人教版中学七7年级下册数学期末学业水平含解析.doc
《人教版中学七7年级下册数学期末学业水平含解析.doc》由会员分享,可在线阅读,更多相关《人教版中学七7年级下册数学期末学业水平含解析.doc(26页珍藏版)》请在咨信网上搜索。
人教版中学七7年级下册数学期末学业水平含解析 一、选择题 1.如图,直线a,b被直线c所截,∠1的同旁内角是( ) A.∠2 B.∠3 C.∠4 D.∠5 2.下列四幅名车标志设计中能用平移得到的是( ) A.奥迪 B.本田 C.奔驰 D.铃木 3.在平面直角坐标系中,下列各点位于第三象限的是( ) A. B. C. D. 4.给出下列 4 个命题:①不是对顶角的两个角不相等;②三角形最大内角不小于 60°;③多边形的外角和小于内角和;④平行于同一直线的两条直线平行.其中真命题的个数是 ( ) A.1 B.2 C.3 D.4 5.如图,,平分,平分,,,则下列结论:①,②,③,④.其中正确的是( ) A.①②③ B.①②④ C.②③④ D.①②③④ 6.下列说法中,正确的是( ) A.(﹣2)3的立方根是﹣2 B.0.4的算术平方根是0.2 C.的立方根是4 D.16的平方根是4 7.如图,直线AB∥CD,BE平分∠ABD,若∠DBE=20°,∠DEB=80°,求∠CDE的度数是( ) A.50° B.60° C.70° D.80° 8.如图,动点在平面直角坐标系中按图中箭头所示方向运动,第次从原点运动到点,第次接着运动到点,第次接着运动到点,……按这样的运动规律,经过第次运动后,动点的坐标是( ) A. B. C. D. 九、填空题 9.已知,则a+b为_____. 十、填空题 10.点A关于x轴的对称点的坐标为____________. 十一、填空题 11.如图,已知//,,∠和∠的角平分线交于点F,∠=__________°. 十二、填空题 12.如图,,设,那么,,的关系式______. 十三、填空题 13.如图,将矩形ABCD沿MN折叠,使点B与点D重合,若∠DNM=75°,则∠AMD=_____. 十四、填空题 14.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______. 十五、填空题 15.在平面直角坐标系中,有点A(a﹣2,a),过点A作AB⊥x轴,交x轴于点B,且AB=2,则点A的坐标是___. 十六、填空题 16.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点出发,按图中箭头所示的方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,第4次接着运动到点,第5次接着运动到点,第6次接着运动到点.…按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_________. 十七、解答题 17.(1)计算: (2)解方程: 十八、解答题 18.求下列各式中x的值: (1) (2) 十九、解答题 19.按逻辑填写步骤和理由,将下面的证明过程补充完整. 如图,,点在直线上,点、在直线上,且,点在线段上,连接,且平分. 求证:. 证明:( ) ( ) (平角定义) 平分(已知) ( ) ( ) (已知) ( ) (等量代换) 二十、解答题 20.以学校为坐标原点建立平面直角坐标系,图中标明了这所学校附近的一些地方, (1)公交车站的坐标是 ,宠物店的坐标是 ; (2)在图中标出公园,书店的位置; (3)将医院的位置怎样平移得到人寿保险公司的位置. 二十一、解答题 21.我们知道是无理数,其整数部分是1,于是小明用-1来表示的小数部分. 请解答下列问题: (1)的整数部分是 ,小数部分是 . (2)如果的小数部分为a,的整数部分为b,求a+b-的值; (3)已知10+=x+y,其中x是整数,且0<y<1,求x-y的相反数. 二十二、解答题 22.(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm2的正方体纸盒,则这个正方体的棱长是 . (2)为了增加小区的绿化面积,幸福公园准备修建一个面积121πm2的草坪,草坪周围用篱笆围绕.现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的.如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由; (3)在(2)的方案中,审批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草坪的实际面积就减少了21πm2,请你根据此方案求出各小路的宽度(π取整数). 二十三、解答题 23.问题情境: 如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度数.小明的思路是:过P作PE∥AB,通过平行线性质,可得∠APC=∠APE+∠CPE=50°+60°=110°. 问题解决: (1)如图2,AB∥CD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P在线段MN上运动时(不与点M、N重合),∠PAB=α,∠PCD=β,判断∠APC、α、β之间的数量关系并说明理由; (2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时.请直接写出∠APC、α、B之间的数量关系; (3)如图3,AB∥CD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,∠BAP和∠DCP的平分线交于点Q.若∠APC=116°,请结合(2)中的规律,求∠AQC的度数. 二十四、解答题 24.如图1,点O在上,,射线交于点C,已知m,n满足:. (1)试说明//的理由; (2)如图2,平分,平分,直线、交于点E,则______; (3)若将绕点O逆时针旋转,其余条件都不变,在旋转过程中,的度数是否发生变化?请说明你的结论. 二十五、解答题 25.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°. (1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数; (2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数; (3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果) 【参考答案】 一、选择题 1.A 解析:A 【分析】 根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解. 【详解】 解: 直线a,b被直线c所截,∠1的同旁内角是∠2, 故选:A. 【点睛】 本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键,注意数形结合. 2.A 【分析】 根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解. 【详解】 解:A、是经过平移得到的,故符合题意; B、不是经过平移得 解析:A 【分析】 根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解. 【详解】 解:A、是经过平移得到的,故符合题意; B、不是经过平移得到的,故的符合题意; C、不是经过平移得到的,故不符合题意; D、不是经过平移得到的,故不符合题意; 故选A. 【点睛】 本题主要考查了图形的平移,解题的关键在于能够熟练掌握图形平移的概念. 3.D 【分析】 根据各象限内点的坐标特征对各选项分析判断后利用排除法求解. 【详解】 解:A、(0,3)在y轴上,故本选项不符合题意; B、(−2,1)在第二象限,故本选项不符合题意; C、(1,−2)在第四象限,故本选项不符合题意; D、(-1,-1)在第三象限,故本选项符合题意. 故选:D. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】 ①举反例说明即可,②利用三角形内角和定理判断即可,③举反例说明即可,④根据平行线的判定方法判断即可. 【详解】 解:①如:两直线平行同位角相等,所以不是对顶角的两个角不相等,错误,; ②若三角形最大内角小于60°,则三角形内角和小于180°,所以三角形最大内角不小于60°,正确; ③如:三角形的外角和大于内角和,所以多边形的外角和小于内角和,错误; ④平行于同一直线的两条直线平行,正确. 故选:B. 【点睛】 本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.要指出一个命题是假命题,只要能够举出一个例子,使它具备命题的条件,而不符合命题的结论就可以了,这样的例子叫做反例. 5.B 【分析】 根据角平分线的性质可得,,,再利用平角定义可得∠BCF=90°,进而可得①正确;首先计算出∠ACB的度数,再利用平行线的性质可得∠2的度数,从而可得∠1的度数;利用三角形内角和计算出∠3的度数,然后计算出∠ACE的度数,可分析出③错误;根据∠3和∠4的度数可得④正确. 【详解】 解:如图, ∵BC平分∠ACD,CF平分∠ACG, ∴ ∵∠ACG+∠ACD=180°, ∴∠ACF+∠ACB=90°, ∴CB⊥CF,故①正确, ∵CD∥AB,∠BAC=50°, ∴∠ACG=50°, ∴∠ACF=∠4=25°, ∴∠ACB=90°-25°=65°, ∴∠BCD=65°, ∵CD∥AB, ∴∠2=∠BCD=65°, ∵∠1=∠2, ∴∠1=65°,故②正确; ∵∠BCD=65°, ∴∠ACB=65°, ∵∠1=∠2=65°, ∴∠3=50°, ∴∠ACE=15°, ∴③∠ACE=2∠4错误; ∵∠4=25°,∠3=50°, ∴∠3=2∠4,故④正确, 故选:B. 【点睛】 此题主要考查了平行线的性质,以及角平分线的性质,关键是理清图中角之间的和差关系. 6.A 【分析】 根据立方根的定义及平方根的定义依次判断即可得到答案. 【详解】 解:A.(﹣2)3的立方根是﹣2,故本选项符合题意; B.0.04的算术平方根是0.2,故本选项不符合题意; C. 的立方根是2,故本选项不符合题意; D.16的平方根是±4,故本选项不符合题意; 故选:A. 【点睛】 此题考查立方根的定义及平方根的定义,熟记定义是解题的关键. 7.B 【分析】 延长,交于点,根据角平分线的定义以及已知条件可得,由三角形的外角性质可求,最后由平行线的性质即可求解. 【详解】 延长,交于点, BE平分∠ABD,, , ,∠DEB=80°, , , , 故选B. 【点睛】 本题考查了角平分线的定义,平行线的性质,三角形的外角性质,掌握以上知识是解题的关键. 8.B 【分析】 分析点P的运动规律找到循环规律即可. 【详解】 解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4, 所以,前505次循环运动点P共向右运 解析:B 【分析】 分析点P的运动规律找到循环规律即可. 【详解】 解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4, 所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上, 故点P坐标为(2020,0). 故选:B. 【点睛】 本题考查了规律型:点的坐标,是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题. 九、填空题 9.-6 【解析】 试题分析:∵,∴,解得=1,b=-7,∴.故应填为:-6. 考点:非负数的性质:算术平方根;非负数的性质:绝对值. 点评:本题要求掌握非负数的性质:几个非负数的和为0时,这几个非负数 解析:-6 【解析】 试题分析:∵,∴,解得=1,b=-7,∴.故应填为:-6. 考点:非负数的性质:算术平方根;非负数的性质:绝对值. 点评:本题要求掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0. 十、填空题 10.(2,4) 【分析】 直接利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案. 【详解】 解:点A(2,-4)关于x轴 解析:(2,4) 【分析】 直接利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案. 【详解】 解:点A(2,-4)关于x轴对称点A1的坐标为:(2,4). 故答案为:(2,4). 【点睛】 此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键. 十一、填空题 11.135; 【分析】 连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180° 解析:135; 【分析】 连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°,故∠CBD+∠CDB+∠ABD+∠BDE =270°,再由∠ABC和∠CDE的平分线交于点F可得出∠CBF+∠CDF的度数,由四边形内角和定理即可得出结论. 【详解】 解:连接BD, ∵∠C+∠CBD+∠CDB=180°,BC⊥CD, ∴∠C=90°, ∴∠CBD+∠CDB=90°. ∵AB∥DE, ∴∠ABD+∠BDE=180°, ∴∠CBD+∠CDB+∠ABD+∠BDE=90°+180°=270°,即∠ABC+∠CDE=270°. ∵∠ABC和∠CDE的平分线交于点F, ∴∠CBF+∠CDF=×270°=135°, ∴∠BFD=360°-90°-135°=135°. 故答案为135. 【点睛】 本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质. 十二、填空题 12.【分析】 过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解; 【详解】 如图,过作,过作, ∴, ∴,,, ∵, ∴, ∴, ∴, ∴, ∴. 故答案为:. 【点睛】 本题考查了平 解析: 【分析】 过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解; 【详解】 如图,过作,过作, ∴, ∴,,, ∵, ∴, ∴, ∴, ∴, ∴. 故答案为:. 【点睛】 本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键; 十三、填空题 13.30° 【分析】 由题意,根据平行线的性质和折叠的性质,可以得到∠BMD的度数,从而可以求得∠AMD的度数,本题得以解决. 【详解】 解:∵四边形ABCD是矩形, ∴DN∥AM, ∵∠DNM=75º 解析:30° 【分析】 由题意,根据平行线的性质和折叠的性质,可以得到∠BMD的度数,从而可以求得∠AMD的度数,本题得以解决. 【详解】 解:∵四边形ABCD是矩形, ∴DN∥AM, ∵∠DNM=75º, ∴∠DNM=∠BMN=75º, ∵将矩形ABCD沿MN折叠,使点B与点D重合, ∴∠BMN=∠NMD=75º, ∴∠BMD=150º, ∴∠AMD=30º, 故答案为:30º. 【点睛】 本题考查了矩形的性质、平行线的性质、折叠的性质,属于基础常考题型,难度适中,熟练掌握这些知识的综合运用是解答的关键. 十四、填空题 14.或 【详解】 【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得. 【详解】M{3,2x+1,4x-1}==2x+1 解析:或 【详解】 【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得. 【详解】M{3,2x+1,4x-1}==2x+1, ∵M{3,2x+1,4x-1}=min{2,-x+3,5x}, ∴有如下三种情况: ①2x+1=2,x=,此时min{2,-x+3,5x}= min{2,,}=2,成立; ②2x+1=-x+3,x=,此时min{2,-x+3,5x}= min{2,,}=2,不成立; ③2x+1=5x,x=,此时min{2,-x+3,5x}= min{2,,}=,成立, ∴x=或, 故答案为或. 【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解. 十五、填空题 15.(0,2)、(﹣4,﹣2). 【分析】 由点A(a-2,a),及AB⊥x轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案. 【详解】 解:∵点A(a﹣2,a),A 解析:(0,2)、(﹣4,﹣2). 【分析】 由点A(a-2,a),及AB⊥x轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案. 【详解】 解:∵点A(a﹣2,a),AB⊥x轴,AB=2, ∴|a|=2, ∴a=±2, ∴当a=2时,a﹣2=0;当a=﹣2时,a﹣2=﹣4. ∴点A的坐标是(0,2)、(﹣4,﹣2). 故答案为:(0,2)、(﹣4,﹣2). 【点睛】 本题考查了平面直角坐标系中的坐标与图形性质,熟练掌握平面直角坐标中的点的坐标特点是解题的关键. 十六、填空题 16.(1617,2) 【分析】 根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,- 解析:(1617,2) 【分析】 根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,…,每5次一轮这一规律,进而求出即可. 【详解】 解:前五次运动横坐标分别为:1,2,2,4,4, 第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4, … ∴第5n+1到5n+5次运动横坐标分别为:4n+1,4n+2,4n+2,4n+4,4n+4, 前五次运动纵坐标分别2,0,-2,-2,0, 第6到10次运动纵坐标分别为2,0,-2,-2,0, … ∴第5n+1到5n+5次运动纵坐标分别为2,0,-2,-2,0, ∵2021÷5=404…1, ∴经过2021次运动横坐标为=4×404+1=1617,经过2021次运动纵坐标为2, ∴经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2). 故答案为:(1617,2). 【点睛】 此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键. 十七、解答题 17.(1);(2) 【分析】 (1)根据实数的运算法则直接计算即可, (2)利用立方根的含义求解再求解即可. 【详解】 (1)原式= (2)解: 【点睛】 本题考查的是实数的运算,求一个数的立方根 解析:(1);(2) 【分析】 (1)根据实数的运算法则直接计算即可, (2)利用立方根的含义求解再求解即可. 【详解】 (1)原式= (2)解: 【点睛】 本题考查的是实数的运算,求一个数的立方根,掌握求解的方法是解题关键. 十八、解答题 18.(1);(2) 【分析】 (1)先移项,再把系数化1,然后根据平方根的性质,即可求解; (2)先移项,再根据立方根的性质,即可求解. 【详解】 (1)解:∵ ∴ ∴ ∴; (2)解:∵ ∴ ∴ ∴. 解析:(1);(2) 【分析】 (1)先移项,再把系数化1,然后根据平方根的性质,即可求解; (2)先移项,再根据立方根的性质,即可求解. 【详解】 (1)解:∵ ∴ ∴ ∴; (2)解:∵ ∴ ∴ ∴. 【点睛】 本题主要考查了平方根和立方根的性质,熟练掌握相关性质是解题的关键. 十九、解答题 19.已知;垂直定义;;2;角平分线定义;等角的余角相等;;两直线平行,内错角相等 【分析】 根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题. 【详解】 证明:∵AB⊥AC(已知), ∴∠ 解析:已知;垂直定义;;2;角平分线定义;等角的余角相等;;两直线平行,内错角相等 【分析】 根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题. 【详解】 证明:∵AB⊥AC(已知), ∴∠BAC=90°(垂直的定义), ∴∠2+∠3=90°, ∵∠1+∠4+∠BAC=180°(平角定义), ∴∠1+∠4=180°-∠BAC=90°, ∵AC平分∠DAF(已知), ∴∠1=∠2(角平分线的定义), ∴∠3=∠4(等角的余角相等), ∵a∥b(已知), ∴∠4=∠5(两直线平行,内错角相等), ∴∠3=∠5(等量代换). 故答案为:已知;垂直定义;90;2;角平分线定义;等角的余角相等;5;两直线平行,内错角相等. 【点睛】 本题考查了垂直的定义、角平分线的定义、平行线的性质和余角的定义,解题的关键是要找准线和对应的角,不能弄混淆. 二十、解答题 20.(1),;(2)见解析;(3)向右5个单位,再向上5个单位 【分析】 (1)观察平面直角坐标系得:公交车站在 轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离 轴2个单位,距离 轴3个单位,即 解析:(1),;(2)见解析;(3)向右5个单位,再向上5个单位 【分析】 (1)观察平面直角坐标系得:公交车站在 轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离 轴2个单位,距离 轴3个单位,即可求解; (2)公园在第二象限内,距离 轴2个单位,距离 轴3个单位; 书店在第一象限内,距离 轴1个单位,距离 轴1个单位;即可解答; (3)将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置,即可. 【详解】 解:(1)观察平面直角坐标系得:公交车站在 轴负半轴距离坐标原点1个单位,故公交车站的坐标是;宠物店在第四象限内,距离 轴2个单位,距离 轴3个单位,故宠物店的坐标是; (2)∵公园,书店 ∴公园在第二象限内,距离 轴2个单位,距离 轴3个单位; 书店在第一象限内,距离 轴1个单位,距离 轴1个单位; 位置如图所示: (3))将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置. 【点睛】 本题主要考查了平面直角坐标系,用坐标来表示点的位置,根据位置写出点的坐标,熟练掌握平面直角坐标系内每个象限内点的坐标的特征是解题的关键. 二十一、解答题 21.(1)3,;(2)1;(3) 【分析】 (1)根据题意即可求解; (2)估算出的小数部分为a,的整数部分为b,即可确定出a+b的值; (3)根据题意确定出x与y的值,求出x-y的相反数即可. 【详解 解析:(1)3,;(2)1;(3) 【分析】 (1)根据题意即可求解; (2)估算出的小数部分为a,的整数部分为b,即可确定出a+b的值; (3)根据题意确定出x与y的值,求出x-y的相反数即可. 【详解】 (1), 的整数部分为3,小数部分为; (2), 的整数部分为2,小数部分为, , , 的整数部分为3, , ; (3), 的整数部分为1,小数部分为, 10+=x+y,其中x是整数,且0<y<1, , 的相反数是:. 【点睛】 本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题. 二十二、解答题 22.(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为 【分析】 (1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可; (2)根据正方形的周 解析:(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为 【分析】 (1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可; (2)根据正方形的周长公式以及圆形的周长公式即可求出答案; (3)根据图形的平移求解. 【详解】 解:(1)∵正方体有6个面且每个面都相等, ∴正方体的一个面的面积=2 dm2. ∴正方形的棱长=dm; 故答案为: dm ; (2)甲方案:设正方形的边长为xm,则x2 =121 ∴x =11 ∴正方形的周长为:4x=44m 乙方案: 设圆的半径rm为,则r2==121 ∴r =11 ∴圆的周长为:2= 22m ∴ 442222(2- ∵ 4> ∴ 2 ∴ ∴正方形的周长比圆的周长大 故从节省篱笆费用的角度考虑,选择乙方案建成圆形; (3)依题意可进行如图所示的平移,设小路的宽度为ym ,则 (11 –y)2=12121 ∴11 –y =10 ∴ y= ∵ 取整数 ∴ y = 答:根据此方案求出小路的宽度为; 【点睛】 本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键; 二十三、解答题 23.(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58° 【分析】 (1)过点P作PE∥AB,根据平行线的判定与性质即可求解; (2)分点P在线段MN或NM的延长线 解析:(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58° 【分析】 (1)过点P作PE∥AB,根据平行线的判定与性质即可求解; (2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解; (3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解. 【详解】 解:(1)如图2,过点P作PE∥AB, ∵AB∥CD, ∴PE∥AB∥CD, ∴∠APE=α,∠CPE=β, ∴∠APC=∠APE+∠CPE=α+β. (2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时, ∵AB∥CD,∠PAB=α, ∴∠1=∠PAB=α, ∵∠1=∠APC+∠PCD,∠PCD=β, ∴α=∠APC+β, ∴∠APC=α-β; 如图,在(1)的条件下,如果点P在线段NM的延长线上运动时, ∵AB∥CD,∠PCD=β, ∴∠2=∠PCD=β, ∵∠2=∠PAB+∠APC,∠PAB=α, ∴β=α+∠APC, ∴∠APC=β-α; (3)如图3,过点P,Q分别作PE∥AB,QF∥AB, ∵AB∥CD, ∴AB∥QF∥PE∥CD, ∴∠BAP=∠APE,∠PCD=∠EPC, ∵∠APC=116°, ∴∠BAP+∠PCD=116°, ∵AQ平分∠BAP,CQ平分∠PCD, ∴∠BAQ=∠BAP,∠DCQ=∠PCD, ∴∠BAQ+∠DCQ=(∠BAP+∠PCD)=58°, ∵AB∥QF∥CD, ∴∠BAQ=∠AQF,∠DCQ=∠CQF, ∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°, ∴∠AQC=58°. 【点睛】 此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键. 二十四、解答题 24.(1)见解析;(2)45;(3)不变,见解析; 【分析】 (1)由可求得m及n,从而可求得∠MOC=∠OCQ,则可得结论; (2)易得∠AON的度数,由两条角平分线,可得∠DON,∠OCF的度数,也 解析:(1)见解析;(2)45;(3)不变,见解析; 【分析】 (1)由可求得m及n,从而可求得∠MOC=∠OCQ,则可得结论; (2)易得∠AON的度数,由两条角平分线,可得∠DON,∠OCF的度数,也易得∠COE的度数,由三角形外角的性质即可求得∠OEF的度数; (3)不变,分三种情况讨论即可. 【详解】 (1)∵,,且 ∴, ∴m=20,n=70 ∴∠MOC=90゜-∠AOM=70゜ ∴∠MOC=∠OCQ=70゜ ∴MN∥PQ (2)∵∠AON=180゜-∠AOM=160゜ 又∵平分,平分 ∴, ∵ ∴ ∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜ 故答案为:45. (3)不变,理由如下: 如图,当0゜<α<20゜时, ∵CF平分∠OCQ ∴∠OCF=∠QCF 设∠OCF=∠QCF=x 则∠OCQ=2x ∵MN∥PQ ∴∠MOC=∠OCQ=2x ∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON ∴∠DON=45゜+x ∵∠MOE=∠DON=45゜+x ∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x ∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜ 当α=20゜时,OD与OB共线,则∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜ 当20゜<α<90゜时,如图 ∵CF平分∠OCQ ∴∠OCF=∠QCF 设∠OCF=∠QCF=x 则∠OCQ=2x ∵MN∥PQ ∴∠NOC=180゜-∠OCQ=180゜-2x ∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON ∴∠AOE=135゜-x ∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜ ∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜ 综上所述,∠EOF的度数不变. 【点睛】 本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便. 二十五、解答题 25.(1)105°;(2)135°;(3)5.5或11.5. 【分析】 (1)在△CEN中,用三角形内角和定理即可求出; (2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角 解析:(1)105°;(2)135°;(3)5.5或11.5. 【分析】 (1)在△CEN中,用三角形内角和定理即可求出; (2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数. (3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果. 【详解】 解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°; (2)∵∠BON=30°,∠N=30°, ∴∠BON=∠N, ∴MN∥CB. ∴∠OCD+∠CEN=180°, ∵∠OCD=45° ∴∠CEN=180°-45°=135°; (3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直. 【点睛】 本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去∠DOM的度数.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 中学 年级 下册 数学 期末 学业 水平 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文