人教版初二上册期末数学综合检测试题[001].doc
《人教版初二上册期末数学综合检测试题[001].doc》由会员分享,可在线阅读,更多相关《人教版初二上册期末数学综合检测试题[001].doc(18页珍藏版)》请在咨信网上搜索。
人教版初二上册期末数学综合检测试题 一、选择题 1、下列四个图形中,轴对称图形有( )个. A.1 B.2 C.3 D.4 2、已知一粒米的质量是0.0000021千克,这个数字用科学记数法表示为( ) A.千克 B.千克 C.千克 D.千克 3、已知2m+3n=5,则4m•8n=( ) A.10 B.16 C.32 D.64 4、若式子有意义,则的取值范围是( ) A. B. C.且 D.且 5、下列由左边到右边的变形是因式分解的是( ) A. B. C. D. 6、下列等式成立的是( ) A. B. C. D. 7、如图所示,,,要使,需添加条件是( ) A. B. C. D. 8、若关于x的分式方程的解为整数,且一次函数的图象不经过第四象限,则符合题意的整数a的个数为( ) A.1 B.2 C.3 D.4 9、如图,将△ABC绕点C顺时针旋转35°得到△DEC,边ED,AC相交于点F,若∠A=30°,则∠AFD的度数为( ) A.65° B.15° C.115° D.75° 二、填空题 10、如图,在△ABC中,AD是BC边上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF, 则下列结论:①BG=CF;②BG⊥CF;③∠EAF=∠ABC;④EF=EG,其中正确的有( ) A.①②③ B.①②④ C.①③④ D.①②③④ 11、若分式的值为0,则x的值是______. 12、若点与点关于y轴对称,则a为____________. 13、已知,,______. 14、求值:______. 15、如图,中,,,点在线段上运动(点不与点,重合),连接,作,交线段于点.当是等腰三角形时,的度数为______. 16、如图,点P在∠AOB内部,PM⊥OA于点M,PN⊥OB于点N,PM=PN,若∠MPN=140°,则∠AOC=_____°. 17、已知a+b=5,ab=6,则a﹣b的值为 _____. 18、如图.已知中,厘米,,厘米,D为的中点.如果点P在线段上以2厘米/秒的速度由点B向点C运动,同时,点Q在线段上由点C向点A运动.若点Q的运动速度为a厘米/秒,则当与全等时,a的值为______. 三、解答题 19、分解因式 (1); (2). 20、解分式方程: 21、如图,、.求证:. 22、如图1,在中,P是与的平分线BP和CP的交点,通过分析发现,理由如下: ∵BP和CP分别是和的角平分线, ∴,. ∴. 又∵在中,, ∴. ∴. (1)①如图2中,H是外角与外角的平分线BH和CH的交点,若,则________. ②若,则________(用含n的式子表示).请说明理由. (2)如图3中,在中,P是与的平分线BP和CP的交点,过点P作,交AC于点D.外角的平分线CE与BP的延长线交于点E,则根据探究1的结论,下列角中与相等的角是________;(填选项) A. B. C. 23、请仿照例子解题: 恒成立,求M、N的值. 解:∵,∴ 则,即 故,解得: 请你按照.上面的方法解题:若恒成立,求M、N的值. 24、我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等. ①分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法叫作分组分解法.例如:. ②拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法叫作拆项法.例如: ③十字相乘法:十字相乘法能用于二次三项式的分解因式.分解步骤:1.分解二次项,所得结果分别写在十字十字交叉线的左上角和左下角;1、分解常数项,所得结果分别写在十字交叉线的右上角和右下角;2、交叉相乘,求代数和,使其等于一次项;3、观察得出原二次三项式的两个因式,并表示出分解结果.这种分解方法叫作十字相乘法. 观察得出:两个因式分别为与 例如: 分析: 解:原式 (1)仿照以上方法,按照要求分解因式: ①(分组分解法) ②(拆项法) ③________. (2)已知:、、为的三条边,,求的周长. 25、(1)模型:如图1,在中,平分,,,求证:. (2)模型应用:如图2,平分交的延长线于点,求证:. (3)类比应用:如图3,平分,,,求证:. 一、选择题 1、C 【解析】C 【分析】根据轴对称图形的定义,逐项判断即可求解. 【详解】解∶第一个图形不是轴对称图形, 第二个图形是轴对称图形, 第三个图形是轴对称图形, 第四个图形是轴对称图形, ∴轴对称图形有3个. 故选:C 【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键. 2、C 【解析】C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.0000021千克用科学计数法表示为千克,故C正确. 故选:C. 【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 3、C 【解析】C 【分析】根据幂的乘方以及同底数幂的乘法()则解答即可. 【详解】∵、均为正整数,且, ∴, 故选:C. 【点睛】本题主要考查了同底数幂的乘法以及幂的乘方,熟记幂的运算法则是解答本题的关键. 4、C 【解析】C 【分析】根据二次根式有意义,被开方数大于等于0,分母不为0列出不等式,求解即可. 【详解】解:要使有意义, 则,, 解得:且, 故选:C. 【点睛】本题考查了二次根式有意义,分式有意义的条件,掌握被开方数是非负数以及分母不等于0是解题的关键. 5、D 【解析】D 【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断. 【详解】解:A.等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意; B.等式左右两边不相等,不是因式分解,故此选项不符合题意; C.原变形是整式乘法,不是因式分解,故此选项不符合题意; D.把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意; 故选:D 【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算. 6、C 【解析】C 【分析】根据分式的基本性质进行计算逐一判断即可. 【详解】解:A、,故A不符合题意; B、,故B不符合题意; C、,故C符合题意; D、,故D不符合题意; 故选:C. 【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键. 7、D 【解析】D 【分析】根据已知条件是两个三角形的两组对应边,所以需要添加的条件必须能得到这两边的夹角相等,整理得到角的可能情况,然后选择答案即可. 【详解】∵AB=BD,BC=BE, ∴要使△ABE≌△DBC,需添加的条件为∠ABE=∠DBC, 又∠ABE-∠DBE=∠DBC-∠DBE, 即∠ABD=∠CBE, ∴可添加的条件为∠ABE=∠DBC或∠ABD=∠CBE. 综合各选项,D选项符合. 故选:D. 【点睛】本题考查了全等三角形的判定,根据两边确定出需添加的条件必须是这两边的夹角是解题的关键. 8、C 【解析】C 【分析】根据题意求得满足条件的a的值,从而可以得到满足条件的所有整数a的个数. 【详解】解:∵一次函数y=(7-a)x+a的图象不经过第四象限, ∴, 解得0≤a<7, 由分式方程解得:x=, ∵解为整数,且x≠1, ∴a=0,2,4, ∴符合题意的整数a的个数3个, 故选:C. 【点睛】本题考查一次函数的性质、分式方程的解,解答本题的关键是明确题意,求出满足条件的a的值,利用一次函数的性质和分式方程的知识解答. 9、A 【解析】A 【分析】将△ABC绕点C顺时针旋转35°得到△DEC,得∠ACD=35°,∠A=∠D=30°, 【详解】解:∵将△ABC绕点C顺时针旋转35°得到△DEC, ∴∠ACD=35°,∠A=∠D=30°, ∴∠AFD =∠ACD+∠D=35°+30°=65°, 故选:A. 【点睛】本题主要考查了旋转的性质,三角形外角的性质等知识,熟练掌握旋转的性质是解题的关键. 二、填空题 10、D 【解析】D 【分析】证得△CAF≌△GAB(SAS),从而推得①正确;利用△CAF≌△GAB及三角形内角和与对顶角,可判断②正确;证明△AFM≌△BAD(AAS),得出FM=AD,∠FAM=∠ABD,则③正确,同理△ANG≌△CDA,得出NG=AD,则FM=NG,证明△FME≌△GNE(AAS).可得出结论④正确. 【详解】解:∵∠BAF=∠CAG=90°, ∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB, 又∵AB=AF=AC=AG, ∴△CAF≌△GAB(SAS), ∴BG=CF,故①正确; ∵△FAC≌△BAG, ∴∠FCA=∠BGA, 又∵BC与AG所交的对顶角相等, ∴BG与FC所交角等于∠GAC,即等于90°, ∴BG⊥CF,故②正确; 过点F作FM⊥AE于点M,过点G作GN⊥AE交AE的延长线于点N, ∵∠FMA=∠FAB=∠ADB=90°, ∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°, ∴∠BAD=∠AFM, 又∵AF=AB, ∴△AFM≌△BAD(AAS), ∴FM=AD,∠FAM=∠ABD, 故③正确, 同理△ANG≌△CDA, ∴NG=AD, ∴FM=NG, ∵FM⊥AE,NG⊥AE, ∴∠FME=∠ENG=90°, ∵∠AEF=∠NEG, ∴△FME≌△GNE(AAS). ∴EF=EG. 故④正确. 故选:D. 【点睛】本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识.熟练掌握全等三角形的判定与性质是解题的关键. 11、2 【分析】根据分式值为零的条件:分子为零,分母不为零即可求解. 【详解】依题意可得x-2=0,x+1≠0 ∴x=2 故答案为:1、 【点睛】此题主要考查分式值为零的条件,解题的关键是熟知分式的值为零的条件. 12、0 【分析】根据关于y轴对称的点横坐标互为相反数,纵坐标不变求解即可. 【详解】解:∵点P(−1,3)与点P′(a+1,3)关于y轴对称, ∴-1+a+1=0, 解得:a=0, 故答案为:0. 【点睛】题目主要考查关于y轴对称的点的特点,熟练掌握关于坐标轴对称的特点是解题关键. 13、 【分析】原式整理成,再整体代入即可求解. 【详解】∵,, ∴ . 故答案为:. 【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和完全平方公式. 14、 【分析】对所求的式子进行变形后,逆用积的乘方的法则运算即可. 【详解】解: = = = = = 故答案为:. 【点睛】此题主要考查积的乘方,解题的关键是熟记积的乘方法则并逆用法则. 15、30°或60° 【分析】根据三角形内角和定理可得∠BAC的度数,△ADE是等腰三角形,分情况讨论:①AD=AE时,②EA=ED时,③DA=DE时,分别求解即可. 【详解】解:∵AB=AC,∠ABC= 【解析】30°或60° 【分析】根据三角形内角和定理可得∠BAC的度数,△ADE是等腰三角形,分情况讨论:①AD=AE时,②EA=ED时,③DA=DE时,分别求解即可. 【详解】解:∵AB=AC,∠ABC=40°, ∴∠ACB=∠ABC=40°, ∴∠BAC=100°, ∵∠ADE=40°, △ADE是等腰三角形,分情况讨论: ①AD=AE时,∠AED=∠ADE=40°, ∴∠DAE=100°, 此时D点与B点重合,不符合题意; ②EA=ED时,∠EAD=∠ADE=40°, ∴∠BAD=100°﹣40°=60°; ③DA=DE时,∠DAE=∠DEA=70°, ∴∠BAD=100°﹣70°=30°, 综上,∠BAD的度数为60°或30°, 故答案为:60°或30°. 【点睛】本题考查了等腰三角形的性质,三角形的内角和定理,熟练掌握等腰三角形的性质是解题的关键,注意分情况讨论. 16、20 【分析】由PM⊥OA于点M,PN⊥OB于点N得∠PMO=∠PNO=90°,已知∠MPN=140°,根据四边形的内角和等于360°可以求出∠AOB的度数,因为PM=PN,OP为Rt△PMO和Rt 【解析】20 【分析】由PM⊥OA于点M,PN⊥OB于点N得∠PMO=∠PNO=90°,已知∠MPN=140°,根据四边形的内角和等于360°可以求出∠AOB的度数,因为PM=PN,OP为Rt△PMO和Rt△PNO的公共边,由“HL”可以证明Rt△PMO≌Rt△PNO,则∠POM=∠PON,所以∠AOC= ∠AOB,即可求出∠AOC的度数. 【详解】解:如图,∵PM⊥OA于点M,PN⊥OB于点N, ∴∠PMO=∠PNO=90°, 在Rt△PMO和Rt△PNO中, , ∴Rt△PMO≌Rt△PNO(HL), ∴∠POM=∠PON, ∵∠MPN=140°, ∴∠AOB=360°-90°-90°-140°=40°, ∴∠AOC=∠AOB=×40°=20°, 故答案为:19、 【点睛】此题重点考查全等三角形的判定与性质、多边形的内角和、角平分线的定义等知识,证明三角形全等是解题的关键. 17、【分析】根据完全平方公式的变形求解即可. 【详解】解:∵a+b=5, ∴, ∴, ∴, 故答案为:. 【点睛】本题主要考查了完全平方公式的变形求值,熟知完全平方公式是解题的关键. 【解析】 【分析】根据完全平方公式的变形求解即可. 【详解】解:∵a+b=5, ∴, ∴, ∴, 故答案为:. 【点睛】本题主要考查了完全平方公式的变形求值,熟知完全平方公式是解题的关键. 18、2或3##3或2 【分析】此题要分两种情况:①当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求a;②当BD=CQ时,△BDP≌△CQP,计算出BP的长,进而可得运动 【解析】2或3##3或2 【分析】此题要分两种情况:①当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求a;②当BD=CQ时,△BDP≌△CQP,计算出BP的长,进而可得运动时间,然后再求a. 【详解】解:当BD=PC时,△BPD与△CQP全等, ∵点D为AB的中点, ∴BD=AB=6cm, ∵BD=PC, ∴BP=8-6=2(cm), ∵点P在线段BC上以2厘米/秒的速度由B点向C点运动, ∴运动时间时1s, ∵△DBP≌△PCQ, ∴BP=CQ=2cm, ∴a=2÷1=2; 当BD=CQ时,△BDP≌△CQP, ∵BD=6cm,PB=PC, ∴QC=6cm, ∵BC=8cm, ∴BP=4cm, ∴运动时间为4÷2=2(s), ∴a=6÷2=3(m/s), 故答案为:2或2、 【点睛】此题主要考查了全等三角形的判定,关键是要分情况讨论,不要漏解,掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL. 三、解答题 19、(1)5; (2)(a-1)(a+4). 【分析】(1)原式提取5,再利用完全平方公式分解即可; (2)原式整理后,利用十字相乘法分解即可. (1) 解: =5() =5; (2) 解: =-16+ 【解析】(1)5; (2)(a-1)(a+4). 【分析】(1)原式提取5,再利用完全平方公式分解即可; (2)原式整理后,利用十字相乘法分解即可. (1) 解: =5() =5; (2) 解: =-16+3a+12 =+3a-4 =(a-1)(a+4). 【点睛】此题考查了提公因式法与公式法的综合运用,以及因式分解-十字相乘法,熟练掌握因式分解的方法是解本题的关键. 20、分式方程无解 【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到y的值,经检验即可得到分式方程的解. 【详解】去分母得:y﹣2=2y﹣6+1 移项合并得:y=2、 经检验:y=3是增 【解析】分式方程无解 【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到y的值,经检验即可得到分式方程的解. 【详解】去分母得:y﹣2=2y﹣6+1 移项合并得:y=2、 经检验:y=3是增根,分式方程无解. 【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 21、见解析 【分析】、,再加上公共边即可正面两个三角形全等. 【详解】证明:在和中 ∴ ∴ 【点睛】此题考查的是三角形全等的判定,掌握三角形全等的条件是解题的关键. 【解析】见解析 【分析】、,再加上公共边即可正面两个三角形全等. 【详解】证明:在和中 ∴ ∴ 【点睛】此题考查的是三角形全等的判定,掌握三角形全等的条件是解题的关键. 22、(1)①;②,理由见解析 (2)B 【分析】(1)①先根据三角形内角和定理得到的值,再根据角平分线得出的值,最后求得; ②借助题中的结论和角平分线的性质得出、,进而在四边形PBHC中得出结论 (2) 【解析】(1)①;②,理由见解析 (2)B 【分析】(1)①先根据三角形内角和定理得到的值,再根据角平分线得出的值,最后求得; ②借助题中的结论和角平分线的性质得出、,进而在四边形PBHC中得出结论 (2)借助角三角形外角的性质得到,,对等角进行等量代换即可得出结论. (1)①,,,BH和CH是外角与外角的平分线,故,;②若,则.理由:由图1结论可得,,∵H是外角与外角的平分线BH和CH的交点,P是与的平分线BP和CP的交点,∴,同理可得,∴四边形PBHC中, (2)由题意可得,,,CP是的平分线,,,又;故答案为:B. 【点睛】本题考查角平分线的性质、三角形外角的性质、三角形内角和定理,解决本题的关键是正确理解题意,熟练应用各性质定理. 23、M、N的值分别为, 【分析】仿照题目当中例题的解法,一步一步的求解,根据等式两边对应项的系数相等列出关于M、N的二元一次方程组,进而求出M、N的值. 【详解】解:∵, ∴ 即 故, 解得 答:M、N 【解析】M、N的值分别为, 【分析】仿照题目当中例题的解法,一步一步的求解,根据等式两边对应项的系数相等列出关于M、N的二元一次方程组,进而求出M、N的值. 【详解】解:∵, ∴ 即 故, 解得 答:M、N的值分别为,. 【点睛】此题考查了分式混合运算,解题的关键是读懂例题的解法并熟练运用分式运算法则. 24、(1)①,②,③;(2)7 【分析】(1)①将原式化为,再利用完全平方公式和平方差公式分解即可;②将原式化为,再利用完全平方公式和平方差公式分解即可;③直接利用十字相乘法分解即可; (2)先利用完全 【解析】(1)①,②,③;(2)7 【分析】(1)①将原式化为,再利用完全平方公式和平方差公式分解即可;②将原式化为,再利用完全平方公式和平方差公式分解即可;③直接利用十字相乘法分解即可; (2)先利用完全平方公式对等式的左边变形,再根据偶次方的非负性可得出,,的值,然后求和即可得出答案. 【详解】解:(1)① ; ② ; ③; 故答案为:; (2)∵, ∴, ∴, ∴,,, ∴. ∴的周长为6、 【点睛】本题考查因式分解的方法及其在几何图形问题中的应用,读懂题中的分解方法并熟练掌握整式乘法公式是解题的关键. 25、(1)证明见解析;(2)证明见解析;(3)证明见解析; 【分析】(1)由题意得DE=DF,,,即可得出:=AB:AC; (2)在AB上取点E,使得AE=AC,根据题意可证△ACD≌△AED,从而可求 【解析】(1)证明见解析;(2)证明见解析;(3)证明见解析; 【分析】(1)由题意得DE=DF,,,即可得出:=AB:AC; (2)在AB上取点E,使得AE=AC,根据题意可证△ACD≌△AED,从而可求出,,即可求解; (3)延长BE至M,使EM=DC,连接AM,根据题意可证△ADC≌△AEM,故而得出AE为∠BAM的角平分线,即,即可得出答案; 【详解】解:(1)∵AD平分∠BAC,DE⊥AB,DE⊥AC, ∴DE=DF, ∵ ,, ∴:=AB:AC; (2)如图,在AB上取点E,使得AE=AC,连接DE 又∵ AD平分∠CAE, ∴ ∠CAD=∠DAE, 在△ACD和△AED中, , ∴△ACD≌△AED(SAS), ∴CD=DE且∠ADC=∠ADE, ∴ , ∴ , ∴AB:AC=BD:CD; (3)如图延长BE至M,使EM=DC,连接AM, ∵ ∠D+∠AEB=180°, 又∵∠AEB+∠AEM=180°, ∴∠D=∠AEM, 在△ADC与△AEM中, , ∴△ADC≌△AEM(SAS), ∴∠DAC=∠EAM=∠BAE,AC=AM, ∴AE为∠BAM的角平分线, 故 , ∴BE:CD=AB:AC; 【点睛】本题考查了全等三角形的判定与性质、角平分线的性质、以及三角形的面积的应用,正确掌握知识点是解题的关键;- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 001 人教版 初二 上册 期末 数学 综合 检测 试题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文