2023年人教版七7年级下册数学期末解答题测试题及答案.doc
《2023年人教版七7年级下册数学期末解答题测试题及答案.doc》由会员分享,可在线阅读,更多相关《2023年人教版七7年级下册数学期末解答题测试题及答案.doc(41页珍藏版)》请在咨信网上搜索。
2023年人教版七7年级下册数学期末解答题测试题及答案 一、解答题 1.已知在的正方形网格中,每个小正方形的边长为1. (1)计算图①中正方形的面积与边长. (2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数和. 2.如图用两个边长为cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为,且面积为cm2?请说明理由. 3.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究. (1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽; (2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由. 4.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3. (1)求原来正方形场地的周长; (2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由. 5.有一块正方形钢板,面积为16平方米. (1)求正方形钢板的边长. (2)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由.(参考数据:,). 二、解答题 6.如图1,点在直线、之间,且. (1)求证:; (2)若点是直线上的一点,且,平分交直线于点,若,求的度数; (3)如图3,点是直线、外一点,且满足,,与交于点.已知,且,则的度数为______(请直接写出答案,用含的式子表示). 7.如图1,//,点、分别在、上,点在直线、之间,且. (1)求的值; (2)如图2,直线分别交、的角平分线于点、,直接写出的值; (3)如图3,在内,;在内,,直线分别交、分别于点、,且,直接写出的值. 8.(1)(问题)如图1,若,,.求的度数; (2)(问题迁移)如图2,,点在的上方,问,,之间有何数量关系?请说明理由; (3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点,用含有的式子表示的度数. 9.阅读下面材料: 小亮同学遇到这样一个问题: 已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到∠BED. 求证:∠BED=∠B+∠D. (1)小亮写出了该问题的证明,请你帮他把证明过程补充完整. 证明:过点E作EFAB, 则有∠BEF= . ∵ABCD, ∴ , ∴∠FED= . ∴∠BED=∠BEF+∠FED=∠B+∠D. (2)请你参考小亮思考问题的方法,解决问题:如图乙, 已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E. ①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数; ②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示). 10.已知,点为平面内一点,于. (1)如图1,求证:; (2)如图2,过点作的延长线于点,求证:; (3)如图3,在(2)问的条件下,点、在上,连接、、,且平分,平分,若,,求的度数. 三、解答题 11.将两块三角板按如图置,其中三角板边,,,. (1)下列结论:正确的是_______. ①如果,则有; ②; ③如果,则平分. (2)如果,判断与是否相等,请说明理由. (3)将三角板绕点顺时针转动,直到边与重合即停止,转动的过程中当两块三角板恰有两边平行时,请直接写出所有可能的度数. 12.已知:直线∥,A为直线上的一个定点,过点A的直线交 于点B,点C在线段BA的延长线上.D,E为直线上的两个动点,点D在点E的左侧,连接AD,AE,满足∠AED=∠DAE.点M在上,且在点B的左侧. (1)如图1,若∠BAD=25°,∠AED=50°,直接写出ÐABM的度数 ; (2)射线AF为∠CAD的角平分线. ① 如图2,当点D在点B右侧时,用等式表示∠EAF与∠ABD之间的数量关系,并证明; ② 当点D与点B不重合,且∠ABM+∠EAF=150°时,直接写出∠EAF的度数 . 13.如图,,平分,设为,点E是射线上的一个动点. (1)若时,且,求的度数; (2)若点E运动到上方,且满足,,求的值; (3)若,求的度数(用含n和的代数式表示). 14.已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E、F点,. (1)将直角如图1位置摆放,如果,则______; (2)将直角如图2位置摆放,N为AC上一点,,请写出与之间的等量关系,并说明理由. (3)将直角如图3位置摆放,若,延长AC交直线b于点Q,点P是射线GF上一动点,探究,与的数量关系,请直接写出结论. 15.如图,已知AM∥BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D. (1)①∠ABN的度数是 ;②∵AM∥BN,∴∠ACB=∠ ; (2)求∠CBD的度数; (3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律; (4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是 . 四、解答题 16.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E. (1)如图1,点D在线段CG上运动时,DF平分∠EDB ①若∠BAC=100°,∠C=30°,则∠AFD= ;若∠B=40°,则∠AFD= ; ②试探究∠AFD与∠B之间的数量关系?请说明理由; (2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由 17.如图,直线,、是、上的两点,直线与、分别交于点、,点是直线上的一个动点(不与点、重合),连接、. (1)当点与点、在一直线上时,,,则_____. (2)若点与点、不在一直线上,试探索、、之间的关系,并证明你的结论. 18.(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数; (2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数; (3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由. 19.如图,在中,是高,是角平分线,,. ()求、和的度数. ()若图形发生了变化,已知的两个角度数改为:当,,则__________. 当,时,则__________. 当,时,则__________. 当,时,则__________. ()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论. 20.已知ABCD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F. (1)若点E的位置如图1所示. ①若∠ABE=60°,∠CDE=80°,则∠F= °; ②探究∠F与∠BED的数量关系并证明你的结论; (2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是 . (3)若点E的位置如图3所示,∠CDE 为锐角,且,设∠F=α,则α的取值范围为 . 【参考答案】 一、解答题 1.(1)正方形的面积为10,正方形的边长为;(2)见解析 【分析】 (1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长; (2)根据(1)的方法画 解析:(1)正方形的面积为10,正方形的边长为;(2)见解析 【分析】 (1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长; (2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论. 【详解】 解:(1)正方形的面积为4×4-4××3×1=10 则正方形的边长为; (2)如下图所示,正方形的面积为4×4-4××2×2=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点 ∴正方形的边长为 ∴弧与数轴的左边交点为,右边交点为,实数和在数轴上如图所示. 【点睛】 此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键. 2.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析 【分析】 根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可. 【详解】 解:不能, 因为大正方形纸 解析:不能截得长宽之比为,且面积为cm2的长方形纸片,见解析 【分析】 根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可. 【详解】 解:不能, 因为大正方形纸片的面积为()2+()2=36(cm2), 所以大正方形的边长为6cm, 设截出的长方形的长为3b cm,宽为2b cm, 则6b2=30, 所以b=(取正值), 所以3b=3=>, 所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片. 【点睛】 本题考查了算术平方根,理解算术平方根的意义是正确解答的关键. 3.(1)长为,宽为;(2)正确,理由见解析 【分析】 (1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可; (2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程 解析:(1)长为,宽为;(2)正确,理由见解析 【分析】 (1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可; (2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积. 【详解】 解:(1)设长为3x,宽为2x, 则:3x•2x=30, ∴x=(负值舍去), ∴3x=,2x=, 答:这个长方形纸片的长为,宽为; (2)正确.理由如下: 根据题意得:, 解得:, ∴大正方形的面积为102=100. 【点睛】 本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键. 4.(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用. 【分析】 (1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为 解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用. 【分析】 (1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用. 【详解】 解:(1)=20(m),4×20=80(m), 答:原来正方形场地的周长为80m; (2)设这个长方形场地宽为3am,则长为5am. 由题意有:3a×5a=300, 解得:a=±, ∵3a表示长度, ∴a>0, ∴a=, ∴这个长方形场地的周长为 2(3a+5a)=16a=16(m), ∵80=16×5=16×>16, ∴这些铁栅栏够用. 【点睛】 本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长. 5.(1)4米 (2)见解析 【分析】 (1)根据正方形边长与面积间的关系求解即可; (2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论. 【详解】 解 解析:(1)4米 (2)见解析 【分析】 (1)根据正方形边长与面积间的关系求解即可; (2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论. 【详解】 解:(1)正方形的面积是16平方米, 正方形钢板的边长是米; (2)设长方形的长宽分别为米、米, 则, , , ,, 长方形长是米,而正方形的边长为4米,所以李师傅不能办到. 【点睛】 本题考查了算术平方根的实际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键. 二、解答题 6.(1)见解析;(2)10°;(3) 【分析】 (1)过点E作EF∥CD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明; (2)过点E作HE∥CD,设 由(1)得AB∥CD 解析:(1)见解析;(2)10°;(3) 【分析】 (1)过点E作EF∥CD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明; (2)过点E作HE∥CD,设 由(1)得AB∥CD,则AB∥CD∥HE,由平行线的性质,得出再由平分,得出则,则可列出关于x和y的方程,即可求得x,即的度数; (3)过点N作NP∥CD,过点M作QM∥CD,由(1)得AB∥CD,则NP∥CD∥AB∥QM,根据和,得出根据CD∥PN∥QM,DE∥NB,得出即根据NP∥AB,得出再由,得出由AB∥QM,得出因为,代入的式子即可求出. 【详解】 (1)过点E作EF∥CD,如图, ∵EF∥CD, ∴ ∴ ∵, ∴ ∴EF∥AB, ∴CD∥AB; (2)过点E作HE∥CD,如图, 设 由(1)得AB∥CD,则AB∥CD∥HE, ∴ ∴ 又∵平分, ∴ ∴ 即 解得:即; (3)过点N作NP∥CD,过点M作QM∥CD,如图, 由(1)得AB∥CD,则NP∥CD∥AB∥QM, ∵NP∥CD,CD∥QM, ∴, 又∵, ∴ ∵, ∴ ∴ 又∵PN∥AB, ∴ ∵, ∴ 又∵AB∥QM, ∴ ∴ ∴. 【点睛】 本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系. 7.(1) ;(2)的值为40°;(3). 【分析】 (1)过点O作OG∥AB,可得AB∥OG∥CD,利用平行线的性质可求解; (2)过点M作MK∥AB,过点N作NH∥CD,由角平分线的定义可设∠BEM 解析:(1) ;(2)的值为40°;(3). 【分析】 (1)过点O作OG∥AB,可得AB∥OG∥CD,利用平行线的性质可求解; (2)过点M作MK∥AB,过点N作NH∥CD,由角平分线的定义可设∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,进而求解; (3)设直线FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可得,结合,可得 即可得关于n的方程,计算可求解n值. 【详解】 证明:过点O作OG∥AB, ∵AB∥CD, ∴AB∥OG∥CD, ∴ ∴ 即 ∵∠EOF=100°, ∴∠; (2)解:过点M作MK∥AB,过点N作NH∥CD, ∵EM平分∠BEO,FN平分∠CFO, 设 ∵ ∴ ∴x-y=40°, ∵MK∥AB,NH∥CD,AB∥CD, ∴AB∥MK∥NH∥CD, ∴ ∴ =x-y =40°, 故的值为40°; (3)如图,设直线FK与EG交于点H,FK与AB交于点K, ∵AB∥CD, ∴ ∵ ∴ ∵ ∴ 即 ∵FK在∠DFO内, ∴ , ∵ ∴ ∴ 即 ∴ 解得 . 经检验,符合题意, 故答案为:. 【点睛】 本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键. 8.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α 【分析】 (1)根据平行线的性质与判定可求解; (2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PF 解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α 【分析】 (1)根据平行线的性质与判定可求解; (2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解; (3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解. 【详解】 解:(1)如图1,过点P作PM∥AB, ∴∠1=∠AEP. 又∠AEP=40°, ∴∠1=40°. ∵AB∥CD, ∴PM∥CD, ∴∠2+∠PFD=180°. ∵∠PFD=130°, ∴∠2=180°-130°=50°. ∴∠1+∠2=40°+50°=90°. 即∠EPF=90°. (2)∠PFC=∠PEA+∠P. 理由:过P点作PN∥AB,则PN∥CD, ∴∠PEA=∠NPE, ∵∠FPN=∠NPE+∠FPE, ∴∠FPN=∠PEA+∠FPE, ∵PN∥CD, ∴∠FPN=∠PFC, ∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P; (3)令AB与PF交点为O,连接EF,如图3. 在△GFE中,∠G=180°-(∠GFE+∠GEF), ∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE, ∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE, ∵由(2)知∠PFC=∠PEA+∠P, ∴∠PEA=∠PFC-α, ∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC, ∴∠GEF+∠GFE=(∠PFC−α)+∠PFC+180°−∠PFC=180°−α, ∴∠G=180°−(∠GEF+∠GFE)=180°−180°+α=α. 【点睛】 本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键. 9.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣ 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°, 解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣ 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数; ②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数. 【详解】 解:(1)过点E作EF∥AB, 则有∠BEF=∠B, ∵AB∥CD, ∴EF∥CD, ∴∠FED=∠D, ∴∠BED=∠BEF+∠FED=∠B+∠D; 故答案为:∠B;EF;CD;∠D; (2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA. ∵AB∥CD, ∴EF∥CD. ∴∠FED=∠EDC. ∴∠BEF+∠FED=∠EBA+∠EDC. 即∠BED=∠EBA+∠EDC, ∵BE平分∠ABC,DE平分∠ADC, ∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°, ∴∠BED=∠EBA+∠EDC=65°. 答:∠BED的度数为65°; ②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°. ∴∠BEF=180°﹣∠EBA, ∵AB∥CD, ∴EF∥CD. ∴∠FED=∠EDC. ∴∠BEF+∠FED=180°﹣∠EBA+∠EDC. 即∠BED=180°﹣∠EBA+∠EDC, ∵BE平分∠ABC,DE平分∠ADC, ∴∠EBA=∠ABC=,∠EDC=∠ADC=, ∴∠BED=180°﹣∠EBA+∠EDC=180°﹣. 答:∠BED的度数为180°﹣. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 10.(1)见解析;(2)见解析;(3). 【分析】 (1)先根据平行线的性质得到,然后结合即可证明; (2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a,则∠BFC=3 解析:(1)见解析;(2)见解析;(3). 【分析】 (1)先根据平行线的性质得到,然后结合即可证明; (2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a,则∠BFC=3a,根据角平分线的定义可得∠ABD=∠C=2a,∠FBC=∠DBC=a+45°,根据三角形内角和可得∠BFC+∠FBC+∠BCF=180°,可得∠AFC=∠BCF的度数表达式,再根据平行的性质可得∠AFC+∠NCF=180°,代入即可算出a的度数,进而完成解答. 【详解】 (1)证明:∵, ∴, ∵于, ∴, ∴, ∴; (2)证明:过作, ∵, ∴, 又∵, ∴, ∴, ∵, ∴, ∴, ∴; (3)设∠DBE=a,则∠BFC=3a, ∵BE平分∠ABD, ∴∠ABD=∠C=2a, 又∵AB⊥BC,BF平分∠DBC, ∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=∠DBC=a+45° 又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180° ∴∠BCF=135°-4a, ∴∠AFC=∠BCF=135°-4a, 又∵AM//CN, ∴∠AFC+∠ NCF=180°,即:∠AFC+∠BCN+∠BCF=180°, ∴135°-4a+135°-4a+2a=180,解得a=15°, ∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°. 【点睛】 本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键. 三、解答题 11.(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135° 【分析】 (1)根据平行线的判定和性质分别判定即可; (2)利用角的和差,结合∠CAB=∠DAE=90°进行判断 解析:(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135° 【分析】 (1)根据平行线的判定和性质分别判定即可; (2)利用角的和差,结合∠CAB=∠DAE=90°进行判断; (3)依据这两块三角尺各有一条边互相平行,分五种情况讨论,即可得到∠EAB角度所有可能的值. 【详解】 解:(1)①∵∠BFD=60°,∠B=45°, ∴∠BAD+∠D=∠BFD+∠B=105°, ∴∠BAD=105°-30°=75°, ∴∠BAD≠∠B, ∴BC和AD不平行,故①错误; ②∵∠BAC+∠DAE=180°, ∴∠BAE+∠CAD=∠BAE+∠CAE+∠DAE=180°,故②正确; ③若BC∥AD, 则∠BAD=∠B=45°, ∴∠BAE=45°, 即AB平分∠EAD,故③正确; 故答案为:②③; (2)相等,理由是: ∵∠CAD=150°, ∴∠BAE=180°-150°=30°, ∴∠BAD=60°, ∵∠BAD+∠D=∠BFD+∠B, ∴∠BFD=60°+30°-45°=45°=∠C; (3)若AC∥DE, 则∠CAE=∠E=60°, ∴∠EAB=90°-60°=30°; 若BC∥AD, 则∠B=∠BAD=45°, ∴∠EAB=45°; 若BC∥DE, 则∠E=∠AFB=60°, ∴∠EAB=180°-60°-45°=75°; 若AB∥DE, 则∠D=∠DAB=30°, ∴∠EAB=30°+90°=120°; 若AE∥BC, 则∠C=∠CAE=45°, ∴∠EAB=45°+90°=135°; 综上:∠EAB的度数可能为30°或45°或75°或120°或135°. 【点睛】 本题考查了平行线的判定和性质,角平分线的定义,解题的关键是理解题意,分情况画出图形,学会用分类讨论的思想思考问题. 12.(1);(2)①,见解析;②或 【分析】 (1)由平行线的性质可得到:,,再利用角的等量代换换算即可; (2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况, 解析:(1);(2)①,见解析;②或 【分析】 (1)由平行线的性质可得到:,,再利用角的等量代换换算即可; (2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,运用角的等量代换换算即可. 【详解】 . 解:(1)设在上有一点N在点A的右侧,如图所示: ∵ ∴, ∴ ∴ (2)①. 证明:设,. ∴. ∵为的角平分线, ∴. ∵, ∴. ∴. ∴. ②当点在点右侧时,如图: 由①得: 又∵ ∴ ∵ ∴ 当点在点左侧,在右侧时,如图: ∵为的角平分线 ∴ ∵ ∴, ∵ ∴ ∴ ∵ ∴ 又∵ ∴ ∴ 当点和在点左侧时,设在上有一点在点的右侧如图: 此时仍有, ∴ ∴ 综合所述:或 【点睛】 本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键. 13.(1)60°;(2)50°;(3)或 【分析】 (1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数; (2)根据题意画出图形,先 解析:(1)60°;(2)50°;(3)或 【分析】 (1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数; (2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论; (3)根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,,列出等量关系求解即可等处结论;②若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论. 【详解】 解:(1),, , 平分, , , 又, ; (2)根据题意画图,如图1所示, ,, , , , , 又平分, , ; (3)①如图2所示, , , 平分, , , 又, , , 解得; ②如图3所示, , , 平分, , , 又, , , 解得. 综上的度数为或. 【点睛】 本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键. 14.(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF. 解析:(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF. 【分析】 (1)如图1,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后利用∠ACP+∠BCP=90°即可求得答案; (2)如图2,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后结合已知条件可得∠BCP=∠NEF,然后利用∠ACP+∠BCP=90°即可得到结论; (3)分两种情况,如图3,当点P在GF上时,过点P作PN∥OG,则NP∥OG∥EF,根据平行线的性质可推出∠OPQ=∠GOP+∠PQF,进一步可得结论;如图4,当点P在线段GF的延长线上时,同上面方法利用平行线的性质解答即可. 【详解】 解:(1)如图1,作CP∥a, ∵, ∴CP∥a∥b, ∴∠AOG=∠ACP,∠BCP+∠CEF=180°, ∴∠BCP=180°﹣∠CEF, ∵∠ACP+∠BCP=90°, ∴∠AOG+180°﹣∠CEF=90°, ∵∠AOG=46°, ∴∠CEF=136°, 故答案为136°; (2)∠AOG+∠NEF=90°. 理由如下:如图2,作CP∥a, 则CP∥a∥b, ∴∠AOG=∠ACP,∠BCP+∠CEF=180°, 而∠NEF+∠CEF=180°, ∴∠BCP=∠NEF, ∵∠ACP+∠BCP=90°, ∴∠AOG+∠NEF=90°; (3)如图3,当点P在GF上时,过点P作PN∥OG, ∴NP∥OG∥EF, ∴∠GOP=∠OPN,∠PQF=∠NPQ, ∴∠OPQ=∠GOP+∠PQF, ∴∠OPQ=140°﹣∠POQ+∠PQF; 如图4,当点P在线段GF的延长线上时,过点P作PN∥OG, ∴NP∥OG∥EF, ∴∠GOP=∠OPN,∠PQF=∠NPQ, ∵∠OPN=∠OPQ+∠QPN, ∴∠GOP=∠OPQ+∠PQF, ∴140°﹣∠POQ=∠OPQ+∠PQF. 【点睛】 本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键. 15.(1)① ②;(2);(3)不变,,理由见解析;(4) 【分析】 (1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出; (2)由角平分线的 解析:(1)① ②;(2);(3)不变,,理由见解析;(4) 【分析】 (1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出; (2)由角平分线的定义可以证明∠CBD=∠ABN,即可求出结果; (3)不变,∠APB:∠ADB=2:1,证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论; (4)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数. 【详解】 解:(1)①∵AM//BN,∠A=64°, ∴∠ABN=180°﹣∠A=116°, 故答案为:116°; ②∵AM//BN, ∴∠ACB=∠CBN, 故答案为:CBN; (2)∵AM//BN, ∴∠ABN+∠A=180°, ∴∠ABN=180°﹣64°=116°, ∴∠ABP+∠PBN=116°, ∵BC平分∠ABP,BD平分∠PBN, ∴∠ABP=2∠CBP,∠PBN=2∠DBP, ∴2∠CBP+2∠DBP=116°, ∴∠CBD=∠CBP+∠DBP=58°; (3)不变, ∠APB:∠ADB=2:1, ∵AM//BN, ∴∠APB=∠PBN,∠ADB=∠DBN, ∵BD平分∠PBN, ∴∠PBN=2∠DBN, ∴∠APB:∠ADB=2:1; (4)∵AM//BN, ∴∠ACB=∠CBN, 当∠ACB=∠ABD时, 则有∠CBN=∠ABD, ∴∠ABC+∠CBD=∠CBD+∠DBN ∴∠ABC=∠DBN, 由(1)∠ABN=116°, ∴∠CBD=58°, ∴∠ABC+∠DBN=58°, ∴∠ABC=29°, 故答案为:29°. 【点睛】 本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等. 四、解答题 16.(1)①115°;110°;②;理由见解析;(2);理由见解析 【分析】 (1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由 解析:(1)①115°;110°;②;理由见解析;(2);理由见解析 【分析】 (1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出,,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出,,由三角形的外角性质即可得出结果; ②由①得:∠EDB=∠C,,,由三角形的外角性质得出∠DGF=∠B+∠BAG,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C,,,由三角形的外角性质和三角形内角和定理即可得出结论. 【详解】 (1)①若∠BAC=100°,∠C=30°, 则∠B=180°-100°-30°=50°, ∵DE∥AC, ∴∠EDB=∠C=30°, ∵AG平分∠BAC,DF平分∠EDB, ∴,, ∴∠DGF=∠B+∠BAG=50°+50°=100°, ∴∠AFD=∠DGF+∠FDG=100°+15°=115°; 若∠B=40°,则∠BAC+∠C=180°-40°=140°, ∵AG平分∠BAC,DF平分∠EDB, ∴,, ∵∠DGF=∠B+∠BAG, ∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG = 故答案为:115°;110°; ②; 理由如下:由①得:∠EDB=∠C,,, ∵∠DGF=∠B+∠BAG, ∴∠AFD=∠DGF+∠FDG =∠B+∠BAG+∠FDG = ; (2)如图2所示:; 理由如下: 由(1)得:∠EDB=∠C,,, ∵∠AHF=∠B+∠BDH, ∴∠AFD=180°-∠BAG-∠AHF . 【点睛】 本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键. 17.(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年人教版七 年级 下册 数学 期末 解答 测试 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文