八年级上学期压轴题强化数学质量检测试卷解析(一)[002].doc
《八年级上学期压轴题强化数学质量检测试卷解析(一)[002].doc》由会员分享,可在线阅读,更多相关《八年级上学期压轴题强化数学质量检测试卷解析(一)[002].doc(21页珍藏版)》请在咨信网上搜索。
八年级上学期压轴题强化数学质量检测试卷解析(一) 1.如图1,在平面直角坐标系中,点A、B分别在x、y轴上,以AB为边作等腰直角三角形ABC,使,点C在第一象限. (1)若点A(a,0),B(0,b),且a、b满足,则______,_____,点C的坐标为_________; (2)如图2,过点C作轴于点D,BE平分,交x轴于点E,交CD于点F,交AC于点G,求证:CG垂直平分EF; (3)试探究(2)中OD,OE与DF之间的关系,并说明理由. 2.在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足. (1)求点A和点B的坐标; (2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;: (3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标. 3.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明. (1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程; (2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明). 4.如图1,在平面直角坐标系中, ,动点从原点出发沿轴正方向以的速度运动,动点也同时从原点出发在轴上以的速度运动,且满足关系式,连接,设运动的时间为秒. (1)求的值; (2)当为何值时, (3)如图2,在第一象限存在点,使,求. 5.(1)如图1,已知:在ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E. 证明:DE=BD+CE.(提示:由于DE=AD+AE,证明AD=CE,AE=BD即可) (2)如图2,将(1)中的条件改为:在ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意钝角,请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由. (3)如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且ABF和ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试证明DEF是等边三角形. 6.已知在四边形ABCD中,∠ABC+∠ADC=180°,AB=BC. (1)如图1,若∠BAD=90°,AD=2,求CD的长度; (2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:∠PBQ=90°−∠ADC; (3)如图3,若点Q运动到DC的延长线上,点P也运动到DA的延长线上时,仍然满足PQ=AP+CQ,则(2)中的结论是否成立?若成立,请给出证明过程,若不成立,请写出∠PBQ与∠ADC的数量关系,并给出证明过程. 7.在平面直角坐标系中,点A在x轴的负半轴上,点B在y轴的正半轴上,点A与点C关于y轴对称. (1)如图1,OA=OB,AF平分∠BAC交BC于F,BE⊥AF交AC于E,请直接写出EF与EC的数量关系为 ; (2)如图2,AF平分∠BAC交BC于F,若AF=2OB,求∠ABC的度数; (3)如图3,OA=OB,点G在BO的垂直平分线上,作∠GOH=45°交BA的延长线于H,连接GH,试探究OG与GH的数量和位置关系. 8.问题引入: (1)如图1,在中,点O是和平分线的交点,若,则______(用表示):如图2,,,,则______(用表示); 拓展研究: (2)如图3,,,,猜想度数(用表示),并说明理由; (3)BO、CO分别是的外角、的n等分线,它们交于点O,,,,请猜想______(直接写出答案). 【参考答案】 2.(1),;C(8,4); (2)证明见解析; (3),理由见解析. 【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D, 证明,进一步可求出点C坐标; (2)利用已知证明,,再证 解析:(1),;C(8,4); (2)证明见解析; (3),理由见解析. 【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D, 证明,进一步可求出点C坐标; (2)利用已知证明,,再证明,得到,,利用平行性质得到,进一步得,再利用HL定理证明,可得,即可证明CG垂直平分EF; (3)证明得到,,又由(2)可知,进一步可得. (1) 解:∵,即:, ∴,, 作轴交于点D, ∵,, ∴, 在和中, ∴, ∴,, ∴,即. (2) 证明:∵,BE平分, ∴,, 在和中, ∴, ∴,, ∵, ∴, ∴, ∴, ∴, 在和中, ∴, ∴,即CG垂直平分EF. (3) 解:,理由如下: ∵, , ∴, 在和中, ∴, ∴,, ∵, ∴, 又由(2)可知, ∴,即. 【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质,绝对值非负性,垂直平分线的判定,平行线的性质,坐标与图形.本题综合性较强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键. 3.(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2) 【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案; (2) 解析:(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2) 【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案; (2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案; (3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解. 【详解】(1)∵, ∴. ∵, ∴, ∴, ∴, ∴,. (2)如图,过点F作FH⊥AO于点H ∵AF⊥AE ∴∠FHA=∠AOE=90°, ∵ ∴∠AFH=∠EAO 又∵AF=AE, 在和中 ∴ ∴AH=EO=2,FH=AO=4 ∴OH=AO-AH=2 ∴F(-2,4) ∵OA=BO, ∴FH=BO 在和中 ∴ ∴HD=OD ∵ ∴HD=OD=1 ∴D(-1,0) ∴D(-1,0),F(-2,4); (3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S ∴ ∴, ∴ ∴ ∴ ∴等腰 ∴NQ=NO, ∵NG⊥PN, NS⊥EG ∴ ∴, ∴ ∵, ∴ ∵点E为线段OB的中点 ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴等腰 ∴NG=NP, ∵ ∴ ∴∠QNG=∠ONP 在和中 ∴ ∴∠NGQ=∠NPO,GQ=PO ∵, ∴PO=PB ∴∠POE=∠PBE=45° ∴∠NPO=90° ∴∠NGQ=90° ∴∠QGR=45°. 在和中 ∴. ∴QR=OE 在和中 ∴ ∴QM=OM. ∵NQ=NO, ∴NM⊥OQ ∵ ∴等腰 ∴ ∵ ∴ 在和中 ∴ ∴NS=EM=4,MS=OE=2 ∴N(-6,2). 【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解. 4.(1)过程见解析;(2)MN= NC﹣BM. 【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠B 解析:(1)过程见解析;(2)MN= NC﹣BM. 【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN =60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到MN=BM+NC. (2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论. 【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DE. ∵△BDC为等腰三角形,△ABC为等边三角形, ∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°, 又BD=DC,且∠BDC=120°, ∴∠DBC=∠DCB=30° ∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°, ∴∠MBD=∠ECD=90°, 在△MBD与△ECD中, ∵ , ∴△MBD≌△ECD(SAS), ∴MD=DE,∠BDM=∠CDE ∵∠MDN =60°,∠BDC=120°, ∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°, 即:∠MDN =∠NDE=60°, 在△DMN与△DEN中, ∵ , ∴△DMN≌△DEN(SAS), ∴MN=NE=CE+NC=BM+NC. (2)如图②中,结论:MN=NC﹣BM. 理由:在CA上截取CE=BM. ∵△ABC是正三角形, ∴∠ACB=∠ABC=60°, 又∵BD=CD,∠BDC=120°, ∴∠BCD=∠CBD=30°, ∴∠MBD=∠DCE=90°, 在△BMD和△CED中 ∵ , ∴△BMD≌△CED(SAS), ∴DM= DE,∠BDM=∠CDE ∵∠MDN =60°,∠BDC=120°, ∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°, 即:∠MDN =∠NDE=60°, 在△MDN和△EDN中 ∵ , ∴△MDN≌△EDN(SAS), ∴MN =NE=NC﹣CE=NC﹣BM. 【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 5.(1);(2);(3) 【分析】(1)把满足的关系式转化为非负数和的形式即可解答; (2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可; 【详解】解:(1) ( 解析:(1);(2);(3) 【分析】(1)把满足的关系式转化为非负数和的形式即可解答; (2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可; 【详解】解:(1) (2)当动点沿轴正方向运动时,如解图-2-1: 当动点沿轴负方向运动时,如解图-2-2: (3)过作,连 在与 ∴, 在与中 ∴,, ∴,, ∴是等边三角形, ∴, 又∵ ∴ ∵ ∴ 【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,添加恰当辅助线构造三角形是本题的关键. 6.(1)见解析;(2)成立,见解析;(3)见解析 【分析】(1)运用AAS证明△ADB≌△CEA即可; (2)运用AAS证明△ADB≌△CEA即可; (3)运用SAS证明△DBF≌△EAF,后运 解析:(1)见解析;(2)成立,见解析;(3)见解析 【分析】(1)运用AAS证明△ADB≌△CEA即可; (2)运用AAS证明△ADB≌△CEA即可; (3)运用SAS证明△DBF≌△EAF,后运用有一个角是60°的等腰三角形是等边三角形证明即可. 【详解】(1)如图1,∵BD⊥直线m,CE⊥直线m, ∴∠BDA=∠CEA=90°, ∵∠BAC=90°, ∴∠BAD+∠CAE=90° ∵∠BAD+∠ABD=90°, ∴∠CAE=∠ABD, 在△ADB和△CEA中,, ∴△ADB≌△CEA(AAS), ∴AE=BD,AD=CE, ∴DE=AE+AD=BD+CE; (2)如图2, ∵∠BDA=∠BAC=α, ∴∠DBA+∠BAD=∠BAD+∠CAE=, ∴∠DBA=∠CAE, 在△ADB和△CEA中,, ∴△ADB≌△CEA(AAS), ∴AE=BD,AD=CE, ∴DE=AE+AD=BD+CE; (3)如图3, 由(2)可知,△ADB≌△CEA, ∴BD=AE,∠DBA=∠CAE, ∵△ABF和△ACF均为等边三角形, ∴∠ABF=∠CAF=60°,BF=AF, ∴∠DBA+∠ABF=∠CAE+∠CAF, ∴∠DBF=∠FAE, ∵在△DBF和△EAF中, , ∴△DBF≌△EAF(SAS), ∴DF=EF,∠BFD=∠AFE, ∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°, ∴△DEF为等边三角形. 【点睛】本题考查了三角形全等的判定和性质,等边三角形的判定,熟练掌握三角形全等的判定是解题的关键. 7.(1)CD=2;(2)证明见解析;(3)(2)中结论不成立,应该是:,理由见解析. 【分析】(1)如图1,利用HL证得两个直角三角形全等:Rt△BAD≌Rt△BCD,则其对应边相等:AD=DC=2 解析:(1)CD=2;(2)证明见解析;(3)(2)中结论不成立,应该是:,理由见解析. 【分析】(1)如图1,利用HL证得两个直角三角形全等:Rt△BAD≌Rt△BCD,则其对应边相等:AD=DC=2; (2)如图2,延长DC,在上面找一点K,使得CK=AP,连接BK,通过证△BPA≌△BCK(SAS)得到:∠1=∠2,BP=BK.然后由全等三角形△PBQ≌△BKQ的对应角相等求得∠PBQ=∠ABC,结合已知条件“∠ABC+∠ADC=180°”可以推知∠PBQ=90°-∠ADC; (3)(2)中结论不成立,应该是:∠PBQ=90°+∠ADC. 如图3,在CD延长线上找一点K,使得KC=AP,连接BK,构建全等三角形:△BPA≌△BCK(SAS),由该全等三角形的性质和全等三角形的判定定理SSS证得:△PBQ≌△BKQ,则其对应角相等:∠PBQ=∠KBQ,结合四边形的内角和是360度可以推得:∠PBQ=90°+∠ADC. 【详解】(1)∵, ∴ 在Rt△BAD和Rt△BCD中, ∴Rt△BAD≌Rt△BCD(HL) ∴AD=DC=2 ∴DC=2 (2)如图,延长DC,在上面找一点K,使得CK=AP,连接BK ∵ ∴ ∵ ∴ 在△BPA和△BCK中 ∴△BPA≌△BCK(SAS) ∴,BP=BK ∵PQ=AP+CQ ∴PQ=QK 在△PBQ和△BKQ中 ∴△PBQ≌△BKQ(SSS) ∴ ∴ ∴ ∵ ∴ ∴ ∴ (3)(2)中结论不成立,应该是: 在CD延长线上找一点K,使得KC=AP,连接BK ∵ ∴ ∵ ∴ 在△BPA和△BCK中 ∴△BPA≌△BCK(SAS) ∴,BP=BK ∴ ∵PQ=AP+CQ ∴PQ=QK 在△PBQ和△BKQ中 ∴△PBQ≌△BKQ(SSS) ∴ ∴ ∴ ∴ 【点睛】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形. 8.(1)EF=EC (2)72° (3)GH=GO,GH⊥GO 【分析】(1)如图1中,设AF交BE于点J.首先证明AB=AE,再证明∠AEF=∠ABF=90°,可得结论; (2)如图2中,取 解析:(1)EF=EC (2)72° (3)GH=GO,GH⊥GO 【分析】(1)如图1中,设AF交BE于点J.首先证明AB=AE,再证明∠AEF=∠ABF=90°,可得结论; (2)如图2中,取CF的中点T,连接OT.由OA=OC,BO⊥AC,推出BA=BC,推出∠BAC=∠BCA,∠ABO=∠CBO,设∠BAC=∠BCA=2α,利用三角形内角和定理,构建方程求解即可; (3)结论:OG=GH,OG⊥GH.如图3中,连接GB,在BA上取一点H′,使得GB=GH′,连接OH′,设AB交DG于点W,交OG于点K,连接OW.证明∠GOH′=GOH=45°,推出点H与点H′重合,可得结论. (1)解:(1)结论:EF=EC.理由:如图1中,设AF交BE于点J.∵AF平分∠BAC,∴∠BAF=∠CAF,∵BE⊥AF,∴∠BAF+∠ABE=90°,∠CAF+∠AEB=90°,∴∠ABE=∠AEB,∴AB=AE,∵A,C关于y轴对称,∴OA=OC,∵OA=OB,∴OA=OB=OC,∴∠OAB=∠OBA=45°,∠OCB=∠OBC=45°,∴∠ABC=90°,在△ABF和△AEF中,,∴△ABF≌△AEF(SAS),∴∠AEF=∠ABF=90°,∴∠CEF=90°,∴∠ECF=∠EFC=45°,∴EF=EC; (2)解:如图2中,取CF的中点T,连接OT.∵AO=OC,FT=TC,∴OT∥AF,OT=AF,∵AF=2OB,∴OB=OT,∴∠OBT=∠OTB,∵OA=OC,BO⊥AC,∴BA=BC,∴∠BAC=∠BCA,∠ABO=∠CBO,设∠BAC=∠BCA=2α,∵AF平分∠BAC,∴∠BAF=∠CAF=α,∵OT∥AF,∴∠TOC=∠CAF=α,∴∠OBT=∠OTB=∠TOC+∠TCO=3α,∵∠OBC+∠OCB=90°,∴5α=90°,∴α=18°,∴∠OBC=36°,∴∠ABC=2∠OBC=72°; (3)解:结论:OG=GH,OG⊥GH.理由:如图3中,连接GB,在BA上取一点H′,使得GB=GH′,连接OH′,设AB交DG于点W,交OG于点K,连接OW.设∠OGB=m,∠OGH′=n,∵GD垂直平分线段OB,∴GB=GO,∠DGB=∠DGO=m,∵GB=GO=GH′,∴∠GH′O=(180°-n)=90°-n,∠GH′B=(180°-m-n)=90°-m-n,∴∠KH′O=∠GH′O-∠GH′B=90°-n-(90°-m-n)=m,∴∠KH′O=∠KGW,∵∠GKW=∠H′KO,∴∠H′OK=∠GWK,∵DG∥OA,∴∠GWK=∠OAB=45°,∴∠COH′=45°,∵∠COH=45°,∴∠COH=∠COH′,∴点H与点H′重合,∴OG=GH,∴∠GHO=∠GOH=45°,∴∠OGH=90°,∴GH=GO,GH⊥GO. 【点睛】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质等知识,第三个问题比较难,采用了同一法解决问题. 9.(1), (2),理由见解析 (3) 【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案; (2)根据三角形内角和定理得,而,代入化简即可; (3)由(2)同理可得答案. 解析:(1), (2),理由见解析 (3) 【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案; (2)根据三角形内角和定理得,而,代入化简即可; (3)由(2)同理可得答案. (1) 解:点是和平分线的交点, , , 在中, , , , , 故答案为:; 在中,, , , , , 故答案为:; (2) 解:,理由如下: ,,, , , , , ; (3) 解:在中,, , , , , 故答案为:. 【点睛】本题主要考查了三角形内角和定理,角平分线的定义,解题的关键是采取类比的方法,同时渗透了整体思想.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 002 年级 上学 压轴 强化 数学 质量 检测 试卷 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文