2022年人教版中学七7年级下册数学期末测试及答案.doc
《2022年人教版中学七7年级下册数学期末测试及答案.doc》由会员分享,可在线阅读,更多相关《2022年人教版中学七7年级下册数学期末测试及答案.doc(24页珍藏版)》请在咨信网上搜索。
2022年人教版中学七7年级下册数学期末测试及答案 一、选择题 1.如图,和不是同旁内角的是( ) A. B. C. D. 2.下列各组图形可以通过平移互相得到的是( ) A. B. C. D. 3.在平面直角坐标系中,下列各点在第二象限的是( ) A. B. C. D. 4.下列四个命题:①两条直线相交,若对顶角互补,则这两条直线互相垂直;②两条直线被第三条直线所截,内错角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④经过直线外一点,有且只有一条直线与已知直线平行.其中是真命题的个数是( ) A.1 B.2 C.3 D.4 5.如图所示,,OE平分∠AOD,,,则∠BOF为( ) A. B. C. D. 6.下列结论正确的是( ) A.的平方根是 B.没有立方根 C.立方根等于本身的数是0 D. 7.如图,中,平分,于点,,,则的度数为( ) A.134° B.124° C.114° D.104° 8.如图,动点在平面直角坐标系中按图中箭头所示方向运动,第次从原点运动到点,第次接着运动到点,第次接着运动到点,……按这样的运动规律,经过第次运动后,动点的坐标是( ) A. B. C. D. 九、填空题 9.已知实数x,y满足+(y+1)2=0,则x-y的立方根是_____. 十、填空题 10.点(m,1)和点(2,n)关于x轴对称,则mn等于_______. 十一、填空题 11.如图,在中,作的角平分线与的外角的角平分线交于点;的角平分线与角平分线交于,如此下去,则__________. 十二、填空题 12.如图,己知AB∥CD.OE平分∠AOC,OE⊥OF,∠C=50°,则∠AOF的度数为___. 十三、填空题 13.如图,将四边形纸片ABCD沿MN折叠,点A、D分别落在点A1、D1处.若∠1+∠2=130°,则∠B+∠C=___°. 十四、填空题 14.对于任意有理数a,b,规定一种新的运算a⊙b=a(a+b)﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____ 十五、填空题 15.已知点,轴,,则点C的坐标是______ . 十六、填空题 16.在平面直角坐标系中,一个智能机器人接到的指令是:从原点出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点,第二次移动到点,……,第次移动到点,则点的坐标是______. 十七、解答题 17.计算. (1); (2). 十八、解答题 18.求下列各式中的值 (1) (2) 十九、解答题 19.补全下面的证明过程和理由: 如图,AB和CD相交于点O,EF∥AB,∠C=∠COA,∠D=∠BOD. 求证:∠A=∠F. 证明:∵∠C=∠COA,∠D=∠BOD,( ) 又∵∠COA=∠BOD,( ) ∴∠C= .( ) ∴AC∥DF( ). ∴∠A= ( ). ∵EF∥AB, ∴∠F= ( ). ∴∠A=∠F( ). 二十、解答题 20.将△ABO向右平移4个单位,再向下平移1个单位,得到三角形A′B′O′ (1)请画出平移后的三角形A′B′O′. (2)写出点A′、O′的坐标. 二十一、解答题 21.已知的整数部分为a,小数部分为b. (1)求a,b的值: (2)若c是一个无理数,且乘积bc是一个有理数,你能写出数c的值吗?并说明理由. 二十二、解答题 22.如图,在网格中,每个小正方形的边长均为1,正方形的顶点都在网格的格点上. (1)求正方形的面积和边长; (2)建立适当的平面直角坐标系,写出正方形四个顶点的坐标. 二十三、解答题 23.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点. (1)若∠DAP=40°,∠FBP=70°,则∠APB= (2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由; (3)利用(2)的结论解答: ①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由; ②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示) 二十四、解答题 24.已知:和同一平面内的点. (1)如图1,点在边上,过作交于,交于.根据题意,在图1中补全图形,请写出与的数量关系,并说明理由; (2)如图2,点在的延长线上,,.请判断与的位置关系,并说明理由. (3)如图3,点是外部的一个动点.过作交直线于,交直线于,直接写出与的数量关系,并在图3中补全图形. 二十五、解答题 25.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F. (1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角: ;所有与∠C相等的角: . (2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) . ① 求∠B的度数; ②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由. 【参考答案】 一、选择题 1.B 解析:B 【分析】 两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.根据同旁内角的概念可得答案. 【详解】 解:选项A、C、D中,∠1与∠2在两直线的之间,并且在第三条直线(截线)的同旁,是同旁内角; 选项B中,∠1与∠2的两条边都不在同一条直线上,不是同旁内角. 故选:B. 【点睛】 此题主要考查了同旁内角,关键是掌握同旁内角的边构成“U”形. 2.C 【分析】 根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案. 【详解】 解:观察图形可知图案C通过平移后可以得到. 故选:C. 【点睛】 本题考查的是 解析:C 【分析】 根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案. 【详解】 解:观察图形可知图案C通过平移后可以得到. 故选:C. 【点睛】 本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键. 3.C 【分析】 根据点在第二象限的符号特点横坐标是负数,纵坐标是正数作答. 【详解】 解:A、(-,0)在x轴上,故本选项不符合题意; B、(2,-1)在第四象限,故本选项不符合题意; D、(-2,1)在第二象限,故本选项符合题意; D、(-2,-1)在第三象限,故本选项不符合题意. 故选:C. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.C 【分析】 根据对顶角的性质和垂直的定义判断①;根据内错角相等的判定方法判定②;根据平行线的判定对③进行判断;根据经过直线外一点,有且只有一条直线与已知直线平行判断④即可 【详解】 解:两条直线相交,若对顶角互补,则这两条直线互相垂直,所以①正确; 两条互相平行的直线被第三条直线所截,内错角相等;,所以②错误; 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以③正确; 经过直线外一点,有且只有一条直线与已知直线平行,所以④正确. 故选:C. 【点睛】 本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,熟练掌握相关性质是解题的关键. 5.B 【分析】 由平行线的性质和角平分线的定义,求出,,然后即可求出∠BOF的度数. 【详解】 解:∵, ∴,, ∵OE平分∠AOD, ∴, ∴; ∴; 故选:B. 【点睛】 本题考查了平行线的性质,角平分线的定义,以及角的和差关系,解题的关键是熟练掌握所学的知识,正确的求出角的度数. 6.D 【分析】 根据平方根与立方根的性质逐项判断即可得. 【详解】 A、,8的平方根是,此项错误; B、,此项错误; C、立方根等于本身的数有,此项错误; D、, ,此项正确; 故选:D. 【点睛】 本题考查了平方根与立方根的性质,掌握理解平方根与立方根的性质是解题关键. 7.B 【分析】 已知AE平分∠BAC,ED∥AC,根据两直线平行,同旁内角互补可知∠DEA的度数,再由周角为360°,求得∠BED的度数即可. 【详解】 解:∵AE平分∠BAC, ∴∠BAE=∠CAE=34°, ∵ED∥AC, ∴∠CAE+∠AED=180°, ∴∠DEA=180°-34°=146°, ∵BE⊥AE, ∴∠AEB=90°, ∵∠AEB+∠BED+∠AED=360°, ∴∠BED=360°-146°-90°=124°, 故选:B. 【点睛】 本题考查了平行线的性质和周角的定义,熟记两直线平行,同旁内角互补是解题的关键. 8.B 【分析】 分析点P的运动规律找到循环规律即可. 【详解】 解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4, 所以,前505次循环运动点P共向右运 解析:B 【分析】 分析点P的运动规律找到循环规律即可. 【详解】 解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4, 所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上, 故点P坐标为(2020,0). 故选:B. 【点睛】 本题考查了规律型:点的坐标,是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题. 九、填空题 9.【分析】 先根据非负数的性质列出方程求出x、y的值求x-y的立方根. 【详解】 解:由题意得,x-2=0,y+1=0, 解得x=2,y=-1, x-y=3, 3的立方根是. 【点睛】 本题考查的是 解析: 【分析】 先根据非负数的性质列出方程求出x、y的值求x-y的立方根. 【详解】 解:由题意得,x-2=0,y+1=0, 解得x=2,y=-1, x-y=3, 3的立方根是. 【点睛】 本题考查的是非负数的性质和立方根的概念,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键. 十、填空题 10.-2 【分析】 直接利用关于x轴对称点的性质得出m,n的值进而得出答案. 【详解】 ∵点A(m,1)和点B(2,n)关于x轴对称, ∴m=2,n=-1, 故mn=−2. 故填:-2. 【点睛】 此题 解析:-2 【分析】 直接利用关于x轴对称点的性质得出m,n的值进而得出答案. 【详解】 ∵点A(m,1)和点B(2,n)关于x轴对称, ∴m=2,n=-1, 故mn=−2. 故填:-2. 【点睛】 此题主要考查了关于x轴对称点的性质,正确掌握关于x轴对称点的性质是解题关键. 十一、填空题 11.【分析】 根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可. 【详解】 解:设BC延长与点D, ∵, 的角平分线与的外角的角平分线交于点, ∴ , 同 解析: 【分析】 根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可. 【详解】 解:设BC延长与点D, ∵, 的角平分线与的外角的角平分线交于点, ∴ , 同理可得, , ∴, ∵, ∴, 故答案为:. 【点睛】 本题主要考查三角形外角的性质,角平分线的定义,三角形内角和等知识点,熟知以上知识点,找出角度之间的规律是解题的关键. 十二、填空题 12.115° 【分析】 要求∠AOF的度数,结合已知条件只需要求出∠AOE的度数,根据角平分线的定义可以得到∠AOE=∠AOC,再利用平行线的性质得到∠C=∠AOC即可求解. 【详解】 解:∵AB∥CD 解析:115° 【分析】 要求∠AOF的度数,结合已知条件只需要求出∠AOE的度数,根据角平分线的定义可以得到∠AOE=∠AOC,再利用平行线的性质得到∠C=∠AOC即可求解. 【详解】 解:∵AB∥CD,∠C=50°, ∴∠C=∠AOC=50°, ∵OE平分∠AOC, ∴25°, ∵OE⊥OF, ∴∠EOF=90°, ∴∠AOF=∠AOE+∠EOF=115°, 故答案为:115°. 【点睛】 本题主要考查了平行线的性质,角平分线的性质,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解. 十三、填空题 13.115 【分析】 先根据∠1+∠2=130°得出∠AMN+∠DNM的度数,再由四边形内角和定理即可得出结论. 【详解】 解:∵∠1+∠2=130°, ∴∠AMN+∠DNM= =115°. ∵∠A+∠ 解析:115 【分析】 先根据∠1+∠2=130°得出∠AMN+∠DNM的度数,再由四边形内角和定理即可得出结论. 【详解】 解:∵∠1+∠2=130°, ∴∠AMN+∠DNM= =115°. ∵∠A+∠D+(∠AMN+∠DNM)=360°,∠A+∠D+(∠B+∠C)=360°, ∴∠B+∠C=∠AMN+∠DNM=115°. 故答案为:115. 【点睛】 本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键. 十四、填空题 14.-9 【分析】 直接利用已知运算法则计算得出答案. 【详解】 (﹣2)⊙6 =﹣2×(﹣2+6)﹣1 =﹣2×4﹣1 =﹣8﹣1 =﹣9. 故答案为﹣9. 【点睛】 此题考察新定义形式的有理数计算, 解析:-9 【分析】 直接利用已知运算法则计算得出答案. 【详解】 (﹣2)⊙6 =﹣2×(﹣2+6)﹣1 =﹣2×4﹣1 =﹣8﹣1 =﹣9. 故答案为﹣9. 【点睛】 此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可. 十五、填空题 15.(6,2)或(4,2) 【分析】 根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解. 【详解】 ∵点A(1,2),AC∥x轴, 解析:(6,2)或(4,2) 【分析】 根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解. 【详解】 ∵点A(1,2),AC∥x轴, ∴点C的纵坐标为2, ∵AC=5, ∴点C在点A的左边时横坐标为1-5=-4, 此时,点C的坐标为(-4,2), 点C在点A的右边时横坐标为1+5=6, 此时,点C的坐标为(6,2) 综上所述,则点C的坐标是(6,2)或(-4,2). 故答案为(6,2)或(-4,2). 【点睛】 本题考查了点的坐标,熟记平行于x轴直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论. 十六、填空题 16.(1010,-1) 【分析】 根据图象可得移动8次图象完成一个循环,从而可得出点的坐标. 【详解】 解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,- 解析:(1010,-1) 【分析】 根据图象可得移动8次图象完成一个循环,从而可得出点的坐标. 【详解】 解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-1),A7(3,0),A8(4,0),A9(4,1),…, 可以的到,图像时经过8次移动经历一个循环,其中纵坐标每个循环对应点不发生变化, 横坐标每一次循环增加4 ∵2021÷8=252…5, ∴的坐标为(252×4+2,-1), ∴点的坐标是是(1010,-1). 故答案为:(1010,-1). 【点睛】 本题考查了点的坐标的变化变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般. 十七、解答题 17.(1)3;(2) 【分析】 (1)根据有理数加减混合运算法则求解即可; (2)根据平方根与立方根的定义先化简,然后合并求解即可. 【详解】 解:(1)原式 (2)原式 【点睛】 本题考查有理数 解析:(1)3;(2) 【分析】 (1)根据有理数加减混合运算法则求解即可; (2)根据平方根与立方根的定义先化简,然后合并求解即可. 【详解】 解:(1)原式 (2)原式 【点睛】 本题考查有理数的加减混合运算,以及实数的混合运算等,掌握基本的运算法则,注意运算顺序是解题关键. 十八、解答题 18.(1);(2). 【分析】 (1)根据平方根的性质,直接开方,即可解答; (2)根据立方根,直接开立方,即可解答. 【详解】 解:(1) , . (2) . 【点睛】 本题考查平方根、立方根, 解析:(1);(2). 【分析】 (1)根据平方根的性质,直接开方,即可解答; (2)根据立方根,直接开立方,即可解答. 【详解】 解:(1) , . (2) . 【点睛】 本题考查平方根、立方根,解决本题的关键是熟记平方根、立方根的相关性质. 十九、解答题 19.见解析 【分析】 根据对顶角相等结合已知得出∠C=∠D,从而得出AC∥DF,由平行线的性质得出∠A=∠ABD,∠F=∠ABD,即可得出结论. 【详解】 解:∵∠C=∠COA,∠D=∠BOD(已知), 解析:见解析 【分析】 根据对顶角相等结合已知得出∠C=∠D,从而得出AC∥DF,由平行线的性质得出∠A=∠ABD,∠F=∠ABD,即可得出结论. 【详解】 解:∵∠C=∠COA,∠D=∠BOD(已知), 又∵∠COA=∠BOD(对顶角相等), ∴∠C=∠D(等量代换). ∴AC∥DF(内错角相等,两直线平行). ∴∠A=∠ABD(两直线平行,内错角相等). ∵EF∥AB, ∴∠F=∠ABD(两直线平行,内错角相等). ∴∠A=∠F(等量代换). 故答案为:已知,对顶角相等;∠D,等量代换;内错角相等,两直线平行;∠ABD,两直线平行,内错角相等;∠ABD,两直线平行,同位角相等,等量代换. 【点睛】 本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键. 二十、解答题 20.(1)见解析;(2)A′,O′ 【分析】 (1)分别作出A,B,O的对应点A′,B′,O′即可. (2)根据点的位置写出坐标即可. 【详解】 解:(1)如图,△A′B′O′即为所求作. (2)A′( 解析:(1)见解析;(2)A′,O′ 【分析】 (1)分别作出A,B,O的对应点A′,B′,O′即可. (2)根据点的位置写出坐标即可. 【详解】 解:(1)如图,△A′B′O′即为所求作. (2)A′(2,1),O′(4,−1). 【点睛】 本题考查作图−平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型. 二十一、解答题 21.(1);(2)或 【分析】 (1)先判断在哪两个整数之间,再得出整数部分和小数部分. (2)由的值,由平方差公式,得出的有理化因式即为. 【详解】 解:(1), , ; (2), 或. 【点睛】 本 解析:(1);(2)或 【分析】 (1)先判断在哪两个整数之间,再得出整数部分和小数部分. (2)由的值,由平方差公式,得出的有理化因式即为. 【详解】 解:(1), , ; (2), 或. 【点睛】 本题考查了估计无理数的大小和有理数乘以无理数,是基础知识要熟练掌握. 二十二、解答题 22.(1)面积为29,边长为;(2),,,,图见解析. 【分析】 (1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可; (2)建立适当的坐标系后写出四个顶点的坐标 解析:(1)面积为29,边长为;(2),,,,图见解析. 【分析】 (1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可; (2)建立适当的坐标系后写出四个顶点的坐标即可. 【详解】 解:(1)正方形的面积, 正方形边长为; (2)建立如图平面直角坐标系, 则,,,. 【点睛】 本题考查了算术平方根及坐标与图形的性质及割补法求面积,从图形中整理出直角三角形是进一步解题的关键. 二十三、解答题 23.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=. 【分析】 (1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM= 解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=. 【分析】 (1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证; (2)结论:∠APB=∠DAP+∠FBP. (3)①根据(2)的规律和角平分线定义解答; ②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解. 【详解】 (1)证明:过P作PM∥CD, ∴∠APM=∠DAP.(两直线平行,内错角相等), ∵CD∥EF(已知), ∴PM∥CD(平行于同一条直线的两条直线互相平行), ∴∠MPB=∠FBP.(两直线平行,内错角相等), ∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质) 即∠APB=∠DAP+∠FBP=40°+70°=110°. (2)结论:∠APB=∠DAP+∠FBP. 理由:见(1)中证明. (3)①结论:∠P=2∠P1; 理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1, ∵∠DAP=2∠DAP1,∠FBP=2∠FBP1, ∴∠P=2∠P1. ②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2, ∵AP2、BP2分别平分∠CAP、∠EBP, ∴∠CAP2=∠CAP,∠EBP2=∠EBP, ∴∠AP2B=∠CAP+∠EBP, = (180°-∠DAP)+ (180°-∠FBP), =180°- (∠DAP+∠FBP), =180°- ∠APB, =180°- β. 【点睛】 本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线. 二十四、解答题 24.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或. 【分析】 (1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得; (2)如图(见解析),先根据平行线的性质可 解析:(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或. 【分析】 (1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得; (2)如图(见解析),先根据平行线的性质可得,再根据等量代换可得,然后根据平行线的判定即可得; (3)先根据点D的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得. 【详解】 (1)由题意,补全图形如下: ,理由如下: , , , , ; (2),理由如下: 如图,延长BA交DF于点O, , , , , ; (3)由题意,有以下两种情况: ①如图3-1,,理由如下: , , , , , 由对顶角相等得:, ; ②如图3-2,,理由如下: , , , , . 【点睛】 本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键. 二十五、解答题 25.(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30 【分析】 (1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角; (2)①由三角形内角和定理可得, 解析:(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30 【分析】 (1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角; (2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数. ②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可. 【详解】 (1)由翻折的性质可得:∠E=∠B, ∵∠BAC=90°,AE⊥BC, ∴∠DFE=90°, ∴180°-∠BAC=180°-∠DFE=90°, 即:∠B+∠C=∠E+∠FDE=90°, ∴∠C=∠FDE, ∴AC∥DE, ∴∠CAF=∠E, ∴∠CAF=∠E=∠B 故与∠B相等的角有∠CAF和∠E; ∵∠BAC=90°,AE⊥BC, ∴∠BAF+∠CAF=90°, ∠CFA=180°-(∠CAF+∠C)=90° ∴∠BAF+∠CAF=∠CAF+∠C=90° ∴∠BAF=∠C 又AC∥DE, ∴∠C=∠CDE, ∴故与∠C相等的角有∠CDE、∠BAF; (2)①∵ ∴ 又∵, ∴∠C=70°,∠B=20°; ②∵∠BAD=x°, ∠B=20°则,, 由翻折可知:∵, , ∴, , 当∠FDE=∠DFE时,, 解得:; 当∠FDE=∠E时,,解得:(因为0<x≤45,故舍去); 当∠DFE=∠E时,,解得:(因为0<x≤45,故舍去); 综上所述,存在这样的x的值,使得△DEF中有两个角相等.且. 【点睛】 本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版 中学 年级 下册 数学 期末 测试 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文