PQF=∠NPQ, ∵∠OPN=∠OPQ+∠QPN, ∴∠GOP=∠OPQ+∠PQF, ∴135°-∠POQ=∠OPQ+∠PQF. 【点睛】 本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解. 14.(1)∠ACB+∠BED=180°;(2)100°;(3)40° 【分析】 (1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠A 解析:(1)∠ACB+∠BED=180°;(2)100°;(3)40° 【分析】 (1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠ACB+∠CEF=180°,由对顶角相等可得结论; (2)如图2,作EMCD,HNCD,根据ABCD,可得ABEMHNCD,根据平行线的性质得角之间的关系,再根据∠DEB比∠DHB大60°,列出等式即可求∠DEB的度数; (3)如图3,过点E作ESCD,设直线DF和直线BP相交于点G,根据平行线的性质和角平分线定义可求∠PBM的度数. 【详解】 解:(1)如图1,延长交于点, , , , , , , , 故答案为:; (2)如图2,作,, , , ,, 平分, , , , , , , 平分, , , , , 设, , 比大, , , 解得. 的度数为; (3)的度数不变,理由如下: 如图3,过点作,设直线和直线相交于点, 平分,平分, , , ,, , , , , 由(2)可知:, , , , , , . 【点睛】 本题考查了平行线的性质,解决本题的关键是掌握平行线的性质. 15.(1);(2)①;②. 【分析】 (1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论; (2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最 解析:(1);(2)①;②. 【分析】 (1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论; (2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论; ②根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论. 【详解】 解:(1)∵平分,, ∴, ∴, ∴, ∴; (2)①∵, ∴∠EOC+∠COD=∠BOD+∠COD, ∴∠EOC=∠BOD, ∵,, ∴, ∴, ∴, ∴; ②∵, ∴∠EOC+∠COD=∠BOD+∠COD, ∴∠EOC=∠BOD, ∵,, ∴, ∴, ∴, ∴. 【点睛】 本题考查邻补角的计算,角的和差,角平分线的有关计算.能正确识图,利用角的和差求得相应角的度数是解题关键. 四、解答题 16.(1)105°;(2)135°;(- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教七 年级 下册 数学 期末 解答 压轴 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文